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Abstract In case of complex parts machining or multi-
directional machining in multi-part fixtures the error com-
pensation in multi-dimensional decision space poses a diffi-
cult problem. The article focuses on the limitation of defec-
tive products by means of systematic increase of the remain-
ing error budget due to correction of the setup data. A vecto-
rial equation for machine tool space description is presented.
The development of geometric dimensioning and toleranc-
ing scheme to the levels connected with the setup data is pro-
posed. The optimization algorithm used here is based on the
paradigm particle swarm optimization (PSO), but it includes
a few significant modifications inspired by the growth of the
coral reef thus the name of the method—coral reefs inspired
particle swarm optimization (CRIPSO). CRIPSO has been
compared with three other popular metaheuristics: classic
PSO, genetic algorithm, and cuckoo optimization algorithm.
There is a practical example in this article.

Keywords Workpiece accuracy ·Error budget ·Machining
error compensation · Metaheuristic optimization algorithm

List of symbols

Indices

f Index of features ( f = 1, 2, . . . , |F |)
i Index of decision variable (i = 1, 2, . . . , |W | +

|T |)
j Index of WKS ( j = 1, 2, . . . , |W |)
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m Index of MKS (m = 1, 2, . . . , |M |)
q Index of dimension (q = 1, 2, . . . , |D|)
p Index of particle (polyp) (p = 1, 2, . . . , |P|)
t Index of tool (t = 1, 2, . . . , |T |)

Sets

M Nonempty, finite set of machine points
W Nonempty, finite set of WKS points
T Nonempty, finite set of code points of tools
F Nonempty, finite set of features
D Nonempty, finite set of dimensions
P Current set of solutions (particles, polyps)
P1 Set of solutions fulfilling criterion f1
R RMW ∪ RWF ∪ RT F ∪ RFD

RMW Relation between the elements of sets M and W
RWF Relation between the elements of sets W and F
RT F Relation between the elements of sets T and F
RFD Relation between the elements of sets F and D

Parameters

b Error budget bonus
c1 Cognition coefficient
c2 Social coefficient↔
Dq The modification of qth dimension
dZ− Lower error budget
dZ+ Top error budget
Esd
i Error of ith setup data

εq Performance error of qth dimension
Eq Random error of qth dimension
↔
F f The modification of fth surface position
gbesti ith coordinate of the best positioned polyp
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plasti ith coordinate of the last planula
pbesti ith coordinate of the best planula
r, r1, r2 Uniformly distributed random numbers among

0 to 1
Tq Tolerance of qth dimension
w,w1, w2 Weighting factors
δ Unilateral error budget
ΔZ Maximum error budget

Decision variables

↔
W Correction of nth WKS↔
T Correction of tth tool
xi Position of the polyp in ith dimension
x ′
i The position of setting a new planula in ith dimension

↔
x [ ↔

W 1,
↔
W 2, . . . ,

↔
W |W |] ∪ [↔

T 1,
↔
T 2, . . . ,

↔
T |T |]

Introduction

Error budget serves to predict and/or control errors in a
system. Every machine tool has its own error budget serv-
ing to predict its accuracy and repeatability (Slocum 1992).
The error budget helps identify where to focus resources to
improve the accuracy of an existing machine or one under
development (Hale 1999). Everyworkpiece can be also given
certain error budget which stands for an acceptable error in
machining it. The amount of error budget is related to the
production cost (Bohez 2002). Therefore on every stage of
the production process we need to maximize the remaining
error budget.

In the machining process many various sources of errors
can be identified (Fig. 1) as well as the manners of their
compensation (Yuan and Ni 1998; Liu 1999; Ramesh et al.
2000a, b; Mehrabi et al. 2002; Wang et al. 2006; Loose et al.
2007; Rahou et al. 2009; Mekid and Ogedengbe 2010). Iden-
tification and compensation for particular errors is difficult
time-consuming and costly, moreover their total eradication
is in most cases impossible. The amount of errors can be
limited even while designing the machine tool (Hale 1999)
or they can be measured and compensated for (Sartori and
Zhang 1995). Compensation can relate to the chosen errors
or the total error. Typical approach to the error compensa-
tion includes building the mathematical models taking into
account the data from the sensors placed on the machine tool
in on-machine-measurement (OMM) system (Ziegert and
Kalle 1994; Ouafi et al. 2000; Cho et al. 2006; Marinescu
et al. 2011), by the reconstruction of the control program
(Mäkelä et al. 2011; Cui et al. 2012) and more.

