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Abstract
Currently, machine tool selection, cutting tool selection and machining conditions determination are not usually performed at
the same time but progressively, whichmay lead to suboptimal or trade-off solutions. Targeting this issue, this paper proposes a
big data analytics based optimisationmethod for enrichedDistributed Process Planning by consideringmachine tool selection,
cutting tool selection and machining conditions determination simultaneously. Within the context, the machining resources
are represented by data attributes, i.e. workpiece, machining requirement, machine tool, cutting tool, machine conditions,
machining process and machining result. Consequently, the problem of machining optimisation can be treated as a statistic
problem and solved by a hybrid algorithm. Regarding the algorithm, artificial neural networks based models are trained by
machining data and used as optimisation objectives, whereas analytical hierarchy process is adopted to decide the weights of
the multi-objective optimisation; and evolutionary algorithm or swarm intelligence is proposed to perform the optimisation.
Finally, the results of a simplified proof-of-concept case study are reported to validate the proposed approach, where a Deep
Belief Network model was trained by a set of hypothetic data and used to calculate the fitness of a genetic algorithm.

Keywords Big data analytics · Machining optimisation · Hybrid algorithm · Deep belief network · Genetic algorithm

Introduction

Modern industries are characterised by smartness and intel-
ligence in manufacturing, as identified in Industry 4.0 and
Made in China 2025 where automation and digitalisation
are the key elements. In modern manufacturing, machining
being highly nonlinear is the most complex process. In order
to decompose the complexity, a method named Distributed
Process Planning (DPP) is used to divide the machining pro-
cess planning into supervisory planning, execution control
and operation planning (Wang et al. 2003). In the super-
visory planning, generic processes are obtained based on
machining features and machining knowledge, whereas the
resource-specific processes includingmachine tool selection,
cutting tool selection and machining conditions determina-
tion are carried out during the execution control and operation
planning. Furthermore, due to the limitations of conven-
tional methods, the optimisations of machine/cutter/cutting
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parameter selections are usually performed separately, which
ignores the relationships between them, constrains the solu-
tion space, and belongs to a local optimisation. Integrating
the decision processes into one based on data science con-
tributes to the global optimisation. However, it introduces
several challenges: (1) the solution space is determined by
the high dimensions of data; (2) it is difficult to establish
high-accuracy objective functions; and (3) the needs in real
industry aremulti-objective.Big data analytics, used success-
fully in many areas including product lifecycle management,
supply chain management and predictive maintenance (Wan
et al. 2017), shed lights on these issues. In this research, based
on DPP, big data analytics is applied to enrich its functional-
ities to select machine tool and cutting tool, and to optimise
machining conditions simultaneously. The remainder of this
paper outlines this approach and is organised as follows. A
review of related work is provided in “Related work” section.
Combining with big data analytics, the approach of enriched
DPP is reported in “Enriched distributed process planning
(DPP)” section, followed by a solution of enriched DPP in
“Solution strategy of enriched DPP” section. The proposed
approach is then validated by a simplified proof-of-concept
case study in “A simplified case study” section. Finally, a
brief discussion on the presented approach is given in “Con-
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clusions” section, together with the contributions and future
work of this research.

Related work

Nowadays, machine tool selection is considered a minor
issue in process planning due to limited number of machine
tools on a given shop floor; however, in cloud manufacturing
environments, there are numerous machine tools that can be
selected. For cutting tool selection and machining conditions
determination, two common approaches exist: (1) in most of
reported process planning methods, cutting tool is regarded
as a standard machining resource and its parametrical opti-
misation is not considered, and (2) machining conditions are
optimised after tool selection (Xu et al. 2011). In this case, the
three simultaneous decision processes in process planning
are treated sequentially, hindering the loss of both machin-
ing accuracy and efficiency.

