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Abstract
A mining complex is an integrated value chain where the materials extracted from a group of mineral deposits are sent to
different processing streams to produce sellable products. A major short-term decision in a mining complex is to determine
the flow of materials that first includes deciding which handling facilities to send the extracted materials and then determining
how to utilize the processing facilities. The flow of materials through the mining complex is significantly dependent on the
performance of and interaction between its different components. New digital technologies, including the development of
advanced sensors and monitoring devices, have enabled a mining complex to acquire new information about the performance
of its different components. This paper proposes a new continuous updating framework that combines policy gradient rein-
forcement learning and an extended ensemble Kalman filter to adapt the short-term flow of materials in a mining complex with
incoming information. The framework first uses a new extended ensemble Kalman filter to update the uncertainty models of
the different components of a mining complex with new incoming information. Then, the updated uncertainty models are fed
to a neural network trained using a policy gradient reinforcement learning algorithm to adapt the short-term flow of materials
in a mining complex. The proposed framework is applied to a copper mining complex and shows its ability to efficiently adapt
the short-term flow of materials in an operational mining environment with new incoming information. The framework better
meets the different production targets while improving the cumulative cash flow compared to industry standard approaches.

Keywords Mining complex · Production planning · Artificial intelligence · Reinforcement learning · Sensor information ·
Ensemble Kalman filter · Real-time · Destination policies · Deep learning

Introduction

Amining complex is an integrated value chain network with
multiple interlinked components including suppliers of raw
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materials (mineral deposits and external inventories), heavy
earthmoving equipment (shovel, trucks, and conveyor belts),
handling facilities (crushers, stockpiles, and waste dumps),
processing facilities (mineral processing mills and leach
pads), and customer/commodity markets. Uncertainty is a
characteristic of a mining complex, starting from the supply
of different types of rawmaterials extracted from the mineral
deposits involved (Dimitrakopoulos et al. 2002). Stochastic
optimization models account for uncertainty and generate
production decisions that yield higher value and manage the
technical risk of not meeting the production targets (Mai
et al. 2019; Matamoros and Dimitrakopoulos 2016). A long-
term production plan of a mining complex determines the
annual strategic decisions that maximize net present value
(NPV) andmeets different production targets, while account-
ing for uncertainty in the supply of different types ofmaterials
(Goodfellow and Dimitrakopoulos 2016, 2017; Montiel and
Dimitrakopoulos 2015, 2017, 2018). The short-term produc-
tion plan determines the daily/weekly/monthly production
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decisions within the long-term production plan to meet
annual targets. A review of short-term production planning
in mining operations can be found in Blom et al. (2019). In
addition to supply uncertainty, the short-termproduction plan
accounts for uncertainty in the performance of equipment to
determine the production decisions about the sequence of
extracting materials from the mineral deposits, equipment
assignment and allocation (Matamoros and Dimitrakopou-
los 2016; Quigley and Dimitrakopoulos 2019), as well as
the flow of materials from mineral deposits to customers and
commodity markets. A major short-term production deci-
sion is to determine the flow of materials in a value chain
that first includes deciding which handling facilities to send
the extracted materials, often refered to as destination poli-
cies (Asad et al. 2016), and then involves determining how to
utilize the processing facilities to produce the final products
sold to customers/markets, often referred to as processing
stream utilization.

New digital technologies, including the development of
advanced sensors and monitoring devices, have enabled the
acquisition of new information about the performance of the
different components of a mining complex that affect the
flow of materials in a value chain. Sensors installed on drills,
shovels, trucks, conveyor belts, crushers, and mineral pro-
cessing mills (Dalm et al. 2014, 2018; Goetz et al. 2009;
Iyakwari et al. 2016; Wambeke and Benndorf 2018) contin-
uously measure the performance of the mining equipment
and processing streams (processing and handling facilities),
as well as different pertinent properties of thematerials being
handled. In addition to the new sensor information, conven-
tional sources of new information include blasthole sampling
that determines the pertinent properties ofmaterials extracted
(Rossi and Deutsch 2013), monitoring devices that measure
the performance of equipment (Koellner et al. 2004), and
tracking devices that track the location of materials (Brewer
et al. 1999; Rosa et al. 2007).

The core existing technologies can only integrate new
information that is conventionally collected, such as grade
control that integrates blasthole data to identify ore/waste
boundaries in the blasted areas of mineral deposits (Dim-
itrakopoulos and Godoy 2014; Verly 2005) or dispatching
stations that monitor the equipment for assignment and dis-
patch decisions (Kargupta et al. 2010; Nguyen and Bui
2015). However, these technologies are unable to integrate
the sensor-generated information to adapt the short-term pro-
duction plan. A continuous updating framework, shown in
Fig. 1, is needed to adapt the short-term production plan of a
mining complex with new information generated from both
sensors and conventional sources. The continuous updating
framework consists of two parts. First, the new information
generated from the different sources in a mining complex
is used to update the performance of its different compo-
nents, which includes uncertainty in the supply of materials

