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Abstract

Nowadays, various applications across industries, healthcare, and security have begun adopt-
ing automatic sentiment analysis and emotion detection in short texts, such as posts from
social media. Twitter stands out as one of the most popular online social media platforms
due to its easy, unique, and advanced accessibility using the API. On the other hand, super-
vised learning is the most widely used paradigm for tasks involving sentiment polarity and
fine-grained emotion detection in short and informal texts, such as Twitter posts. However,
supervised learning models are data-hungry and heavily reliant on abundant labeled data,
which remains a challenge. This study aims to address this challenge by creating a large-
scale real-world dataset of 17.5 million tweets. A distant supervision approach relying on
emojis available in tweets is applied to label tweets corresponding to Ekman’s six basic emo-
tions. Additionally, we conducted a series of experiments using various conventional machine
learning models and deep learning, including transformer-based models, on our dataset to
establish baseline results. The experimental results and an extensive ablation analysis on
the dataset showed that BiLSTM with FastText and an attention mechanism outperforms
other models in both classification tasks, achieving an Fl-score of 70.92% for sentiment
classification and 54.85% for emotion detection.

Keywords Distant supervision - Emotion detection - Sentiment analysis - Deep learning -
Transformers - Twitter - Emojis

B Zenun Kastrati
zenun.kastrati @Inu.se

Ali Shariq Imran
ali.imran @ntnu.no

Marenglen Biba

marenglenbiba@unyt.edu.al

Department of Computer Science, University of New York Tirana, Tirana 1046, Albania
Department of Informatics, Linnaeus University, Vixjo 351 95, Sweden

Department of Computer Science, Norwegian University of Science and Technology (NTNU), Gjgvik
2815, Norway

Published online: 22 March 2024 9\ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-024-00845-0&domain=pdf

Journal of Intelligent Information Systems

1 Introduction

Microblogging and social networks wield significant influence today in a wide range of
domains, encompassing daily communication, ideas sharing, opinions, emotions, reactions,
shopping behaviors, political discourse, and responses to crises, to name a few (Kapoor et
al., 2018). Over the past few years, researchers have shown a growing interest in text-based
sentiment and emotion detection on online social networks, particularly Twitter and Facebook
(Zimbra et al., 2018).

The vast amount of text generated by Twitter users serves as a rich source for capturing
people’s emotions, integral to human life, and strongly influencing people’s behaviors and
actions (Wang et al., 2012). Emotion detection in short texts, such as social media posts,
has a high impact on different sectors including industries, health, security, or education
with a wide range of applications such as e-learning environment, depression monitoring
(Zucco et al., 2017), detecting mental disorders (Aragon et al., 2021), personality traits,
detection suicide-related content and emotions (Schoene et al., 2022), hate speech detection,
cyber-bullying identification, event detection, disease tracking, and cyber threat detection.

Moreover, detecting emotions in social network data poses a non-trivial task due to the
brevity of the text, especially considering that Twitter users often employ non-standard lan-
guage (irony, sarcasm, and humor) to express their emotional state (Canales et al., 2019).
Additionally, social tweets are characterized by a prevalence of informal and slang words,
misspellings, hashtags, emoticons, and abbreviations, making interpretation challenging for
automated emotion detection models (Kusal et al., 2021).

Emotional models form the foundation of the emotion-sensing process, with three main
modeling approaches being categorical, dimensional, and componential emotion models.
The categorical emotion model assumes that only a small number of significant emotions
are independent and not related to each other. Two predominant emotion models for emotion
classification are Plutchik’s model (Plutchik, 1980) with eight basic (primary) emotions and
Ekman’s model (Ekman, 1993) with six basic emotions.

Various learning approaches are employed for text emotion detection, including lexicon-
based (Mohammad & Turney, 2013), rule-based (Krommyda et al., 2020), machine learning-
based (Wood & Ruder, 2016; Yousaf et al., 2020), and deep learning-based approaches
(Colneri¢ & Demsar, 2018; Polignano et al., 2019; Kastrati et al., 2022).