In case ofmass production of complex parts in themachin-
ing centers we often deal with a summary compensation of

Fig. 1 Source of machining errors

the system errors based on the measurement reports from
coordinate measuring machines (CMM). A major problem
with CMMs in a modern manufacturing environment is the
difficulty associated with taking advantage of the measure-
ment results (Davis et al. 2006). The CMM reports rarely
present direct values of the correction necessary to mod-
ify setup data of CNC (Schwenke et al. 2008). In case of
mass production we have to deal with multi-tool, multi-
directional machining, in addition, during one machining
process many features are machined in a few workpieces
fixed in multi-part fixtures. In such case the measurement
reports are thick documents, which analysis is difficult and
time-consuming and they can be easilymisinterpreted. Errors
on this stage usually result in the defective production.
Taking into account the variety of error sources and their
dynamic change in every cycle machining, the process of
compensating should be applied automatically and quite
often.
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Fig. 2 The process chain of taking into account the measurement results

The solution to this problem is creating the process chain
enabling us to apply the measurement results automatically
in the form of compensating corrections for CNC setup data
(Fig. 2). Since the early 1990s, new product data standards
such as STEP and STEP-NC have been developed to provide
standardized and comprehensive data models for machining
and inspections (Kumar et al. 2007; Zhao et al. 2009). In
a plant or factory they usually check many produced parts
with one or a few measuring machines. Thus the first ele-
ment of the process chain should be a set of postprocessors
which standardizes the form of the reports. In such form the
reports can be processed by the right program which gener-
ates the corrections for the tools and workpiece coordinate
systems (WKS) used in the machining process. The correc-
tion in the form of changing the tool trajectory should be con-
sidered only as a last resort, as it limits—in case of multi-part
fixtures—the possibility to apply the subprogram technique.
The corrections should rather be automatically conveyed to
right registers directly or indirectly by use of the array of the
Real-parameters.

This article discusses automatic determination of the cor-
rections on the axle Z of the machine tool by changing the
setup data of the tools and the position of the local coor-
dinate systems connected with the workpiece. In case of a
complex geometric dimensioning and tolerancing (GD&T)
model finding good solution requires optimization proce-
dure.

Metaheuristic techniques in process planning and
manufacturing

The problem of optimization in the discussed issue comes
down to searching the optimal solution inmulti-dimensional,
discrete state space. It is a classical artificial intelligence
problem. Computational intelligence (CI) is a successor of
good old-fashioned artificial intelligence (GOFAI). GOFAI
developed as the project of empirical research, implements
a weak model of semantic networks. CI rather relies on
metaheuristic algorithms such as fuzzy systems, artificial
neural networks (ANNs), evolutionary computation, artifi-
cial immune systems, etc. CI combines elements of learning,
adaptation, evolution and fuzzy logic (rough sets) to create
programs that are, in a sense, intelligent. So far, many meta-
heuristic search algorithms have been invented. Timeline of
main metaheuristic algorithms devised up to 2010 has been
presented in (Gandomi et al. 2013). Recently, there’s been
rapid increase in popularity of newly defined approaches,
such as: cuckoo search algorithm (Mohamad et al. 2013),
glowworm swarm optimization (Zainal et al. 2013), Levy
flight algorithm (Kamaruzaman et al. 2013), firefly algorithm
(Johari et al. 2013).

In year 2000, Kusiak published a trailblazing book
(Kusiak 2000), which, for the first time, included state-of-
the-art CI techniques to all phases of manufacturing system
design and operations. Themost important areas ofmanufac-
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turing engineering are process planning and process control.
The process plan constitutes an ordered sequence of tasks
which can transform rawmaterial into the final part econom-
ically and competitively. The major process planning activi-
ties are: features extraction, part classification for group tech-
nology, machining volume decomposition, tool path genera-
tion, machining condition optimization, operation sequenc-
ing, machine, setup and tool selection, and others. Because
process planning is a NP-hard problem, some global search
techniques must be applied. A brief review of CI applica-
tions in machining process planning and relatedmethods and
problems will be presented in work (Stryczek 2007). Fuzzy
logic (FL) can by effectively used in modeling of machin-
ing processes such as predicting the surface roughness and
controlling the cutting force. Adnan et al. (2013) present FL
techniques used inmachining process. FLwas considered for
prediction, selection,monitoring, control and optimization of
machining process.