from the mineral deposits, the performance of equipment,
and the processing streams’ capabilities (productivity, recov-
ery, etc.). Second, the updated performance of the different
components of a mining complex is then fed to an artifi-
cial intelligence framework, which, in the present work, is
a neural network agent that is trained using policy gradient
reinforcement learning to adapt the short-term production
plan. The adapted short-term production plan is fed back
to the mining complex to generate updated production fore-
casts. The adapted production plan is then followed, more
sensor data is collected as the mining operations progress,
and the production plan is adapted again, and the cycle con-
tinues. Benndorf and Buxton (2016) proposed a framework
to update the mine planning decisions with new information.
Related is also the work of Hou et al. (2015) and Shirangi
(2017), who proposed a continuous updating framework to
update the production plan of smart oil fields. However, the
existing frameworks, both in mine planning and smart oil
fields, require re-optimization of the production plan, which
is computationally expensive with the available optimiza-
tion techniques. Lamghari (2017) provided a detailed review
of the different techniques used for production planning in
mining complexes and smart oil fields. The new information
generated in a mining complex can be categorized as “soft”
and “hard” data, based on the precision of their measure-
ment. Sensor-generated information is “soft” data because
it is noisy, uncertain, and ambiguous when collected during
operations from different components of a mining complex.
Direct measurements, such as those derived from drillhole
samples, which are analyzed in geochemical laboratories
and are substantially more precise, are considered “hard”
data. Consequently, the first part of the continuous updat-
ing framework in a mining complex, as shown in Fig. 1,
aims at generating updated uncertainty models of the dif-
ferent components of a mining complex that are consistent
with the hard data and minimize the mismatch between (a)
the observed and forecasted production data, as well as (b)
the soft and hard data. Evensen et al. (1994) proposed the
ensemble Kalman filter (EnKF) that updates the non-linear
processes with new information and has long been used for
petroleum reservoir flow simulation and production forecast-
ing (Dovera and Della Rossa 2011; Kumar and Srinivasan
2019; Xu and Hernández 2019; Xue and Zhang 2014). The
ensemble Kalman filter is a two-step assimilation process
that first generates a model-based prediction based on initial
simulations for a non-linear process and then corrects such
predictions with new observed information. The method has
been successfully applied to update pertinent attributes of
mineral deposits (Benndorf 2015; Dalm et al. 2018; Yüksel
et al. 2018). Methods such as randomized maximum like-
lihood (Chen and Oliver 2012; Sarma et al. 2006; Shirangi
2017; Vo and Durlofsky 2014) and Markov mesh models
(Panzeri et al. 2016) are also used to update the pertinent
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Fig. 1 The proposed continuous
updating framework to adapt the
short-term production plan of a
mining complex with new
incoming information

petroleum reservoir-related attributes. Vargas-Guzmán and
Dimitrakopoulos (2002) and Jewbali and Dimitrakopoulos
(2011) proposed a column-wise decomposition of the covari-
ance matrix (CSSR) to update the pertinent attributes of
mineral deposits with new hard data. However, the CSSR
method cannot integrate the soft information generated
from sensors. The outlined methods for updating pertinent
attributes of mineral deposits with EnKF and CSSR are lim-
ited to a single attribute. This paper presents a new extension
of EnKF that allows the updating of multiple correlated
attributes inmineral deposits withminimum/maximum auto-
correlation factors (Desbarats and Dimitrakopoulos 2000).

The second part of the updating framework (Fig. 1) aims
at adapting the short-term production plan of a mining com-
plex with the updated uncertainty models of its different
components. Reinforcement learning methods are efficient
in decision-making with new information. In recent years,
reinforcement learning-based methods have shown excep-
tional performance at generating neural network agents that
are capable of making very efficient decisions for differ-
ent complex environments (Aissani et al. 2012; Barde et al.
2019; Mnih et al. 2013; Silver et al. 2016). Paduraru and
Dimitrakopoulos (2018) proposed a Bayesian reinforcement
learning algorithm to optimize the destination policies of
materials in a mining complex. However, the method devel-
oped requires a predefined extraction sequence to calculate
the expected a posteriori improvement in the objective func-
tion during the optimization. Paduraru and Dimitrakopoulos
(2019) proposed a policy gradient reinforcement learning
algorithm to optimize the neural network destination poli-
cies of materials in a mining complex while accounting for
supply and equipment performance uncertainty. The neural
network destination policies increased the expected NPV by
6.5% compared to the mine’s cut-off grade destination poli-
cies for a coppermining complex. However, themethod is (a)

limited to a single product mining complex, and (b) does not
provide a required continuous updating of the short-term pro-
duction plan regarding destination policies of materials with
the new information generated from sensors and/or conven-
tional sources.

The work presented herein proposes a novel continuous
updating framework that combines a new extension of the
EnKF method and a policy gradient reinforcement learning
method to adapt the short-term flow ofmaterials in amultiple
product mining complexes with new incoming information.
The continuous updating framework allows a mining oper-
ation to learn, adapt, and make more informed short-term
production planning decisions in real-time with incoming
new information, allowing the operation to meet its produc-
tion targets more closely. First, the proposed extension of
the EnKF model is used to update the multiple pertinent cor-
related attributes in a mineral deposit with new incoming
information. This part of the updating framework ensures
that the ambiguous information is handled efficiently using
Kalman gain in the proposed extension of the EnKF method.
Second, the model presented in Paduraru and Dimitrakopou-
los (2019) is further developed to account for multiple
products in a mining complex. The second part of the updat-
ing framework uses an extraction and hauling simulator to
generate samples for training the neural network destina-
tion policies agent through policy gradient reinforcement
learning. In the following sections, the proposed continuous
updating framework that adapts the short-term production
plan in terms of the flow of materials with new incoming
information is detailed. Next, an application of the proposed
continuous updating framework at a real coppermining com-
plex is presented to show the efficiency and applied aspects
of the proposed framework compared to the mine’s cut-off
grade destination policies. Conclusions and directions for
future research follow.
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Methods

This section outlines the algorithm related to the two parts of
the proposed continuous updating framework to update the
short-term flow of materials in a mining complex with new
incoming information. Please note that the notation used in
the proposed framework is provided in the “Appendix”.

Updating stochastic orebody simulations

The method proposed to update simulations of a mineral
deposit with new information uses ensemble Kalman filter
(EnKF) (Evensen et al. 1994), which is modified to account
for multiple correlated attributes. The group of simulations
of mineral deposits is herein referred to as ensembles. The
complete process to update ensembles with multiple corre-
lated elements based on new information is shown in Fig. 2.
First, the explorationdrill informationwithmultiple elements
is de-correlated using minimum/maximum autocorrelation
factors (MAF) (Desbarats and Dimitrakopoulos 2000). The
de-correlated MAF factors are then used to generate initial
ensembles. The new information acquired in themining com-
plex about the quality of the materials is de-correlated using
MAF. Then, the new decorrelated information and the ini-
tial ensembles are used in the EnKF method to generate
the updated ensembles of multiple correlated elements. The
updated ensembles are finally transformed back from MAF
factors into correlated elements and averaged tomining block
sizes that represent the selectivity of the operation in themin-
ing complex.