Machining process optimisation started with mathemat-
ical model based methods that were popular in the 1990s.
Chua et al. (1991) proposed a series of mathematical formu-
lations to optimise the cutting conditions and to reduce the
operation time. Yeo (1995) developed a multi-pass optimisa-
tionmethod for a CNC lathe, in which near-optimal solutions
were obtained. Akturk and Avci (1996) presented a hierar-
chical method for a CNC machine tool. In their method,
the mathematical models on system characterisation were
established to minimise the total production cost. Experi-
mental methods were applied with specific aims. Chen et al.
(2011) proposed an experimental plan of a four-factor D-
optimal design to obtain the optimal spindle speed, feed
rate, cutting depth, and the status of lubrication concern-
ing vibration and surface roughness in precision turning.
Fernández-Valdivielso et al. (2015) presented an experiment
based method to seek common feature of cutting tool with
best performance in machining of superalloys in terms of
surface integrity.

Machining optimisation, regarded as a search problem,
was treated based on search algorithms in which tabu search
(TS) is a popular one. Bretthauer and Cote (1997) presented
a nonlinear programming method for capacity planning in
a manufacturing system to determine the timing and size of
capacity change. In their method, branch and bound, and
outer approximation techniques were applied. Taiber (1996)
proposed a set ofmodified algorithms from thefieldof combi-
natorial search problems, gradient projection method named
as von Rosen, branch and bound algorithm, and shortest
common super sequence algorithm, etc. The method was to
assist the human planner in fulfilling machine tool and cutter
selection, determination of the setup and process sequence,
definition of tool paths and optimisation of cutting parame-
ters. TSwas applied to process planning, machining resource

selection, setup plan determination and operation sequencing
(Li et al. 2003).

Genetic algorithm (GA), themost basic evolutionary algo-
rithm, is a popular method used for optimisation. Chen and
Tseng (1998) introduced a float encoding GA into machin-
ing conditions selection. Morad and Zalzala (1999) applied
a GA to minimise the makespan, the total rejects and the
total cost of production. Dereli and Filiz (2000) utilised
a GA to obtain the optimal index positions on tool mag-
azines. Hua et al. (2007) proposed a GA-based synthesis
approach to archive machining scheme selection and opera-
tion sequencing optimisation for prismatic parts. Kondayya
and Krishna (2012) used a non-dominated sorting genetic
algorithm-II (NSGA-II) to optimise the cutting parameters
during a CNC end-milling process. Manupati et al. (2016)
proposed a modified block-based GA and modified NSGA
to obtain the minimisation of both makespan and the varia-
tion of workload. A series of swarm intelligence (SI) based
optimisation algorithms were applied to process planning.
Guo et al. (2009) used a particle swarm optimisation (PSO)
approach to obtaining operation sequence. Wen et al. (2014)
proposed a honey bees mating based optimisation algorithm
to optimise the process planning problems. In addition,multi-
objective optimisationwas employed due tomany limitations
of single-objective optimisation methods in the real machin-
ing process. Sardinas et al. (2006) proposed a GA-based
multi-objective optimisation method to obtain the optimal
cutting parameters during the turning process. Shin et al.
(2011) introduced a multi-objective symbiotic evolutionary
algorithm into flexiblemanufacturing system for solving pro-
cess planning problems, where machine tool, sequence, and
process are the three objectives. Li et al. (2018) proposed a
multi-objective optimisation approach for tool path planning
in freeform surface milling.