Conventional machine learning and deep learning models are widely used to build sen-
timent analysis and emotion recognition systems (Kastrati et al., 2022; Imran et al., 2020;
Edalati et al., 2021). More recently, deep neural networks, including CNN and RNN (such
as LSTM, BiLSTM, and GRU), have gained popularity for their state-of-the-art performance
in various natural language processing (NLP) tasks. Kastrati and Biba (2021). Supervised
learning is the most widely used approach in machine learning, including deep and shal-
low learning (LeCun et al., 2015). However, training supervised learning models requires
a large amount of human-labeled data, which is not always available for real-world appli-
cations, and text emotion detection is no exception (Wood & Ruder, 2016). Furthermore,
high-quality datasets for text emotion research have been scarce. Most existing datasets with
multiclass emotion annotations are either too small or/and highly imbalanced to adequately
support supervised emotion learning (Kang et al., 2020).

To address this challenge, we have collected a large-scale emotion dataset of tweets from
Twitter. Inspired by the research study conducted in Batra et al. (2021), emotion-indicative
emojis are used for the automatic labeling of the dataset. Then, several supervised conven-
tional machine learning and deep learning, including transformer-based models are tested
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on the newly collected dataset to establish the baseline results and examine an approach to
sentiment polarity and emotion detection that better suits the dataset, aiming to improve the
performance of the classifier models.

1.1 Study objective and research questions

This study focuses on automatic labeling techniques for very large-scale tweet datasets for
sentiment and emotion analysis tasks using distant supervision with emojis. It also investigates
the training of deep neural networks on our large-scale dataset for classifying both sentiment
polarity and emotions.

Therefore, with this background, we formulated the main research objective to improve the
effectiveness of sentiment polarity and emotion classification using a very large-scale dataset
automatically labeled through distant supervision with emojis and deep learning models.

According to the objective above, the following research questions were raised:

e RQI1: How can we automatically create a large-scale emotion dataset by utilizing emotion-
indicative emojis available in tweets for sentiment polarity and emotion classification
tasks?

e RQ2: How do the size of training data and class imbalance affect the performance of
conventional machine learning algorithms and deep neural networks?

e RQ3: To what extent do pre-trained word embedding techniques and attention mecha-
nisms improve sentiment and emotion classification performance?

1.2 Contribution

The core contributions of this work are:

e Collecting and curating a real-world large-scale dataset of tweets that are automatically
labeled with categorical emotions based on Ekman’s model using distant supervision
with emotion-indicative emojis.

e The new knowledge concerning performance comparison of supervised conventional
machine learning algorithms and deep neural networks for sentiment polarity and emotion
classification on our created dataset.

e Proposed a multi-layer BiLSTM assessment model with pre-trained word embeddings
and an attention mechanism for classifying both sentiment polarity and emotions (mul-
ticlass classification).

e Provide an ablation analysis on the effect of the size of the dataset and the number of
classes, as well as on the effect of class imbalance in the classification performance.

2 Related work

During the past decade, several studies have been conducted with regard to the sentiment
analysis tasks in Twitter posts. Most of these studies can generally be grouped into two main
research directions based on their core contributions: i) data curation/labeling techniques
for sentiment analysis tasks, and ii) polarity/emotion classification. The first group entails
studies concerning data collection and (semi) automatic labeling techniques. For instance, the
research work conducted in Go et al. (2009), introduced for the first time distant supervision
labels (emoticons) for classifying the sentiment polarity of tweets. The study presents one
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of the most widely used Twitter sentiment datasets for sentiment analysis tasks known as
Sentiment140. Another similar study that uses a distant supervision strategy for automatic
labeling is presented in Davidov et al. (2010). In particular, hashtags and text emoticons
for sentiment annotation are applied in both studies to generate labels. A similar study that
applies not only emoticons and hashtags but also emojis, as distantly supervised labels to
detect Plutchik’s emotions is conducted in Suttles and Ide (2013).

There is another strand of research that focuses on creating datasets for the emotion detec-
tion task. For example, the research study in Mohammad and Kiritchenko (2015) presents
Twitter Emotion Corpus annotated using distant supervision with emotion-specific hashtags
for emotion annotation. An extended dataset called the Tweet Emotion Intensity dataset is
presented later in Mohammad and Bravo-Marquez (2017) where the authors created the first
dataset of tweets annotated for anger, fear, joy, and sadness intensities using the best-worst
scaling technique. The researchers in Kralj Novak et al. (2015) present the first emoji senti-
ment lexicon, known as the Emoji Sentiment Ranking as well as a sentiment map that consists
of the 751 most frequently used emojis. The sentiment of the emojis is computed from the
sentiment of the tweets in which they occur.