Updating algorithm

A mineral deposit is discretized into an array of three-
dimensional volumes referred to as mining blocks. The
mining blocks are further discretized into multiple internal
nodes. Let Zt ′,s

e (x) be a realization s ∈ S of the vector of the
spatial random field consisting of elements Zt ′,s

e (xi ). Z
t ′,s
e

(xi ) represents the simulatedMAF value of element e at loca-
tion xi, at time t′, under scenarios s, with i ∈ [1,N ], being
the index of internal nodes. Initial ensembles of MAF val-
ues are represented by Z

t ′,s
e (x) for the multiple elements in

the mineral deposit. Let matrix At ′ describe the contribution
of each internal node at the location xi at time t′, towards
the new information observed in the mining complex. The
new information observed at the time t′ is also de-correlated
using MAF into MAF factor lt ′

e for element e. The Gaus-
sian assumption in the ensemble Kalman filter is handled by
transforming Z

t ′,s
e (x),Z

t ′,s
e (xi ), and lt ′

e using the Gaussian

anamorphosis function Φe
G . The transformed vectors, U t ′,s

e

(x), ut ′,s
e (xi ) � Φe

G

(
Z

t ′,s
e (xi )

)
, and mt ′

e � Φe
G

(
lt ′
e

)
are then

used in the EnKF updating process. U t ′,s
e (x) is the vector of

elements ut ′,s
e (xi ). A random noise εt ′

e is added in the new
information to represent the noise with the measurement of
new information (Eq. 1). The model-based prediction Pt ′,s

e ,
which represents the predictions based on initial ensembles
at the location of observed information is given by Eq. 2.

ot ′
e � mt ′

e + εt ′
e , ∀e ∈ E (1)

Pt ′,s
e � At ′ · U t ′,s

e (x), ∀e ∈ E, s ∈ S (2)

(3)

U t ′+1,s
e (x) � U t ′,s

e (x) + K t ′
e ·

(
ot ′

e − Pt ′,s
e

)
, ∀e

∈ E, s ∈ S

K t ′
e �

(
AT

t ′ · Ct ′
ueue

· At ′ + Ct ′
oeoe

)−1
AT

t ′ · Ct ′
ueue

, ∀e ∈ E

(4)

EnKF uses Eq. 3 to update the initial ensembles (U t ′,s
e

(x)) with the new information based on the difference
between new information and model-based prediction, and
the Kalman gain. The Kalman gain K t ′

e is calculated using
Eq. 4 and defines the significance of the model compared to
the new information through the error covariance matrix of

the model (Ct ′
ueue

) and observations
(

Ct ′
oeoe

)
. For instance, if

the new information is inaccurate, then the term Ct ′
oeoe

, will
be high, which results in low Kalman gain.

A low value of Kalman gain indicates a noisy observa-
tion and, therefore, the initial ensembles are not updated.
On the other hand, if the Kalman gain is large, meaning the
new information is accurate, then the initial ensembles are
updated with the new information.

Ct ′
ueue

(xi ) ∼� 1

S

S∑
s�1

(
ut ′,s

e (xi ) − ut ′,s
e (xi )

)

·
((

ut ′,s
e (xi ) − ut ′,s

e (xi )
))T

, ∀i ∈ N , e ∈ E

(5)

EnKF approximates themodel error covariancematrixwith a
finite set of ensembles (Eq. 5). Themeasurement error covari-
ance matrix Ct ′

oeoe
is initialized randomly from a standard

normal distribution. The updated ensemble values are back-
transformed using Gaussian inverse transformation function

Φe−1

G

(
U t ′+1,s

e (x)
)
to generate updated MAF ensemble val-

uesZt ′+1,s
e (x). The updatedMAFensemble values are further

back-transformed using the MAF inverse transformation

123



Journal of Intelligent Manufacturing (2020) 31:1795–1811 1799

Fig. 2 Updating stochastic simulations of mineral deposits with new information

function and averaged to generate values of different ele-
ments in the mining blocks for different ensembles (Eq. 6).

(6)

dt ′+1,s
e (b) ≈ 1

V

V∑
i�1

Φe−1

M

(
Z

t ′+1,s
e (xi )

)
, ∀xi

∈ b, b ∈ B, s ∈ S, e ∈ E

Updating short-term destination policies in amining
complex

The method proposed to update the short-term destination
policies of materials in a multiple product mining complex
uses policy gradient reinforcement learning with neural net-
work agents and extends upon the work of Paduraru and
Dimitrakopoulos (2019). Themethod accounts for the uncer-
tainty in the supply of differentmaterials and the performance
of equipment. A short-term stochastic model detailed in
“A stochastic model of a mining complex” section is used in
the policy gradient reinforcement learning framework pre-
sented in “Updating algorithm” section to train the neural
network destination policies.

A stochastic model of a mining complex

A stochastic model of a mining complex is presented in
this section that uses concepts from discrete event simula-
tion, stochastic modelling, and system dynamics to calculate
the total time to move materials out of the mineral deposits.
Consider an illustrative example shown in Fig. 3, where the
materials are first loaded into trucks at mine m, with shovels,
that have an uncertain performancewith regards to productiv-
ity, breakdown time, and repair time. Uncertainty scenarios
for the shovel performance are generated fromhistorical data.
The loadedmaterials in the trucks are then hauled to different
destinations. The decision of hauling the materials to a des-
tination is based on destination policies, which, in this work,
are neural networks that are trained through policy gradient
reinforcement learning. Uncertainty scenarios for truck per-
formance (cycle time) are also generated fromhistorical data.
Depending on the performance of the destinations, the trucks
at different destinations might have a waiting time. The total
extraction (E) time T E

m,d,s to mine materials from mine m
until it is processed at destination d under joint uncertainty
scenario s, is therefore, a function of loading time T l

m,s , haul-
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Fig. 3 An illustrative example of
a stochastic model of a mining
complex

ing time to a destination T h
m,d,s , and wait time at a destination

T q
d,s , and is calculated using Eq. 7.