Expert system was developed to utilise the machining
knowledge. Data classificationmethods were applied to opti-
mising machining process. Data classification methods, e.g.
decision trees and artificial neural networks (ANN), were
also applied. Sluga et al. (1998) developed a decision tree
based method to predict tool features, cutting geometry and
cutting parameters a set of attribute values to improve and
automate the tool selection and determination of cutting
parameters. Thimm et al. (2001) proposed a datum hierar-
chy tree within graph theoretical approach to minimising
machine and datum changes. Li et al. (2015) proposed a
back propagation neural network model to predict the cut-
ting parameters based on a set of mathematical objectives,
e.g. machining time, energy consumption and surface rough-
ness. Process planning was commonly treated as an NP-hard
problem. Lian et al. (2012) applied an imperialist competitive
algorithm (ICA) to find promising solutions with a reason-
able computational cost. Their cases illustrated that the ICA
was more efficient and robust than GA, SA, TS and PSO.
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The hybrid methods were applied to relaxing the limita-
tion of one singe algorithm in the past decade, such as GA
based, combined GA and PSO based. Wong et al. (2003)
proposed a fuzzy expert system and GA to sequence machin-
ing process. Tiwari et al. (2006) presented an ant colony
optimisationmethod to select the best process plan in an auto-
mated manufacturing environment. Venkatesan et al. (2009)
developed a GA-based optimisation of weights applied to
ANN for obtaining the best machining operation regard-
ing marginal amount of time saving. Jayabal and Natarajan
(2010) proposed a method of optimisation of thrust force,
torque, and tool wear in drilling of coir fibre-reinforced com-
posites, combining Nelder–Mead and GA methods. In their
method, a nonlinear regression analysis was applied to estab-
lishing functions according to experimental data. A hybrid
GA and intelligent search method was proposed by Salehi
and Bahreininejad (2011), and it was applied to optimising
machine tool, cutting tool and tool access direction for each
operation. Pour (2018) proposed a hybrid algorithm based on
time series analysis and wavelet transform to model surface
roughness.Moreover, many efforts were also devoted to GA-
based hybridmethods for optimisation ofmachining process.
Petrovic et al. (2016) utilised PSO algorithm and chaos the-
ory to optimise process plans, in which PSO was used in
early stages of the optimisation process by implementing ten
different chaotic maps that enlarged the search space and
provided diversity. In addition, Rowe et al. (1996) reported
an application of artificial intelligence in CNC grinding,
including knowledge based and expert systems, fuzzy logic
systems, and neural network systems. Within the context,
setup time, process proving time and the extent of opera-
tor intervention could be improved. Arnaiz-González et al.
(2016) used artificial neural networks to predict dimensional
error on inclined surfaces machined by ball end mill. Their
results showed that radial basis functions can predict better
than multilayer perceptron in all cases.

From the literature, the optimisations in machining have
been focused on the specialised cases and processes due
to the limitations of traditional physical and experimental
based methods in terms of high-dimensional data optimisa-
tion and high-accuracy optimisation. They lack the generality
or capability for general process planning,which has recently
caught attentions to the application of big data analytics in
this area. Moreover, the major algorithms consist of math-
ematical methods, experimental methods, search methods,
evolution based methods, and SI based methods. Nowadays,
hybrid methods and big data analytics used in many areas
are promising to provide high-accuracy solution strategies,
in particular, for optimisation problems of high-dimensional
data. Big data embraced by smart manufacturing (Kusiak
2017), as well as data collection, use and sharing are impor-
tant gaps in innovation. Tao et al. (2018) shed light in a
data-driven smart manufacturing framework. Recently, there

have been many articles reporting big data analytics in
machining. Li et al. (2017) presented a data-driven approach
combined with Deep Belief Network (DBN) to predicting
the backlash error in machining centre. Liang et al. (2018)
proposed a novel Cyber Physical System (CPS) and big
data enabled machining optimisation system to optimise the
energy in machining processes. Xu and Duan (2018) pointed
out that CPS and big data are two keys for Industry 4.0 in
the near future. Moreover, as reported by de Lacalle et al.
(2006), their developedmethodswere used to detect potential
milling problems associatedwith cutting forcemeasurement,
which demonstrated that the data in machining are abun-
dantly enough to be used and mined. Therefore, big data
analytics combined with hybrid algorithms shows potential
for an integrated optimisation of machine tools, cutting tools
and machining conditions. In the previous work, machining
was considered for both scheduling by big data analytics (Ji
andWang 2017a) and machining optimisation by a proposed
enriched process planning method in the conceptual level (Ji
andWang 2017b), which are limited by workpiece represen-
tation. To address the issue, an enriched DPP is proposed in
this research, where the original DPP is selected to carry out
the workpiece representation etc. and the machining process
is considered as awhole to optimise themachining resources.