A similar work was conducted in Batra et al. (2021), where the authors presented a dataset
containing around 1.1 Million Urdu tweets distributed over two months. They employed a
heuristics labeling approach that allowed multi-label emotion. Furthermore, the dataset is
characterized by the presence of a high-class imbalance problem. In contrast to the study in
Batra et al. (2021), our research work differs in both data collection and heuristic labeling.
We collected tweets posted over the last 10 years with an almost proportional daily-based
distribution, which helps to reduce the bias during data collection. Additionally, our collected
dataset is balanced, with an equal number of samples among six basic emotion categories,
even though some emotions are more representative than others on Twitter. Furthermore, our
selection heuristic for determining the true label for tweets having more emojis that refer to
different emotions maintained a strict one-emotion-per-tweet.

The second group of research works focuses on polarity and emotion classification using
conventional machine learning algorithms and deep neural networks. For instance, such a
study is conducted in Polignano et al. (2019), where the authors proposed a classification
approach for emotion detection from text using deep neural networks including Bi-LSTM,
and CNN, with self-attention and three pre-trained word embeddings for word encoding.
Another similar example where LSTM models are used for estimating the sentiment polarity
and emotions from Covid-19 related tweets is proposed in Imran et al. (2020) and in Batra
et al. (2021). The later study also introduced a new approach employing emoticons as a
unique and novel way to validate deep learning models on tweets extracted from Twitter.
Another study focusing on emotion recognition using both emoticons and text with LSTM
is conducted in Islam et al. (2020).

In Kastrati et al. (2022) authors conducted a set of experiments on their distant-supervised
labeled dataset using conventional machine learning and deep learning models for sentiment
polarity and multiclass emotion detection tasks. According to the authors, deep neural net-
works such as BiLSTM and CNN-BiLSTM outperformed other models in both sentiment
polarity and multiclass emotion classification tasks.

From the literature reviewed above, we observed that there are numerous articles focused
on distant supervision with hashtags, and emoticons and only a few of them use emojis as a
noisy label for automatic labeling tweet datasets for sentiment and emotion analysis tasks.
However, emojis are used far more extensively than hashtags and they present a more faithful
representation of a user’s emotional state. Moreover, most of those studies experimented with
small and imbalanced tweet datasets, which are often domain-specific. Furthermore, in most
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of these studies, the researchers treated the multiclass problem of emotion classification as
a binary problem. Our research work is different from the above-mentioned studies in many
aspects including distant supervision with emojis, size of the dataset, timeline coverage, and
variety of deep learning models. Additionally, we experimented mainly with the emotion-
balanced dataset and treated the emotion classification as a multiclass classification task.

3 Design and research methodology

This study uses a quantitative approach composed of five major phases. The first phase entails
the collection of emoji tweets on Twitter, belonging to the period from 01 January 2012 until
31 December 2021. To be able to collect enough tweets to meet our needs, we selected 41
emojis indicative of the emotion used in research from Batra et al. (2021) and then we col-
lected tweets that contained at least one of the selected emojis, and only those tweets that
were tagged by Twitter as English (retweets excluded). In the second phase of this study, text
pre-processing is performed to remove extra attributes related to tweets (author id, date of
creation, language, source, etc.), duplicate tweets, extract emojis from tweets, remove hash-
tags/mentions, URLs, emails, phone number, non-ASCII characters and tweets with length
less or equal to five characters. Additionally, all tweets were converted to lowercase. In the
third phase, the automatic labeling of collected tweets was carried out using distant supervi-
sion with emotion-indicative emojis. Consequently, all emoji tweets are properly classified
into one of Ekman’s six basic emotion categories, including anger, disgust, fear, joy, sadness,
or surprise. In the fourth phase, a representation model to prepare and transform the tweets to
an appropriate numerical format to be fed into the emotion classifiers is performed. More pre-
cisely, a bag-of-words approach (TF-IDF) with conventional machine learning algorithms,
as well as three different pre-trained word embeddings (GloVe, Glove Twitter, and Fast-
Text) with deep learning neural networks, are used. The final phase of the study involves the
sentiment analyzer for binary classification and the emotion analyzer for multiclass emotion
classification. The analyzer involves several classifiers including conventional machine learn-
ing and deep neural networks for sentiment polarity and emotion classification. A high-level
architecture of the proposed sentiment and emotion analyzer depicting all the five phases
elaborated above is illustrated in Fig. 1.