(7)

T E
m,d,s � f

(
T l

m,s, T h
m,d,s, T q

d,s

)
, ∀m

∈ M, d ∈ C ∪ LS ∪ W, s ∈ S

The materials are crushed at the crushers and then conveyed
to one of the processing mills with the highest available
capacity (processing stream utilization). The processing
mills recover the metal from the materials and generate mul-
tiple products in the mining complex. The recovery of the
processing mills is also uncertain and depends on the quality
of the feed materials. The stochastic scenarios of equipment
performance and processing mills recovery are combined
with the stochastic simulations of mineral deposits to gener-
ate the joint uncertainty scenariosS. For instance, 15 orebody
and 15 equipment performance scenarios will result in 225
joint uncertainty scenarios.

Updating algorithm

The stochastic model of a mining complex presented in “A
stochastic model of a mining complex” section simulates the
flowofmaterials in themining complex under the joint uncer-
tainty scenario S, which is used to train the neural network
destination policies. Note, the proposed model decides the
destination of materials based on multiple elements in a min-
ing complex, given afixed extraction sequence. The complete
training process of the neural network is presented in Fig. 4a.
The joint uncertainty scenarios are fed to the stochasticmodel
to perform the extraction and hauling simulations that gener-
ate information about the input state (SVi),which includes the
quality and quantity of materials extracted, hauled, crushed,
leached, and discarded under joint uncertainty scenarios. SVi

is fed to input neurons in the fully connected feed-forward
neural network. The input to different hidden neurons (hj)

is calculated using Eq. 8. Equation 9 is used to calculate the
output of hidden neurons using the rectified linear function
(Nair and Hinton 2010). The input to output neurons (ok) is
then calculated using Eq. 10. The weight matrixwh

i j andwo
jk

represent the weight associated with arcs from input (i) to
hidden (j) and hidden to output (k) neurons.

input
(
h j

) �
∑
i∈nI

wh
i j SVi , ∀ j ∈ nH (8)

output
(
h j

) � max
(
0, input

(
h j

))
, ∀ j ∈ nH (9)

input(ok) �
∑
j∈nH

wo
jk ∗ output

(
h j

)
, ∀k ∈ nO (10)

zb,d,t � einput(ok )
∑

k einput(ok )
, ∀t ∈T, b ∈Bm, d ∈ C∪LS ∪W

(11)

The output from output neurons defines the decisions vari-
able zb,d,t , that determines if (1) or not (0) a block b is sent
to a destination d in a period t and is calculated using Eq. 11.
Equation 11 also ensures that the blocks are only assigned to
one destination. Equations 12 and 13 are then used to calcu-
late the amount of metal property a, and mass respectively at
the different destinations i.

(12)

va,i,t,s �
∑

b∈Bm

ga,b,s · mb,s · zb,d,t , ∀t

∈ T, a ∈ PM , i ∈ C ∪ LS, s ∈ S

(13)

va,i,t,s �
∑

b∈Bm

mb,s · zb,d,t , ∀t ∈ T, a

∈ PT , i ∈ C ∪ LS ∪ W, s ∈ S
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Fig. 4 Process of training the neural network and adapting to new information

The materials from the different destination i ∈ C ∪ LS is
further sent to different processing streams j ∈ P ∪ LO .
Processing stream utilization decisions ya,i, j,t,s , represents
the amount ofmaterials property a, sent fromdestination i to j
in period t, under scenario s, and is decided based on available
capacity at the different processing streams. Equation 14 is
used to calculate the materials at the different processing
streams in the mining complex. Equation 15 ensures that
flow conservation is preserved with the processing stream
utilization decisions.

(14)

va, j,t,s �
∑
i∈C

ya,i, j,t,s · va,i,t,s, ∀t ∈ T, a

∈ PM ∪ PT , j ∈ P ∪ LO , s ∈ S

∑
j∈P∪LO

ya,i, j,t,s � 1, ∀t ∈ T, i ∈ C, s ∈ S (15)

(16)

va,i,t,s − d+
a,i,t,s ≤ Ua,i,t , ∀t ∈ T, a ∈ PM , i

∈ P ∪ LS ∪ LO , s ∈ S

(17)

va,i,t,s + d−
a,i,t,s ≥ La,i,t , ∀t ∈ T, a ∈ PM , i

∈ P ∪ LS ∪ LO , s ∈ S

f (X) � 1

S

∑
s∈S

∑
t∈T

∑
i∈P∪LO ∪LS

∑
a∈PM

Pa,i · va,i,t,s · ra,i,s

︸ ︷︷ ︸
Part I

− 1

S

∑
s∈S

∑
t∈T

∑
i∈P∪C∪LS∪LO ∪M

∑
a∈PT

Ca,i · va,i,t,s

︸ ︷︷ ︸
Part II

− 1

S

∑
s∈S

∑
t∈T

∑
i∈P∪LS∪LO

∑
a∈PM

(
c+a,i · d+

a,i,t,s + c−
a,i · d−

a,i,t,s

)

︸ ︷︷ ︸
Part III

(18)

Equations 16 and17are used to calculate the amount of devia-
tion from different production targets in the mining complex.
The metal is finally recovered at the different processing des-
tinations. The objective/cashflow/reward function is givenby
Eq. 18. Part I in the objective function represents the profits
from selling different products; Part II represents the dif-
ferent costs incurred throughout the flow of materials, and
Part III represents the penalties incurred due to deviation
fromdifferent production targets. The objective function is an
expected value. Equations 12–18 are based on recent devel-
opments in stochastic mine planning models (Goodfellow
and Dimitrakopoulos 2016; Montiel and Dimitrakopoulos
2015; Quigley and Dimitrakopoulos 2019). Policy gradient
reinforcement learning (Sutton et al. 2000) offers the ability
that, given a reward function f and probability density func-
tion zW parameterized by W, the equality in Eq. 19 below
holds true.
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∇W Ex∼zW (x)[ f (x)] � Ex∼zW (x)

[
f (x)∇W log(zW (x))

]
(19)

f (x) in Eq. 19 corresponds to the reward function and zW

(x), corresponds to the action-selection probabilities com-
puted using Eq. 11. The weight matrix W contains the
values of the hidden wh

i j , and the output neurons wo
jk .