Enriched distributed process planning (DPP)

Concept of distributed process planning

A detailed system architecture of DPP is shown in Fig. 1,
where supervisory planning, execution control and opera-
tion planning are the three major system modules. In this
design, the execution control module is placed in-between
the supervisory planning and operation planning modules,
and looks after jobs dispatching (in the unit of setups) based
on up-to-date monitoring data, availability of machines and
scheduling decisions (Wang and Shen 2003; Wang et al.
2003). The distribution profile is a key feature. Combin-
ingwithweb-based knowledge sharing, dynamic scheduling,
real-timemonitoring and remote control, DPP can be embed-
ded into web-based environment, which is named Web-DPP
(Wang 2009, 2013). Towards the concept of cloud manu-
facturing, a Cloud-DPP was also developed as one of the
applications of cyber-physical systems for more complex
manufacturing environment (Wang 2014).

Within DPP, feature-based design and machining fea-
ture recognition are beyond the scope of this research. DPP
assumes that machining features are already made avail-
able in the product data—they are either generated directly
by using a feature-based design tool or recognised by a
third-party machining feature recognition solution. Execu-
tion Control and Operation Planning in the original DPP
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Fig. 1 System architecture of DPP (Wang et al. 2003)

do not consider the global machining process optimisation
due to the complexity of relevant machining resources, i.e.
machine tool, cutting tool and machining conditions. Target-
ing the issue, this paper proposes an enrichedDPP combining
DPP with big data analytics. Within the context, the suitable
machine tool can be selected in Execution Control, and the
suitable cutting tool andmachining conditionswill be chosen
and optimised accordingly.

Enriched DPP

Machine tool selection, cutting tool selection and machining
conditions determination are the major decision processes
after Supervisory Planning in the original DPP (Fig. 1). They
are treated separately by using the existing methods (exper-
imental and physical), as shown in the left side of Fig. 2,
where their relationships are ignored, resulting in the feasible
sets of those elements being bounded. Targeting this issue,
the proposed method is to address the whole process from
customer orders to final parts, and to develop a generalised
system in which those processes are merged, as shown in the
right side of Fig. 2. The optimisation can therefore be treated
as an integrated one after setting workpiece and machining
requirements (“Task” inFig. 2) towards a global optimal solu-
tion. Generally, there is no strict decision sequence between
machine tool selection, cutting tool selection and machining
conditions determination, and they are decided according to
their availabilities.
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Fig. 2 Differences in cutting tool and machining conditions optimisa-
tion

Big data in machining

Big data are characterised by big variety, big volume and big
velocity. In the manufacturing industry, data are generated
along the lifecycle of products when orders are placed to
the selected manufacturers, produced by machine tools, and
delivered to customers, as shown in Fig. 3. A manufacturer
concerns machining efficiency, cost and quality, whereas in
machining, the right decisions of machine tool, machining
conditions and cutting tools are the major objectives. The
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Fig. 3 Relationship between
cutting tool and machining
conditions
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relationships between the machining related elements are
also complex and include physical and chemical interac-
tions, as shown in ➊–➏ of Fig. 3, and they refer to geometric
constraint ➊, cutting force ➋, cutting layer ➌, strength of
cutting tool ➍, high temperature material and tribology ➎,
and chemical process ➏. Many parameters are needed to
represent these elements. For example, the order is divided
into workpiece and requirements. Machine tools are related
to their structures, errors and stiffness. Cutting tool includes
tool geometries, tool material, and the match between the
geometry and the material. Machining conditions include
cutting parameters, coolant types, tool position, and fix-
ture properties. Performance factors related to force, heat
and deformation during machining consist of chip control,
machining dynamics, tool wear, and fracture. The final parts
are also inspected in terms of accuracy and quality.

Considering the machining complexity, data in the pro-
cess are of high dimensions. Usually, big data volume is
required to guarantee the training accuracy. Machining pro-
cesses are closely linked to the states of cutting tool and
machine tool. Real-time data collection is needed for mon-
itoring the machining processes, and regular data update is
also essential for correcting the machine tool state.