5 3 Sentiment &
Collection of Pre-processing . “I S LSCDE el Emotion
emoji tweets e oce classifier
i = 41 Emojis = Remove duplicate = Distant supervision = TF-IDF = Conventional
or Machine Leamning
Academic = English tweets = Extract emojis with emotion-
Research . i e . * GloVe = Deep Neural
= No retweets = Text Cleaning indicative emojis Networks
= StartDate (01.01.12) | |= Lowercase & stop words| * iGloVeTwitier
- EndDate (31.12.21) | |= Tokenization ) |+ Exman's model ) |+ FastText ). |, = Trensfomers )
N NNl DAY N //

Fig. 1 High-level architecture of the proposed solution
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Table 1 Number of tweets among emotion and sentiment classes (D1)

Emotion # of instances % Sentiment # of instances %
Joy 6,369,299 36.4 Positive 8,452,049 48.3
Surprise 2,082,750 11.9

Sadness 2,452,298 14.0 Negative 9,064,788 51.7
Disgust 2,180,383 124

Anger 2,115,000 12.1

Fear 2,317,107 13.2

Total 17,516,837 100.0 Total 17,516,837 100.0

4 Experimental settings

This section briefly describes the dataset (emoji tweets) as well as the classifier models used
to perform the sentiment and emotion classification tasks.

4.1 Dataset

The dataset utilized for carrying out the diverse range of experiments in this study consists of
17.5 million tweets (more precisely 17,516,837 tweets) posted within 10 years, respectively,
between January 1, 2012, and December 31, 2021, with an almost proportional daily-based
distribution. The whole data collection process was conducted through Twitter API v2 for
academic research product track using Python 3.

Manually labeling the tweets would have been almost impossible even for a large team but
also a labor-intensive, time-consuming, and error-prone task due to the quantity. We labeled
the tweets by considering the distant supervision with emojis for emotion labeling, whereas
the polarity associated with a tweet is inferred directly from the emotions. More precisely,
the positive polarity class is comprised of two positive emotions (joy and surprise), and
the negative polarity is derived from negative emotions (anger, fear, disgust, and sadness).
Then conventional machine learning and deep neural networks including transformer-based
models were employed for the binary classification of tweets into positive or negative classes
and multiclass classification of emotions into one of the possible emotions such as anger,
fear, joy, and sadness.

Table 2 Intentionally balanced

among emotion classes (D2) Emotion # of instances %
Joy 2,000,000 16.7
Surprise 2,000,000 16.7
Sadness 2,000,000 16.7
Disgust 2,000,000 16.7
Anger 2,000,000 16.7
Fear 2,000,000 16.7
Total 12,000,000 100.0
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Table 3 Dataset statistics after

removing disgust and surprise Sentiment # of instances %

(Dla) Negative 6,884,405 48.1
Positive 6,369,299 519
Total 13,253,704 100.0

As shown in Table 1, in the original dataset each sentiment polarity class is represented by
the same number of instances (tweets) - it is balanced for sentiment polarity classes (48.3%
for positive and 51.7% for negative sentiment) but it is imbalanced for emotions.

Table 2 shows statistics of the intentionally emotion-balanced dataset (D2) that comprises
12 million tweets. We randomly selected 2 million tweets for each emotion class from the
original D1 dataset and as a result, we obtained a well-balanced emotion dataset (16.7% for
each emotion).

Table 3 shows statistics for the D1a dataset. It is a subset of the original D1 dataset
without disgust and surprise emotions, as these two emotions are overlapped with other
emotions. The D1a dataset remains balanced for sentiment polarity classes and was used in
our experiments for the task of sentiment polarity classification (except Section 5.7 where
the whole D1 dataset was used).