As it is common in stochastic gradient methods (Bottou
2010), Ex∼zW (x)

[
f (x)∇W log(zW (x))

]
is replaced with f

(X)∇W log(zW (X)), where f (X) represent the cumulative
reward obtained during the planning horizonT using the vec-
tor of decisionsX. The gradient of log(zW (X)) can, therefore,
be calculated using Eq. 20, where the sum is over the plan-
ning horizon and over the destinations. Finally, the stochastic
approximationof∇W Ex∼zW (x)[ f (x)] canbe computedusing
Eqs. 18–20.

∇W log(zW (X)) �
∑
t∈T

∑
d∈C∪LS∪W

∇W log zW (d)zb,d,t (20)

(21)

gi+1 � γ gi + (1 − γ )∇W Ex∼zW (x) [ f (x)]2 , ∀i

∈ [1, nI ter ]

Wi+1 � Wi +
η∇W Ex∼zW (x)[ f (x)]√

gi+1 + ∂
, ∀i ∈ [1, nI ter ] (22)

The weight matrix W �
{
wh

i j , w
o
jk

}
of the neurons in the

neural network is initialized randomly and updated using the
gradient ascentmethodnamedRMSprop (Hinton et al. 2012).
The RMSprop method uses Eqs. 21 and 22 to backpropagate
and update the weight of the neurons in the training phase of
the neural network. This process (Eqs. 8–22) continues, and
the neural network is trained until the pre-defined stopping
criteria (nIter) are reached.

The training phase of the neural network allows the
generation of destination policies that can adapt to new infor-
mation. Figure 4b represents the process of adapting the
neural network destination policies when new information
is acquired in a mining complex. The new information is
first used to update the joint uncertainty scenarios using the
method outlined in “A stochastic model of a mining com-
plex” section. The updated joint uncertainty scenarios are
then fed to the stochastic model outlined in “A stochastic
model of a mining complex” section, which simulates the
extraction and hauling ofmaterials. The information from the
previous step is fed to the trained neural network that decides
the destination of materials and the materials from such des-
tinations are then sent to one of the processing streams based
on the available capacity of the different processing streams.
Finally, the forecasts for the different production targets are
calculated using Eqs. 12–18 and further evaluated regarding
their probability of meeting the different production targets.

The neural network is retrained for a few iterations if the pro-
duction targets are not met to adjust the weight of the neural
network and better meet the production targets.

Application at a copper mining complex

The proposed framework for updating the short-term desti-
nation of materials is applied at a copper mining complex,
which demonstrates the applied aspects of the proposed
method. In the case study, the blasthole data collected
during the mine’s operation is used to update the stochastic
simulations of mineral deposits with multiple elements. The
neural network destination policies account for uncertainty
in (a) supply of multiple materials with multiple elements,
(b) performance of equipment related to its availability, cycle
times, utilization, downtime, repair time, and productivity,
and (c) recovery of metal in processing mills. However,
the framework is flexible to include different types of new
information in the updating framework. The implementation
assumes that the mining complex has the necessary infras-
tructure related to wireless internet server/system and cloud
services to handle, store, and transmit the new collected
information and feedback the adapted short-term production
plan to the mining operation, as it is the case in mining
complex involved in the application present herein.

Overview of the copper mining complex

The copper mining complex consists of twomineral deposits
(A and B) with mining blocks of size 25×25×15 m3. The
mineralization has eight differentmine zones each. Themate-
rials are extracted from both deposits and are sent to one of
the seven destinations (five crushers, one sulphide leach pad,
and one waste dump), as shown in Fig. 5. For measuring the
performance of the proposed framework, a part of the deposit
that consists of 5581 mining blocks in each deposit extracted
over 210 days is used. Materials from five different crushers
are then processed at three different processing mills and an
oxide leach pad.

The materials from the leach pads are sent to a copper
cathode plant that produces copper cathodes. The processing
mills generate copper concentrate as the primary product and
gold (Au), silver (Ag), and molybdenum (Mo) concentrate
as secondary products, which are transported to the port. The
products from the port and copper cathode plant are finally
transported and sold to different customers and/or the spot
market. Additional details about the case study are presented
in the supplementary materials.
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Fig. 5 The copper mining complex

Cut-off grade versus adaptive neural network
destination policies

The copper mining complex currently uses a single element
(copper) predefined cut-off grade based destination policies
optimized using Lane’s theory (Lane 1984, 1988; Rendu
2014) and cannot account for new information collected dur-
ing the mine’s operation. The copper mining complex is a
major producer of copper products and does not consider
secondary products in the optimization of its cut-off grade
destination policies. The details of the cut-off grade destina-
tion policies are outlined in Table 1. First, the materials are
classified as sulphide high grade (SHG), sulphide low grade
(SLG), oxide based on the materials classification criteria
[i.e., ratio of soluble copper (CuS) to total copper (CuT)].
The materials classification criteria are necessary to deter-
mine the possible processing destinations allowed to process
the materials. The cut-off grade destination policies then use
the cut-off grades specified in Table 1 to determine the des-
tination at which the material will be processed.