Big data analytics based enriched DPP approach

Based on the analysis in “Big data in machining” section,
it is extremely difficult, if not impossible, to optimise the
entire process from order to final part using the conventional
methods; however, the process can be represented by data
attributes. Along the direction, this research proposes a big
data analytics based enrichedDPPapproach to addressing the
optimisation process as a whole, where machine tool, cutting
tool, and machining conditions can be decided altogether, as
shown in Fig. 4. The optimisation is based on certainmachin-
ing geometrical elements, such as machining features. The
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Fig. 4 Decision making framework of enriched DPP

workpiece and machining requirements are the initial input
data, and DPP adopts a three-step optimisation scheme: (1)
to globally optimise machine tool, cutting tool, and machin-
ing conditions; (2) to locally obtain the optimal cutting tool
and machining conditions after selecting a machine tool; and
(3) to locally optimise machining conditions after select-
ing a cutting tool. In general, the availability of machine
tool is the lowest, followed by cutting tool or machining
conditions; therefore, a machine is selected ahead of cut-
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ting tool selection and machining conditions determination.
Within the context, each machining resource is represented
by high-dimensional data attributes, which enables the pat-
terns between the resources to be mined by the machine
learning algorithms. As a result, newmaterials, newmachine
tools and/or new cutting tools can be optimised by providing
the basic data regardless of the relevant machining experi-
ments of those new machining resources.

Solution strategy of enriched DPP

Problem transformation in enriched DPP

Themachining process is transformed into a statistic problem
in the enriched DPP. The available parameters of machine
tool, cutting tool and machining conditions constitute the
original solution space So with multi-dimensional data, as
shown in Fig. 5. There are three steps in optimisation in the
enriched DPP, i.e., initialisation, optimisations ➀, ➁ and ➂.
Initialisation specifies the workpiece and machining require-
ments which are two constraints to the original solution
space, i.e. workpiece constraint Wc and machining require-
ment Mr . Current solution space Smcm can be calculated by
Smcm �So ∩ Wc ∩ Mr . Then the global optimisation ➀ is
carried out within space S1, as a result of which machine
tool, cutting tool and machining conditions are determined
accordingly. The results provide a reference for machine
tool selection. Once the optimal machine tool is chosen,
cutting tool and the machining conditions are decided simul-
taneously. On the contrary, a substitute machine tool as a
constraint Mt bounds solution space Smcm. Then, the cur-
rent feasible set Scm, Scm �Smcm ∩ Mt , defines the updated
solution space for execution of optimisation ➁ for selecting

cutting tool and machining conditions. Similar to the selec-
tion process of machine tool, the selected cutting tool, as a
constraint Mc, bounds the feasible set Scm, resulting in the
machining conditions solution space Sm, Sm �Scm ∩ Mc.

A hybrid algorithm for enriched DPP

Hybrid algorithms can enhance optimisation performance by
relaxing the limitations of each single algorithm. This paper
proposes an optimisation method combining three types of
algorithms, i.e. evolutionary algorithm (EA) or SI based opti-
misation, ANN based model trained by big data, and analytic
hierarchy process (AHP) based weight decision. Within the
context, EA is a generic population-basedmetaheuristic opti-
misation algorithm, and SI is a generic population-based
metaheuristic optimisation algorithm. A global optimisation
is carried out by EA or SI, and these algorithms refer to sev-
eral steps, e.g. parameter selection (sample), operation, and
criterion. An ANN is an interconnected group of nodes, akin
to the vast network of neurons in a brain. Its model trained by
big data through supervised learning is employed to obtain
individual objective fitness with high accuracy, which plays
a key role as oppose to the existing methods. The ANNs,
trained by machining big data, are adopted to achieve good
results for such high-dimension data attributes, and they are
considered as a set of “equations” to derive solutions for the
complicated optimisation problem. AHP is based on math-
ematics and psychology, and it helps decision makers find
one that best suits their goal, and it was used to decide the
weights in cutting tool evaluation in our previous works (Ji
et al. 2017). Combining expert questionnaire, it is applied to
calculating weights for multi-objective optimisation, and its
pairwise comparison matrix is established by big data ana-
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lytics in statistics level, in case that the higher accuracy can
be obtained by comparing with the questionnaires.

A simplified case study

A simplified case study is chosen to show the process of the
proposedmethod as a proof of concept due to the unavailabil-
ity of the real relevant data. A set of hypothetic data generated
in-house, according to the real machining setups, are applied
to training the DBN (Hinton 2009) model used to calculate
the fitness of GA.