In the field of machining process planning, CI meth-
ods have been used most often for optimizing machining
process parameters. The gradient-based non-linear optimiza-
tion techniques have difficulty with solving those optimiza-
tion problems; one must resort to alternative, conventional,
non-systematic optimization techniques, i.e., evolutionary
algorithms (Zhang et al. 2006). An overview and the compar-
ison of the researches from 2007 to 2012 that used evolution-
ary optimization techniques to optimize machining process
parameters were presented in Yusup et al. (2012a, b). Genetic
algorithm (GA) stands out among CI methods as it is cur-
rently the full-grown method of single and multi-objective
optimization, tested in many variants. Zain et al. (2008) dis-
cussed on how GA system operates in order to optimize the
surface roughness performance measure in milling process.
Yusoff et al. (2011) reviews the application of non dominated
sorting genetic algorithm II (NSGA-II), classified as one of
multi-objective GA techniques, for optimizing process para-
meters in various machining operations.

Coral reefs inspired particle swarm optimization

The popular metaheuristic, Particle Swarm Optimization
(PSO), has been developed originally by Kennedy and Eber-
hart (1995). At the same time deep modifications have been
introduced to PSO (Poli et al. 2007). They were inspired by
the rebuilding processes in the coral reef, so the method has
been called coral reefs inspired particle swarm optimization
(CRIPSO).

The coral reef is a complicated ecosystem bound by the
evolution rules, which undergoes constant reconstruction. It
is a live organism consisting mostly of polyps which clus-
ter into colonies. During the reproduction coral reef grows
upwards and sideward. Polyps produce small larva better

Fig. 3 Basic CRIPSO flow chart

known as planula. After swimming for a few hours or even
days planula settles down and transforms into a new polyp
competing for food and space. Comparing polyp colonies
with the particle swarm we can see the following differ-
ences. Polyp is a stationary particle undergoing reproduc-
tion and dying many times. In the classic PSO, particle is
in constant movement and there is no generational change.
Potential advantage of the modification is that the particles
with the lower mark are eliminated from the population and
the best ones can generate their descendants many times.
CRIPSO is based on the principle of elitism

Figure 3 represents the course of the best solution search
cycle. Each particle (polyp) stands for one solution in deci-
sion space.Algorithmwas basedon a contest between the two
solutions chosen at random. The winning solution remains
in set P thus the elitist character of the procedure while the
worse solution is removed from the set P . In its place the
winner generates its own planula.

In real world planula moves in the ocean in the chaotic
manner. Most of them die. However we can assume that
those who manage to settle down and change into polyp
obeyed the rules of particle swarm movement. Therefore the
procedure of defining the position of a descendant has been
based on PSOmethod. The position of the planula settlement
in i th dimension is determined according to the formula 1.
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Fig. 4 Determining new position of particle

Fig. 5 Workspace of horizontal-spindle machining center

According to this, the particle shift vector’s components are
determined as the sum of three components (Fig. 4) in the
directions consistent with:

I. The shift of the last planula generated by the given polyp.
In case of a new polyp the direction of the inertia vec-
tor is agrees with the movement direction between the
planula’s parent’s position and the point of planula’s set-
tlement.

II. The shift towards the descendant of the given polyp
which has the best position so far. In case of a new polyp,
position “polyp best” is inherited from the parent.

III. The shift towards the best situated polyp in the whole
colony.

x ′i = xi + w (plasti − xi ) + c1r1 (pbesti − xi )

+ c2r2 (gbesti − xi ) (1)

The proposed compensation system

Let us focus on a simple example stemming from the analysis
of the workspace of the 4-Axis (X′YZB′) horizontal-spindle
machining center (Fig. 5). In the workspace we distinguish
the following characteristic points: Ṙ—reference point,Ṁ—

Fig. 6 Four-level weighted relationships graph

machine point, Ẇ j—the points of the origin of the coordinate
system connected with the workpiece, K̇t—the code point of
the tth tool and Ḟ—the toolholder reference point.

Those points are connected by the vectorial equation for
machine tool space:

−→
MF = −→

MW + −→
WK + −→

K F (2)

This equation is the basis for analyzing the influence of

the setup data presented here by the components
−→
MW i

−→
K F ,

on the position of machined features, and consequently on
the obtained dimensions. The relationships occurring here
can be displayed as four-level weighted relationship graph
(Fig. 6).

On the basis of thismodelwe can generate formulaswhich
show the influence of the setup data change on f th features
↔
F and qth dimension

↔
D shift.