4.1.1 Dataset statistics

The number of tweets across years and the top 10 emojis are illustrated in Fig. 2. As shown,
the number of tweets per year ranged from 1.6 and 1.8 million. Among the most commonly
used emojis “Face with tears of Joy”, emerged as the dominant one with 5,447 thousand
tweets followed by “Face screaming in Fear” with 3,768 thousand tweets, and last from the
top 10 was “Smiling face with smiling eyes” with 696 thousand tweets (Fig. 2).
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Fig. 2 Distribution of tweets (a) per year and (b) per emojis (values in thousands)
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4.1.2 Distant supervision of tweets

The concept behind distant supervision involves the automatic labeling of data in order to be
able to leverage large amounts of it. This type of data is referred to as distant supervised or
weakly annotated, as the quality is not great, but the quantity is Byrkjeland et al. (2018).
The distant supervision used in this study employs the emoji heuristic labeling algorithm,
enabling the automatic labeling of training sets for sentiment and emotion classification tasks.
To create our training labels of one emotion per tweet, we used the following simple
heuristic: We used the emotion-indicative emojis to determine the emotion per tweet. In
cases where a tweet contains multiple emojis expressing different emotions, the emoji that
occurs more frequently is used for determining the emotion. In cases where ambiguity arises
because of more emojis in a tweet with the same frequency but different emotions, the
algorithm considers the sentiment scores calculated in Kralj Novak et al. (2015), selecting
the emotion associated with the emoji possessing the largest sentiment score. By using this
approach, we have efficiently and automatically labeled a large-scale dataset of 17.5 million
tweets, facilitating the training of models for sentiment and emotion classification tasks.

4.1.3 Dataset tagging

The main purpose of this dataset was to collect only English tweets that contain emotion-
indicative emojis and tag each tweet with emojis that are present in tweets for sentiment and
emotion analysis. For our purpose, we designed a query that extracts tweets for each day for
10 years, containing emojis and text written in English and no retweets.

We intend to ensure that this dataset is suitable for the tasks of sentiment and emotion
analysis. We have used the list of 41 emotion-indicative emojis to categorize tweets based
on Ekman’s emotion model. Consequently, sentiment polarity is derived from emotions, as
positive or negative depending on the emotion category. For example, tweets that belong to
the joy and surprise emotion category are labeled with a positive sentiment class, and other
negative emotions (sad, disgust, fear, anger) with a negative sentiment polarity label. An
excerpt of the dataset is shown in Table 4.

4.2 Architecture and parameter settings

This section presents a brief overview of the deep neural network and transformer-based
architectures and their parameter/configuration settings applied in our experiments for this
study.

4.2.1 Deep neural networks

To perform the tasks of sentiment polarity and emotion classification in our Twitter dataset,
we employed five different supervised deep neural networks, including one-dimensional
CNN, LSTM, GRU, BiLSTM, and a hybrid CNN_BiLSTM. The reasons that we have cho-
sen these architectures are based on the specific nature of text modeling. Additionally, we
have performed experiments with two other state-of-the-art transformer-based architectures,
including BERT and RoBERTa. Table 5 presents various deep neural networks along with
their model configurations (experiment settings).

Due to space limitations, we have opted to showcase and elaborate on the best-performing
architecture, allowing us to delve deeper into the details of the most effective choice. Figure 3
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Table 4 Example of mapping emojis to emotion labels

Tweet Emoji Description Emotion Polarity

You better chill before I tell twitter [Face with tears of joy, 0.221] Joy Positive
how you was screaming out daddy"

last night ® &

NHS England makes plans for field [Frowning face with open Surprise Positive
hospitals in preparation for Omicron mouth, -0368]

wave =

I tried to find the tweet but i think she [Angry face, -0.299] Anger Negative

deleted it? But i reported the acc. That
was so uncalled for *

Wow you knew what he was and y’all [Unamused face, -0.374] Disgust Negative
STILL voted for him &=
This is so cute but i wish what hap- [Loudly crying face, -0.093] Sadness Negative

pened to this father and son doesn’t

happen to yujin and myah please @

We should have been okay until late [Fearful face, -0.14] Fear Negative
september but now [ have no clue what

we’lldo. I’'malittle scared honestly ®

illustrates the BILSTM architecture applied to our dataset for a sentiment polarity task. The
architecture comprises the following components: an embedding layer with word embeddings
of size 300D, a dropout layer, four BiLSTM layers with 256, 128, 64, and 32 units, each
using a ReLU activation function, and an attention layer. The output layer consists of two
neurons, one for each class (positive or negative), and employs a sigmoid activation function
to produce probability-like predictions for each class. The classification model is trained
using the logarithmic loss function and the efficient ADAM gradient-based optimization
algorithm.