Data attributes

The attributes of big data include the information regarding
workpiece, machining requirements, machine tools, cutting
tools, machining conditions, and machining results. Also,
the details of the information cover all the factors affect-
ing the machining process, as shown in Table 1, and they
include:

(1) Data attributes of workpiece: workpiece information
includes the quantity of parts, part geometry, and part
materials, etc. Here, the structural part geometry and
quantity are represented by machining features and
their quantity, whereas the curved or freeform parts
are described by tool paths. Part materials refer to the
material profiles with respect to the machinability of
materials, e.g. hardness, brittleness, toughness and plas-
ticity, etc., so that each material can be represented by
a series of parameters.

(2) Data attributes of machining requirements: machining
requirements refer to the designed machining qual-
ity in terms of tolerances and surface integrity, e.g.
dimensional tolerance, geometrical tolerance, rough-
ness, white layer, and dark layer.

(3) Data attributes of machine tool: machine tool infor-
mation usually involves the number of machine tool,
machine type, machine structure, structure and power
of spindle, linear axis and rotational axis, errors of each
axis, energy consumption of each component, and other
related parameters. In this way, each machine tool can
be represented by a set of parameters.

(4) Data attributes of cutting tool: the cutting tool involves
tool type, tool material, tool coating, and tool geomet-
rical parameters.

(5) Data attributes of machining conditions: the machining
conditions includes cutting parameters, cutting coolant
and its parameters, as well as fixture and its parameters.

(6) Data attributes of machining results: machining results
indicate the machining quality in terms of geometri-
cal errors and surface integrity against the machining

requirements, and also include the physical data of the
cutting process consisting of cutting force, cutting vibra-
tion, etc. Such data are obtained through inspections
of machined parts, both qualified and unqualified, and
through sensor-basedmonitoring duringmachining pro-
cess.

Data generation

The attributes of the hypothetic data include:

(1) Workpiece consists of machining feature and mate-
rial information. Machining features includes 16 types,
and according to the properties of the commonly used
alloy steel, material information refers to Poisson’s ratio
(0.25, 0.35), Young’s modulus (100, 500 GPa), elastic
modulus (120, 240 GPa), shear modulus (40, 80 GPa),
density (7, 9 g/cm3), and hardness (150, 300 HB);

(2) Based on the requirements of dimension and surface
integrity in milling operation, machining requirements
refer to dimensional tolerance (IT5, IT10), surface
roughness Ra (0.4, 6.3 µm), morphology Sa (1,5 µm),
white layer depth (0.3, 10 µm), dark layer depth (1,
20µm), hardened layer depth (1, 7µm), and grain defor-
mation (1, 15 µm);

(3) Multi-axis CNCmachine tools are the major equipment
to performmachining. According to the commonly used
types, machine tool data include machine tool structure
(7 types), linear axis errors (1, 10 µm), rotational axis
errors (2, 8′′), and maximum spindle power (3, 20 KW);

(4) Carbide cutting tools are selected since they are most
popularly used in machining. Based on the available
tool information, cutting tool data refer to tool radius (4,
6 mm), tool length (60, 100 mm), entrance angle (45,
90°), rake angle (0, 30°), flank angle (6, 20°), matrix
material (11 types) and coat layer (8 types);

(5) Except machining tool and cutting tool, fixture, coolant
and cutting parameters are crucial in machining. To
deal with those factors, machining conditions data are
used, including cutting parameters, i.e. cutting speed
(30, 150 m/min), feed rate (0.05, 0.5 mm/z), cutting
depth (0.2, 0.5 mm) and cutting width (0.5, 1 diame-
ter of cutting tool), the used coolant referring to fluid (6
types) and pressure (0, 20 bar), and the fixture involving
constrained DOF (1 or 2), locator location errors (0.01,
0.1 mm) and locator installation error (0.01, 0.1 mm);

(6) Machining results are obtained in formof dimension and
surface integrity against the machining requirements. In
this paper, surface roughness and white layer depth are
the relevant indexes as an example to show how the
proposed method works.
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Based on the above data attributes and their ranges,
60,000 data were generated randomly by usingMatlab®. The
selectedmachining results, surface roughness andwhite layer
depth, are labeled for training the DBN model.