↔
F
1

= −↔
M1 + ↔

W 1 + ↔
T 1,

↔
F2 = −↔

M1 + ↔
W 2 − ↔

T 1,
↔
D1 = ↔

F1 = −↔
M1 + ↔

W 1 + ↔
T 1,

↔
D2 = ↔

F1 − ↔
F2 = −↔

M1 + ↔
W 1 + ↔

T 1 − (−↔
M1 + ↔

W 2 − ↔
T 1)

= ↔
W 1 + ↔

W 2 + 2
↔
T 1.

On the whole the influence of setup data on resultant
dimensions in Z axis can be presented in the form of orderly
six-tuple PM = (M,W, T, F,D, R). In the graphical inter-
pretation the elements ofM,W, T, F andD sets are the graph
vertices whereas the elements of R set are weighted directed
arcs. Weight for arc a → z take the value:

waz =
⎧
⎨

⎩

1 if increase a causes increase z,
−1 if increase a causes decrease z,
0 otherwise.

In case of elements belonging to M,W, T and F , sets
the increase means shifting towards the positive values of
the Z axis of MKS meanwhile in case of the elements of
D set it means the increase of the dimension value. These
relationships can be written down synthetically in the matrix
form:
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RMW =
⎡

⎢
⎣

w11 . . . w1|W |
...

. . .
...

w|M|1 . . . w|M||W |

⎤

⎥
⎦ ,

RWF =
⎡

⎢
⎣

w11 . . . w1|F |
...

. . .
...

w|W |1 . . . w|W ||F |

⎤

⎥
⎦ ,

RT F =
⎡

⎢
⎣

w11 . . . w1|F |
...

. . .
...

w|T |1 . . . w|T ||F |

⎤

⎥
⎦ ,

RFD =
⎡

⎢
⎣

w11 . . . w1|D|
...

. . .
...

w|F |1 . . . w|F ||D|

⎤

⎥
⎦ .

Predicted shifts of the features position and the changes
of the dimensions can be, therefore, expresses as the vectors’
components in form of the following formula:
[↔
F1 . . .

↔
F |F |

]
= ([↔

M1 . . .
↔
M |M|] · RMW

+[ ↔
W 1 . . .

↔
W |W |]) · RWF

+[↔
T 1 . . .

↔
T |T |] · RT F (3)

[↔D1 . . .
↔
D|D|] = [↔

F1 . . .
↔
F |F |] · RFD (4)

In the practical applications the 0 level of the model, i.e.

components [↔
M1 . . .

↔
M |M| in Eq. 4 can be omitted. This is

so, because the errors connected with the zero point of the
machine are usually comparatively insignificant and there
may be some problems with their automatic compensation.

Formulating the optimization task

The aim for the engineer of the technological process is to
provide the maximum unilateral error budget δ, which is
understood as the distance between the zero deviation line
and a closer of the two borderlines (top and lower) of the
tolerance zone (Fig. 7b). Value δ should be bigger than the
performance error ε. In the best possible case value δ matches
a half of the admissible error budget ΔZmax , that is a half
of the minimal tolerance zone of all considered dimensions
(Fig. 7a). The ideal case occurs very seldom or never. In prac-
tice the amount of the remaining error budget ΔZ is always
smaller than the smallest tolerance zone (Fig. 7b). On of the
manners to increase δ is to correctlymodify setup data so that
to acquire additional error stock, so called bonus error bud-
get b. The bonus error budget reduces the number of rejected
parts by increasing the tolerance zone. In order to determine
b, first we have to find the value of the tolerance zone center
shift off the zero line εq (Fig. 7b) resulting from the correc-
tion of the setup data. The objective of the optimization f1 is

Fig. 7 The distributions of tolerance zone: a in best case, b in real case

to find the proper values of the setup data so as to maximize
δ for the least advantageous position of the tolerance zone
(8). The bonus error budget is the difference between the
presently registered value δ and the predicted value obtained
after the optimization.

dZ− = maxq

(

εq − Tq
2

)

(5)

dZ+ = minq

(

εq + Tq
2

)

(6)

ΔZ = dZ+ − dZ− (7)

The following objective functions have been taken into
account:

f1 = δmax = maxp
(
minq

{
dZ−

q , dZ+
q

})
(8)

f2 = minp∈P1

√
∑

i

↔
x
2

i (9)

f = 10 f1 − f2 (10)

During the first step we seek the solutions for which f1
has maximum value. The decision space should be limited
on both sides in each of dimensions, e.g. to the range [−0.1,
0.1]. Furthermore it is a discrete space which results from the
precision of determining the setup data; mostly 0.001 mm or
0.0001 of an inch. However the number of solutions, even
with the above limitations, is huge, e.g. 1.024× 1023 for 10-
dimensional decision space. Therefore the set of P1 solutions
matching f1 is also quite numerous. Among P1 elements we
need to find the one for which the resultant vector of the
change for all the setup data is the smallest ( f2). To make
calculations simpler the substitute objective function f has
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Fig. 8 Machine and workpiece coordinate systems

Fig. 9 Model of machining process of the given parts

been introduced. It converts the original problem with two
objectives into a single-objective optimization problem.