The neural network destination policies decide the desti-
nation of mining blocks based on the properties of multiple
elements in a mining block, as well as the performance of
and interaction between the different components of themin-
ing complex. In addition, the proposed method adapts such
destination decisions of mining blocks with new incoming
information in the mining complex (see “Updating algo-
rithm” section). Similar to the cut-off grade destination
policies, the materials are first characterized as SHG, SLG,
oxide, and waste, based on the material classification criteria
mentioned in Table 1 to find the allowed processing desti-
nations for a mining block. However, instead of using the

Table 1 Material classification criteria and cut-off grade destination
policies used at the copper mining complex

Materials
classification

Materials
classification
criteria

Cut-off grade
destination
policies

Destination

SHG CuS
CuT ≤ 0.2 CuT ≥0.6 Processing

mill

0.3≤CuT
<0.6

Sulphide
leach pad

CuT <0.3 Waste dump

SLG 0.2 < CuS
CuT < 0.5 CuT >0.3 Sulphide

leach pad

CuT ≤0.3 Waste dump

Oxide CuS
CuT ≥ 0.5 CuS ≥0.2 Oxide leach

pad

CuS <0.2 Waste dump

cut-off grade destination policies mentioned in Table 1, the
neural networkdestination policies are used to decide the des-
tination of such materials. Three different neural networks
are built and trained using policy gradient reinforcement
learning. As mentioned in “Updating short-term destination
policies in a mining complex” section, the neural networks
decide whether (1) or not (0) to process the materials at (1)
the processing mills, (2) a sulphide leach pad, or (3) an oxide
leach pad.

Parameter selection

This section discusses the selection of different parameters
associated with the proposed adaptive neural network desti-
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nation policies. The state vector information SVi consists of
7–32 different types of information depending on the com-
plexity of the processing destination and are fed to the input
neurons of the neural network. For instance, SVi for the pro-
cessing mill, neural network consists of information about
the mass of a mining block, different elements such as total
copper, soluble copper, arsenic, gold, silver, and molybde-
num in the mining block, the materials being crushed and
leached, the performance of equipment, and the wait times
at the crushers. Similarly, the number of hidden neurons in
the neural network ranges from 300 to 800, depending on the
number of input neurons. There are only two output neurons
to decide whether (1) or not (0) themining block is processed
at the respective destination. The learning rate and the decay
rate with the neural network is set to 10−3 and 0.99, respec-
tively, as suggested in Hinton et al. (2012). The smoothing
term is set to 10−6 (Ruder 2016). The weight of the neurons
in the neural network is initialized randomly using theXavier
initialization (Glorot and Bengio 2010). The number of iter-
ations required to train the neural network is set to 7500. The
number of mineral deposit simulations to use for training the
neural network is set to 15 based on the tests show in the sup-
plementary material. The details of parameter selection are
also presented in the supplementary material of the present
manuscript.

Results

The results of the proposed adaptive neural network destina-
tion policies to update the short-term destination decisions
with new information are presented in this section. Results
are reported using the 10th, 50th, and 90th percentile risk
profiles (P10, P50, and P90 respectively) of the different
performance indicators considering 100 joint uncertainty
scenarios (10 equipment performance and 10 orebody sce-
narios). The results reported in this section are based on a
set of 100 joint uncertainty scenarios that were not used to
train the neural network destination policies. Testing the neu-
ral network destination policies on an unseen set of joint
uncertainty scenarios shows the reliability of the proposed
framework and highlights the overfitting issues, if any, with
the neural network destination policies. The forecasts of the
production targets with the proposed framework are com-
pared to the forecasts of the cut-off grade destination policies
over the same 100 joint uncertainty scenarios throughout its
presentation and discussion to highlight the differences and
added value of the adaptive framework, where appropriate.
The training phase of the neural network takes about 52 h,
with 12,500 iterations on an Intel processor core i7with 8GB
of RAM. However, it only takes about 5 min to update the
stochastic simulations of the two mineral deposits and to
adapt the destination decisions of mining blocks for 210 days
using the proposed adaptive framework. The results are pre-

sented for both the destination policies for initial and update
stochastic simulations of mineral deposits. The results pre-
sented for metal production and cash flows are scaled for
confidentiality purposes (mine’s cut-off grade based destina-
tion policies for initial simulations being 100%). Additional
results from the case study are presented in the supplemen-
tary material.

Updated stochastic simulations of mineral deposit

Figure 6 shows one of the initial and updated simulations
of the total copper mineral attribute of the mineral deposit
A at block support. The initial stochastic simulations of six
correlated elements in the two mineral deposits, conditional
to the exploration drillholes’ samples, are generated using a
generalized sequential Gaussian simulation (Dimitrakopou-
los and Luo 2004). Six different correlated elements: soluble
copper, total copper, arsenic, gold, silver, and molybdenum,
in the twomineral deposits are updated using themethod dis-
cussed in “Updating stochastic orebody simulations” section
with the new blasthole data collected during the short-term
operations. The blasthole data in a mine zone are only con-
sidered to update the mining blocks in the same mine zone
to respect the geological features of the mineral deposit. It is
clear from Fig. 6 that the updated simulations maintain the
significant structures inferred from the exploration drillholes
data and updates the local characteristics with the new blast-
hole data. A histogram of the initial and updated simulations
at point support confirms such results, where the distribution
of total copper in bench 1 for mineral deposit A is very dif-
ferent for the initial and updated simulations. The updated
simulations show a higher proportion of high-grade copper
materials, as compared to the initial simulations.

Production targets

The forecasts for the different production targets are shown
in this section for the neural network destination policies and
are compared to the cut-off grade destination policies.