A detailed algorithm

Figure 6 depicts a hybrid algorithm of DBN and GA, where
the DBN model trained by big data is employed to calculate
the fitness, and GA is applied to performing the optimisation
computation. DBN, a generative graphical model or alter-
natively a class of deep neural network, and composed of
multiple layers of latent variables with connections between
the layers but not between units within each layer, was devel-
oped as a solution to the problem of training multi-layer
perceptions. The workpiece and machining requirements are
set first, and (S1) their parameters combining the target fac-
tors are divided into two classifications: (1) proceeded to GA
calculation processes, and (2) passed to the trained model.
(S2) The former, as a population, is treated in the GA pro-
cess, generating a new population. Then the latter filters the
data which is used to train the DBN model. The population
generated in S1 is decoded into a set of parameters which are
imported to the trainedmodel, obtaining a calculation fitness.
(S3) The fitness is compared with the termination criterion,
and once the computation is finished, the results provide a
reference for machine tool selection, optimisations of cutting
tools and machining conditions.

If the selected machine tool is not the optimal one, the
parameters of themachine tool are sent back to the parameter
classification process, and then the steps (S1), (S2) and (S3)
are performed again until the optimised results of cutting
tools and machining conditions can be obtained.

Optimisation processes and results

A batch of parts is planned to be produced by a manufac-
turer, and its material parameters consist of 0.3 Poisson’s
ratio, 250 GPa Young’s modulus, 200 GPa elastic modulus,
50 GPa shear modulus, 8 g/cm3 density and 200 HB hard-
ness, and its machining requirements involve Ra 1.6 surface
roughness and 7 µmwhite layer depth; therefore the optimi-
sation objectives are surface roughness andwrite layer depth,
where their weights are 0.8 and 0.2, respectively.

The hypothetic data filtered by the machining require-
ments filter, are applied to training the DBN model. The
DBNmodel is trained using a 35×100×100×100×2 neu-
ral network, in 100 training cycles, and a 0.2 learning rate
that can be changed according to the training error. In this
case,Matlab® is used for the computation in a computer with
an Intel® Core™ CPU i7-3630QM 2.4 GHz, 8 GB memory,
and graphics processing unit (GPU) NVIDIA GeForce GT
750 M. GPU is used to train the model in about 90 s. As
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Fig. 6 A hybrid algorithm combining GA and DBN

a result of the training, the training error and test error of
surface roughness are stabilised around 0.0525 and 0.075,
respectively, and for white layer, the training error and test
error are 0.0529 and 0.0924, respectively. Since the data are
hypothetic, there is no need to carry out the questionnaire
task for AHP, and therefore, both optimisations of the two
objectives are performed together.

Consequently, the GA computation, 3–5 s each time, is
performed to optimise machine tools, cutting tools and cut-
ting parameters. The parameters of GA consist of (1) genera-
tions: 500, (2) population size: 100, (3) crossover probability:
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Fig. 7 Calculation results including machine tool, cutting tool and cut-
ting parameters

0.8, (4)mutation probability: 0.01, and (5) computation accu-
racy: 0.001. The fitness of machining requirements is stable
after approximately 385 generations, as shown in Fig. 7,
together with the optimised parameters of machine tool, cut-
ting tool and cutting parameters: (1) machine tool: x, y, z
and c structure with axis errors of 1.003 µm, 5.50 mm,
1.212 mm, and 2.0′′, respectively, and approximately 12
KW spindle power; (2) cutting tool involves 4 mm tool
radius, 60.00 mm tool length, 45.176° entrance angle, 1.057°
rake angle and 6.0° flank angle, YG3 matrix material and

TiC-TiCN-Al2O3-TiN coat; and (3) machining conditions
include 149.998 m/min cutting speed, 0.298 mm/z feed rate,
0.462 mm cutting depth, 75%-tool-diameter cutting width,
oil based coolant with 4.216 Pa pressure, 1 constrained DOF,
0.10 mm locator location error and 0.1 mm locator installa-
tion error.