Practical example

Let us take into consideration amachining process in a 4-part
fixture (Fig. 8). Rear axle guide pins are being machined.
The machining process is carried out in two angular posi-
tions of the rotary table, 0◦ and 180◦, so taking 8 WKS is
advantageous. Figure 9 presents themodel of the relationship
between the structure elements of the machining process.
Figure 10 presents the GD&T model for one machined part.

Fig. 10 Model GD&T of the given part

Relationships RT F , RWF , RT F , for one workpiece have
been presented below in the matrix form.

F1 F2 F3 F4 F5 F6 F7

T5 1 1 0 0 -1 -1 -1

T23 0 0 -1 1 0 0 0
RTF =

F1 F2 F3 F4 F5 F6 F7

W1 1 1 0 1 0 0 0

W5 0 0 -1 0 -1 -1 -1
RWF =

D1 D2 D3 D4 D5 D6 D7

F1 1 0 0 0 0 0 0

F2 0 1 0 0 0 0 0

F3 0 0 1 -1 0 0 0

F4 0 0 0 1 0 0 0

F5 0 0 0 0 1 0 0

F6 0 0 0 0 0 1 0

F7 0 0 0 0 0 0 1

RFD =
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Fig. 11 User interface

The changes of the features position
↔
F and the dimen-

sions values
↔
Q, depending on the setup data corrections are

determined for each part bymeans of the following formulas:

↔
F1 = ↔

W 1 + ↔
T 5

↔
D1 = ↔

W 1 + ↔
T 5

↔
F2 = ↔

W 1 + ↔
T 5

↔
D2 = ↔

W 1 + ↔
T 5

↔
F3 = − ↔

W 5 − ↔
T 23

↔
D3 = − ↔

W 5 − ↔
T 23

↔
F4 = ↔

W 1 + ↔
T 23

↔
D4 = ↔

W 1 + ↔
W 5 + 2

↔
T 23

↔
F5 = − ↔

W 5 − ↔
T 5

↔
D5 = − ↔

W 5 − ↔
T 5

↔
F6 = − ↔

W 5 − ↔
T 5

↔
D6 = − ↔

W 5 − ↔
T 5

↔
F7 = − ↔

W 5 − ↔
T 5

↔
D7 = − ↔

W 5 − ↔
T 5

In Fig. 11 the user interface of the setup data correction
program has been presented. Input data are read automati-
cally after indicating the file with the measurement results.
Figure 12 shows how the values of benchmark f1, f2, and f
as function of iteration are determined. In this example the
bonus error budget amounted to b = 0.071–0.22 = 0.049 mm.
Increasing this value only by means of modifying the setup
data is impossible. Further increase of error budget would
require interferingwith the control program. In case ofmulti-
part machining process, in which the subprogram technique

Fig. 12 Values of benchmark f1, f2 and f as function of number of
solutions in CRIPSO

is applied, such interference is unadvisable as it complicates
the structure and makes the control over the program more
difficult.

Comparison between the proposed CRIPSO and other
algorithms

CRIPSO has been compared with three other popular meta-
heuristics: classic PSO, GA, and cuckoo optimization algo-
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Fig. 13 Values of benchmark f1, f2 and f as function of number of
solutions in PSO

Fig. 14 Values of benchmark f1, f2 and f as function of number of
solutions in GA

rithm (COA). For each of these methods the tests consisting
of twelve trials have been carried out. Figure 12 presents
a typical the process of searching for the best solution by
means of CRIPSO. The current set of polyps (solutions) was
constant and amounted to 100. Coefficients c1 and c2 were
calculated each time according to the formula 11. Inertia
weight (w) was established on the constant level of 0.75.
The total number of iterations was established as 5,000. The
optimal solution was reached after less than 2,000 iterations.
The solutionswere repeatable (Figs. 16, 17). The time needed
to generate 5,000 solutions was 0.58 s.

c1 = c2 = cos

(
π

2
· Li

L

)

(11)

where Li : successive number of a solution, L: the total num-
ber of solutions.