Figure 7b shows the risk profile of meeting the capac-
ity target with mill-2 for initial simulations using neural
network destination policies compared to the cut-off grade
destination policies in Fig. 7a. The neural network destina-
tion policies are better at meeting the target with maximum
utilization of the mill’s capacity, as compared to high fluctu-
ations and lower chances of meeting the target in the cut-off
grade destination policies. The neural network destination
policies (Fig. 7d) has increased the chanceofmeetingproduc-
tion targets compared to the high fluctuations in the cut-off
grade destination policies (Fig. 7c) over the updated simu-
lations. Figure 8a, b show the risk of meeting the blending
target of arsenic at mill-2 for initial simulations with neural
network and cut-off grade destination policies, respectively.
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Fig. 6 Updated block simulations compared to initial block simulations for bench 1 for the mineral deposit A

Fig. 7 Forecasts of the capacity
target of mill-2 with the a initial
cut-off grade block destinations,
b initial neural network block
destinations, c updated cut-off
grade block destinations, and
d updated neural network block
destinations

The neural network destination policies have higher chances
of meeting such a target with minimal deviations only after
80 days, as compared to the cut-off grade destination policies,
which have a higher chance of deviating from such targets,
more specifically during the first 80 days. The two destina-

tion policies are unable to meet the blending restrictions as
shown in Fig. 8c, d over the updated simulations. The lower
chances of meeting the arsenic target with the updated des-
tination decisions are due to the fixed extraction sequence
decision in the proposed framework. Therefore, if there is a
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Fig. 8 Forecasts of arsenic
blending target of mill-2 with
the a initial cut-off grade block
destinations, b initial neural
network block destinations,
c updated cut-off grade block
destinations, and d updated
neural network block
destinations

Fig. 9 Forecasts of total copper
production at the processing
mills with the a initial cut-off
grade block destinations,
b initial neural network block
destinations, c updated cut-off
grade block destinations, and
d updated neural network block
destinations

high concentration of arsenic in the updated simulations, it
is hard to control the arsenic concertation in the mill without
adapting the extraction sequence.

Metal production

Figure 9a, b represent the risk profile of cumulative copper
production at the mills for the initial simulations with neural
network and cut-off grade destination policies, respectively.
The neural network destination policies recover 11% addi-
tional copper metal, as compared to the mine’s cut-off grade
destination policies for the initial simulations. The neural
network destination policies recover an additional 19% cop-

per metal (Fig. 9d), as compared to an additional 8% copper
metal in themine’s cut-off grade destination policies (Fig. 9c)
over the updated simulations. Figure 10 shows the risk pro-
files of the production of secondary product gold concentrate
using the neural network and the cut-off grade destination
policies. The neural network destination policies generate
27% additional gold product (Fig. 10b), as compared to the
mine’s cut-off grade destination policies (Fig. 10a) over the
initial simulations. The adapted decisions of neural network
destination policies generate an additional 53% of the gold
product (Fig. 10d), as compared to an additional 38% for the
mine’s cut-off grade destination policies (Fig. 10c) over the
updated simulations.
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Fig. 10 Forecasts of total gold
production at the processing
mills with the a initial cut-off
grade block destinations,
b initial neural network block
destinations, c updated cut-off
grade block destinations, and
d updated neural network block
destinations

Fig. 11 Forecasts of the
cumulative cash flow of the
mining complex with the
a initial cut-off grade and neural
network block destinations, and
b updated cut-off grade and
neural network block
destinations

Cash flows

Figure 11 shows the risk profile of cumulative cash flowswith
the neural network and cut-off grade destination policies.
The neural network destination policies present a 15%higher
cumulative cash flows compared to the mine’s cut-off grade
destination policies for the initial simulations (Fig. 11a).

The neural network destination policies generate an addi-
tional 22% cumulative cash flows, as compared to an
additional 11% for the mine’s cut-off grade destination poli-
cies (Fig. 11b) over the updated simulations.

Updated destination decisions

Figure 12b shows the destination decisions of the neural
network destination policies compared to the cut-off grade
destination policies in Fig. 12a for initial simulations. The
adapted destination decisions of the neural network and the
cut-off grade destination policies are shown in Fig. 12c, d,
respectively. The neural network destination decisions are
very different from the cut-off grade destination decisions for
initial and update simulations, which result in better chances

of meeting production targets, consistently higher cumula-
tive cash flows, and increased metal production.

The reason for the better performance of neural network
destination policies is due to its ability to:

1. Acount for and capitalize on the performanceof and inter-
action amongst the different components in the mining
complex, thus enabling complex decision-making under
different sources of uncertainties.

2. Integratemultiple sources of uncertainty, such as the sup-
ply of materials, the performance of equipment, and the
recovery of metal during the decision-making process

3. Account for multiple products, such as copper, gold, sil-
ver, and molybdenum, as well as deleterious elements
such as arsenic, while deciding the destination of mining
blocks.

Conclusions

This paper presents a novel continuous updating framework
for adapting the short-term flow of materials in a mining
complex with new incoming information. The framework
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Fig. 12 Destination decisions of mining blocks for bench 1 in mineral
deposit A with the a initial cut-off grade block destinations, b initial
neural network block destinations, c updated cut-off grade block desti-
nations, and d updated neural network block destinations

consists of two parts: first updating uncertainty models with
a new extension of ensemble Kalman filter and second, feed-
ing the updated uncertainty models to a neural network agent
(trained using policy gradient reinforcement learning) that
adapts the destination decisions of extracted material. The
proposed framework is applied at a copper mining complex,
which shows its applied aspects and an excellent performance
to respond and integrate the new incoming information effi-
ciently in an operational mining environment for adapting
the materials flow. The proposed framework better meets
the capacity and blending requirements of the different pro-
cessing mills of the copper mining complex compared to
the mine’s cut-off grade destination policies. The proposed
framework generates an additional 11%, 27%, 29%, and 29%
of copper, gold, silver, and molybdenum products, respec-
tively, and an additional 15% of cash flows, as compared to
the mine’s cut-off grade destination policies for the initial
simulation. The extended ensemble Kalman filter updates
multivariate local features of the mineral deposits with new
blasthole information. The neural network destination poli-
cies are better at responding to the new information and adapt
the destination decisions over the updated simulations more
intelligently to meet the targets better. The updated desti-
nation decisions from neural network destination policies
generate an additional 19%, 53%, 71%, and 76% of cop-
per, gold, silver, and molybdenum products, respectively, as
well as an additional 22% of cash flows. The mine’s cut-off
grade destination policies only generate an additional 8%,
38%, 56%, and 61%of copper, gold, silver, andmolybdenum
products, respectively, and an additional 11% of cash flows,

over the updated simulations. The proposed framework only
adapts the destination decisions of the mining blocks, thus
limiting the full potential and use of new information. In the
future, a framework that can adapt all the relevant decisions
of the short-term production plan will be developed.
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Appendix: Notations

Table 2 outlines the notations, sets, indices, parameters, and
constants used in the proposed framework. Table 3 shows the
variables used in the proposed framework.