The same model is used for the emotion classification task. However, since we are dealing
with a multiclass classification problem, we replace the classification loss function with
’categorical_crossentropy’. We also adjust the number of units in the output layer to 4, one
for each emotion class (anger, fear, joy, or sadness). Additionally, we replace the sigmoid
activation function with softmax to output probability-like predictions for each emotion. This
approach, of adapting the binary classification model for a multiclass classification task, is
applied in all other architectures presented in the following.

4.2.2 Parameter settings

All deep neural network models for sentiment and emotion classification in this study are
implemented in Keras (https://keras.io, accessed on 15 May 2022). Keras is a simple and
robust deep-learning library for Python used for constructing a neural network. It is a high-
level framework based on TensorFlow developed at Google. Scikit-learn (https://scikit-learn.
org/stable/, accessed on 10 May 2022), a simple, efficient, and open-source tool for predictive
data analysis in Python, is used for developing conventional machine learning classifiers in
this study. The maximum number of words to be used in the tokenizer model was set to
200,000 and the input comment sequence is padded to 30 words.
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Table 5 Configuration and accuracy of the deep learning models

Classifier Model Configuration / Parameters Sentiment Emotion
Polarity Detection
DNN Baseline Embedding Layer with 300 Dimension, 67.76% 50.52%

GlobalMaxPooling 1D, Layers with 128, 64,
32 with ReLU, Dense 2 with Sigmoid
(Dense 4 with Softmax).

1D-CNN + FastText Embedding Layer with crawl-300d-2M.vec  69.43% 52.70%
Layers with 512 with ReLU, GlobalMax-
Pooling1D, Dense 32 with ReLU Dense 2
with Sigmoid (Dense 4 with Softmax).

LSTM + FastText Embedding Layer with crawl-300d- 70.69% 54.45%
2M.vec, BiLSTM Layers with 256, 128,
64, 32 with ReLU, GlobalMaxPooling1D
Dense 2 with Sigmoid (Dense 4 with
Softmax).

GRU + FastText Embedding Layer with crawl-300d- 70.32% 53.93%
2M.vec, GRU Layers with 256, 128,
64, 32 with ReLU, GlobalMaxPooling1D,
Dense 2 with Sigmoid (Dense 4 with
Softmax).

BiLSTM + GloVe Embedding Layer with glove.6B.300d.txt, 70.05% 53.78%
GRU Layers with 256, 128, 64, 32 with
ReLU, GlobalMaxPooling 1D, Dense 2 with
Sigmoid (Dense 4 with Softmax).

BiLSTM + GloVe.Twitter Embedding Layer with  70.84% 54.31%
glove.twitter.27B.200d.txt, GRU Layers
with 256, 128, 64, 32 with ReLU, Glob-
alMaxPooling1D, Dense 2 with Sigmoid
(Dense 4 with Softmax).

BiLSTM + FastText Embedding Layer with crawl-300d- 70.91% 54.94%
2M.vec, BiLSTM Layers with 256, 128,
64, 32 with ReLU, GlobalMaxPooling1D,
Dense 2 with Sigmoid (Dense 4 with
Softmax).

CNN-BiLSTM + FastText ~ Embedding Layer with crawl-300d- 70.22% 53.63%
2M.vec, SpatialDropout1D(0.3), ConvlD
with 32 with ReLU, BiLSTM with 32
with ReLU, Flatten layer, Dense 64 with
ReLU, Dense 2 with Sigmoid (Dense 4
with Softmax).

BERT "bert-base-uncased", 12-layer, 768-hidden, 69,87% 54,56%
12-heads, 110M parameters. Further details
can be found in Devlin et al. (2018).

RoBERTa "roberta-base". 12-layer, 768-hidden, 12- 68,55% 53.90%
heads, 125M parameters. ROBERTa using
the BERT-base architecture. For further
details see in Liu et al. (2019).

The following parameter settings are used to conduct experiments. The dataset is divided
into two subsets: a training set and a test set. The training set consists of 90% of the data, while
the remaining 10% is used for testing the model. Model training was set to 50 epochs and the
“EarlyStopping” criteria with its arguments: monitor = “val_loss” and patience = 3, is used to
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Fig.3 BiLSTM Architecture

stop classifiers. The batch size of 2048 gave us the best results. Deep recurrent neural networks
such as LSTM and BiLSTM, generally have the problem of overfitting. To avoid overfitting
in our deep neural networks, we used a dropout strategy in which certain units (neurons) are
temporarily removed from the network model along with incoming and outgoing connections.
Dropout prevents model units from co-adapting too much to the training data and thus it
leads to better generalization on the testing set as well (Srivastava et al., 2014). We have
applied between layers using the Dropout Keras layer and the dropout rate was set to 0.3
(SpatialDropout1D(0.3)).