Figure 13 shows a typical process of searching for the
best solution by means of PSO. The basic pattern of PSO

Fig. 15 Values of benchmark f1, f2 and f as function of number of
solutions in COA

Fig. 16 Comparison of test results for COA, CRIPSO, PSO and GA

has been applied. Globally, the best position of a particle
was updated each time after generating a new solution. The
current set of particles (solutions)was constant and amounted
to 100.Coefficients c1 and c2 were calculated identically as in
CRIPSO. The time needed to generate 10,000 solutions was
0.96 s. Solutions were obtained after about 5,000 iterations
on average. The spread of results was similar to CRIPSO
(Figs. 16, 17).

Figure 14 shows a typical process of searching for the
best solution by means of GA. The applied flowchart of GA
was presented by Stryczek (2009). It is the variation of GA
including the principle of elitism, as the winners of the com-
petition qualify to the next population. The quantity of the
population was 50 and the probability of the gene mutation
0.1. The time needed to generate 5,000 solutions was 0.72 s.
The obtained results were only slightly worse than those of
PSO and CRIPSO. GA finds the right solution quickly, after
about 500 trials, but it has a problem with improving them
afterwards.
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Fig. 17 Comparison of test results for COA, CRIPSO, PSO and GA

The fourth method of optimization is a metaheuristic
known for several years which is called COA (Rajabioun
2011). The method is interesting, yet it takes into account
many parameters which affect it’s effectiveness. The best
solutions were obtained for the maximum number of habi-
tats which amounted to 40 and for 5–10 laid eggs (Fig. 15).
The trials of 100 iterations which corresponds with check-
ing approximately 30,000 solutions in 2.11 s. The results
diverged from other methods in terms of quality. The best of
them are to be considered satisfactory, though (Figs. 16, 17).

Validate the results of the proposed scheme

For the purpose of statistic validation of the proposedmethod
a number of tests have been carried out for the model pre-
sented in “Practical example” section, for 100 measurement
result sets. For each set, 10 tests have been conducted. On the
whole, 1,000 trials have been carried out and their results are
presented in Fig. 18. measurement results have been gener-
ated at random, but with maintaining the weight proportions
considering the influence of setup data errors (w1) and the
remaining sources of performance errors (w2). Firstly, setup
data errors have been generated randomly (12) then their
influence on analyzed dimensions. After the additional, ran-
dom deviations (13) have been taken into account, the error
budget for each case has been calculated. For the conducted
trials it was within: −0.011 to 0.063. The negative value of
the error budget means that the part has been made beyond
the boundaries of tolerance field. Those boundaries can be
controlled by establishing the proper weights w1 and w2.
During the tests theywere established on the set level accord-

Fig. 18 The sorted test results

ingly 0.03 and 0.02. Choosing the proper weight has crucial
influence on the possibility of increasing the error budget by
correcting the setup data. The important conclusion drawn
from the conducted tests should point out the possibility of
using the proposed methodology to estimate the share of the
setup data error in the total machining error. For instance,
for 60% share of setup data in the total machining error and
the initial error budget value ( f1) of 0.022 the foreseen error
budget amounted to 0.085 (Fig. 18, series 26). Meanwhile,
for the same value of the initial error budget, for the example
form Fig. 16, none of the tested optimization methods suc-
ceeded in reaching the value higher than 0.071. Therefore
the conclusion that the share of setup data error was less that
60% in this case. This subject is so extensive that it is not
discussed here further. CRIPSO always generated good solu-
tions regardless of the initial error budget value as shown in
the results of the conducted tests. Only a few per cent of the
results deviated for the average (Fig. 18).

Esd
i = w1(1 − 2r) (12)

Eq = w2(1 − 2r) (13)

Conclusion

The article presented the practical method of the automatic
correction of setup data of the horizontal-spindle machin-
ing center in axle Z. Applying this method to the remaining
axles is aimless as the errors in XY surface and in axle B
have different character. This method is suitable for multi-
directional and multi-tool machining using multi-part fix-
tures. The approach presented has been compared with the
classic PSO, GA and COA methods. The effectiveness of
PSO, GA and CRIPSO has been on a similar level and the
results have been within the range of the random spread
characteristic for these methods. The above method of the
setup data correction can be applied automatically without
the worker’s interference. It should be the essential element
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of the computer-integrated manufacturing (CIM). The time
needed to apply this method in practice depends mainly on
the link between GD&T and the setup data in the produc-
tion process. Therefore the further research should focus on
automation of this stage of planning.

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
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