Table 2 Sets, indices, parameters, and constants used in the proposed
framework

Parameters Definition

S Set of stochastic orebody simulations, s ∈ S

S Set of joint uncertainty scenarios that include orebody
and equipment simulations, s ∈ S

T Production planning horizon, t ∈ T

M Set of mines in a mining complex, m ∈ M
Bm Set of mining blocks in a mine m, b ∈ Bm

N Set of internal nodes in a mine

xi Location of internal nodes in a mining block b, i ∈
[1,N ]

C Set of crushers in a mining complex

P Set of processing mills in a mining complex

LO Set of oxide leach pads in a mining complex

LS Set of sulphide leach pads in a mining complex

W Set of waste dumps in a mining complex

t′ Time step when new information is collected

V Set of internal nodes in a mining block b

E Set of elements in a mineral deposit, e ∈ E
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Table 2 continued

Parameters Definition

dt ′,s
e (xi ) Initial data value of the internal node at the location xi

for element e at time t′, and scenario s

dt ′,s
e (b) Initial data value of mining block b for element e at

time t′ and scenario s
Z

t ′,s
e (xi ) Initial MAF value at location xi for element e at time

t′ and scenario s

Z
t ′,s
e (x) Vector of Zt ′,s

e (xi ) for element e at time t′ and
scenario s

At ′ Matrix of the contribution of internal nodes towards
new information at the time t′

AT
t ′ Transpose of matrix At ′

εt ′
e Error in the new information for element e at time t′

Pt ′,s
e Model-based prediction for element e at time t′and

scenario s

K t ′
e Kalman gain for element e at time t′

Ct ′
oeoe Measurement error covariance matrix for element e at

time t′

Ct ′
ueue Model error covariance matrix for element e at time t′

ut ′,s
e (xi ) Initial Gaussian values for element e at time

t′generated by transforming MAF values at the
location xi

U t ′,s
e (x) Vector of ut ′,s

e (xi ) for elements e at time t′

mt ′
e MAF value of new information transformed to

Gaussian values for element e at time t′

Ua,i,t Upper production limit for property a at i in period t

La,i,t Lower production limit for property a at i in period t

Ca,i Cost of processing material property a at i

c+a,i Cost of deviation from the upper target Ua,i,t for
material property a at i

c−
a,i Cost of deviation from the lower target La,i,t for

material property a at i

nI Number of input neurons

nH Number of hidden neurons

nO Number of output neurons

hj Hidden neuron j

ok Output neuron k

mb,s Mass of block b under scenario s

ga,b,s Grade of material property a in block b under scenario
s

εt ′
e Noise in the new information for element e at time t′

nIter Number of training iterations

gi Gradient at iteration i, i ∈ [1, nI ter ]

η Decay rate

∂ Smoothing term

γ Learning rate

Φe
M MAF transformation function for element e

Φe
G Gaussian transformation function for element e

Φe−1

M MAF inverse transformation function for element e

Table 2 continued

Parameters Definition

Φe−1

G Gaussian inverse transformation function for element
e

Ct ′
ueue Model error covariance matrix for element e at time t′

Ct ′
oeoe Measurement error covariance matrix for element e at

time t′

lt ′
e MAF value of new information collected for element e

at time t′

PT Property tonnage that flows in the mining complex

PM Set of metal properties that flow in the mining
complex

T l
m,s Loading time with the shovel at mine m under joint

uncertainty scenario s

Table 3 Variables used in the proposed framework

Variables Definition

zb,d,t ∈ {0, 1} Defines if (1) or not (0) a block b is sent to
destination d in period t

ya,i, j,t,s ∈ [0, 1] Amount of property a send from i to j in period t
under joint uncertainty scenario s

d+
a,i,t,s ∈ R Excess from target Ua,i,t for material property a

at i in period t under joint uncertainty scenario
s

d−
a,i,t,s ∈ R Shortage from target La,i,t for material property

a at i in period t under joint uncertainty
scenario s

va,i,t,s ∈ R Amount of material property a at i in period t
under joint uncertainty scenario s

ra,i,s ∈ [0, 1] Recovery of material property a at i under joint
uncertainty scenario s

U t ′+1,s
e (x) Updated Gaussian values

Z
t ′+1,s
e (xi ) Updated MAF value at location xi for element e

at time t ′ + 1 and scenario s

Z
t ′+1,s
e (x) Vector of Zt ′+1,s

e (xi ) for element e at time t ′ + 1
and scenario s

dt ′+1,s
e (b) Updated data value of mining block b for

element e at time t′ and scenario s

Pa,i Profit of product a at location i. The profit is
calculated after deducting all the costs incurred
to generate the products

T h
m,d,s Hauling time from mine m to destination d

under joint uncertainty scenario s

T q
d,s Queue time at destination d under joint

uncertainty scenario s

T E
m,d,s Total extraction time from mine m to destination

d under joint uncertainty scenario s

SVi Components of input state vector fed to input
neuron i

wh
i j Weight with an arc connecting input neuron i to

hidden neuron j

wo
jk Weight with an arc connecting hidden neuron j

to output neuron k
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