The optimised machine tool (if available), cutting tool
geometries and cutting parameters are determined simulta-
neously. In case of no optimal machine tool, an alternative
machine is selected, and its parameters are imported to GA.
A machine tool, for instance, is equipped with 10 µm error
of x, 1 µm errors of y and z, 0.13′′ and 0.62′′ errors of b
and c, and a 3 KW maximum spindle power. Based on the
selected machine tool and the initial workpiece parameters,
the GA calculation is performed again. Figure 8a depicts
the fitness of machining requirements after approximate 275
generations. Then the optimised results of cutting tools and
cutting parameters consist of: (1) cutting tool: 4 mm tool
radius, 60.00 mm tool length, 45.0° entrance angle, 0.242°
rake angle, 6.002° flank angle, YG3 matrix material and
TiC-Al2O3 coat, and (2) machining conditions: 149.973
m/min cutting speed, 0.30 mm/z feed rate, 0.50 mm cutting
depth, 100% cutting width, oil-based coolant with 4.216 Pa
pressure, 1 constrained DOF, 0.089 mm location error, and
0.1 mm installation error of locator. Similarly, a cutting tool,
not the optimised one, was selected, and its parameters are
4mm tool radius, 60mm tool length, 45° entrance angle, 7.5°
rake angle, 9.7° flank angle, YG3 matrix material and TiC-
TiCN-TiC-TiCN-TiN coat. After setting the selected cutting
tool, the third optimisation is carry out and its fitness is sta-
bilised after 340 generations, as shown in Fig. 8b. The results
of the optimised machining conditions are 149.991 m/min
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Fig. 8 Calculation results including cutting tool and cutting parameters. a Optimisation after machine tool selection, b optimisation after cutting
tool selection
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cutting speed, 0.300 mm/z feed rate, 0.50 mm cutting depth,
100%-tool-diameter cutting width, oil-based coolant with
4.216 Pa pressure, 1 constrained DOF, 0.1 mm location error,
and 0.1 mm installation error of locator.

Conclusions

Apart from the theory and empirical research to address
rather specific issues, the proposed method is to solve a
machining optimisation issue from the big data’s perspective,
where all machining resources are considered as awhole. It is
also important to show the potential of the proposed method
in real-word applications and encourage companies to fully
utilise the benefits of big data. Although not possible to use
industrial big data, the proposed method is validated based
on reasonable hypothesis.

Different from the conventional optimisation methods in
which machine tool, cutting tool and machining conditions
are decided separately, this paper proposed a concept of big
data analytics based enriched DPP combining the optimi-
sations of the three as a whole. Within the context, each
machining resource is represented by its data attributes.
Once the data are ready, the patterns/relationships among
the machining resources are mined with the help of the big
data analytics algorithms, e.g. ANN, and they are used to
optimise the relevant resources. Workpiece is regarded as
the first constraint, and parts of machining requirements are
regarded as optimised objectives, the relationship of which is
handled byAHP. Based on the provided fitness by combining
the mined pattern and AHP applied objective, an EA or SI
algorithm is employed to obtain the optimal or near-optimal
machining resources for selecting machine tool, cutting tool
and machining conditions according to their availabilities.
Each selected resource is regarded as a constraint bounding
the solution space. This approach is validated by a simpli-
fied case study in which a GA and DBN hybrid algorithm is
implemented. The main contributions of this work include:

• Transformation from real-world machining problems to
statistic problems, allowing optimising machining process
from the data analytic perspective;

• Extension of a feasible set by integrated optimisation of
machine tool selection, cutting tool selection and machin-
ing conditions determination, makingmachining solutions
more accurate compared with the conventional methods;

• Enhancing the functionality of the original DPP.

Nevertheless, this research is still at its early stage with
limitations. Our future work is therefore planned as fol-
lows: (1) detailed machining resource representation; (2)
data collection from real-world machining environment with
challenges in data filtering, cleansing and storage; and (3)

real-time decision algorithms for efficient big data analytics.
The result of these will be reported separately in the future.
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