On the other hand, the hyperparameters used for pre-trained transformer-based models
(BERT and RoBERTa) in our experiments are as follows: the activation function is ReLu,
both models use the AdamW optimization algorithm, the batch size is set to 32 for BERT
and 8 for ROBERTa, and the number of epochs is 3 for both models.

Fine-tuning transformer-based models on large-scale datasets such as ours, which includes
million of instances poses a significant challenge due to their substantial computational
complexity, extensive model size, and demanding memory requirements. Moreover, our
experiments were conducted using Colab Pro+, where we encountered restrictions on the
maximum runtime set at 24 hours and faced the high cost of acquiring additional compute
units. To address these challenges in fine-tuning both transformer-based models (BERT and
RoBERTa), we implemented a random sampling strategy. This involved creating two dis-
tinct subsets, each comprising one million tweets. One subset was designated for sentiment
analysis, whereas the other subset served as the foundation for emotion classification task.
By employing a random sampling strategy, we not only accommodated practical limitations
but also ensured that the selected subsets maintained representative diversity.

The source code for the transformer-based architectures in our experiments is obtained
from Teja (2021).

4.3 Pretrained word embeddings

In this study, we have compared the results of deep learning models obtained using three
different pre-trained word embeddings such as GloVe, GloveTwitter, and FastText.

e GloVe stands for Global Vector for Word Representation proposed in Pennington et al.
(2014). The model is an unsupervised learning-based algorithm developed by Stanford for
obtaining vector representations for words. Training is performed on aggregated global
word-word co-occurrence statistics from a corpus. The resulting representations show
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interesting linear substructures of the word vector space. The GloVe version used in this
work is one that is trained on a Wikipedia 2014 dump with Gigaword 5 that has 6 billion
tokens, 400 thousand of vocab, uncased, 300d vectors. Further detailed information on
the process of training GloVe word embedding is explained in Pennington et al. (2014).

e GloveTwitter is a pre-trained glove vector based on 2 billion tweets, 27 billion tokens,
and 1.2 million vocab, uncased.

e FastText proposed in Bojanowski et al. (2017), is an extension of word2vec model, which
represents words as n-grams of characters. It is composed of a vocabulary of 2 million
words and n-grams of the words, case sensitive and obtained from 600 billion tokens
trained on data crawled from generic Internet web pages by Common Crawl nonprofit
organization (Polignano et al., 2019). Further detailed information on the process of
training can be found in Bojanowski et al. (2017).

4.4 Attention mechanism

An attention mechanism is a feature that equips models with the ability to focus on specific
words or phrases within the text. It works by assigning different weights to each word in the
text, enabling the models to capture the context and most significant information. When it
comes to analyzing tweets, the attention mechanism aims to assign more weight to sentiment-
carrying words in order to better grasp the overall sentiment expressed in that particular tweet.
Mathematically, an attention mechanism can be defined using (1).

T

Attention(Q, K, V) :softmax(?/IfT )\ (1)
k
where,

K represents a key vector. A key vector is a word embedding from a sequence of word
embeddings constituting a tweet.

Q indicates a query vector tasked with understanding the sentiment expressed in the tweet.

V denotes value vectors.

J/dj, denotes the dimension of a key vector.

The attention mechanism computes the attention scores by calculating a dot product
between the key vector K, and the query vector Q, divided by values dimension /dj which is
used to control the magnitude of the score. These attention scores are converted into weights
using a softmax function.

After calculating the weights, a context vector C is obtained by computing a weighted
sum of the value vectors V.

C= ZAttention(Q, Ki, Vi) )

1

The context vector C contains information that is contextually important for understanding
the sentiment of the tweet. This context-aware representation is then used as an input to the
sentiment analysis model to classify the sentiment of the tweet as positive, negative, or neutral
based on the attended information.

@ Springer



Journal of Intelligent Information Systems

mLogistic Regression  mBiLSTM + FastText mlinear SVC mBILSTM + FastText

74.00% 65.00% 63.20%
71.81¢
72.00% % 60.00%
55.69%
69.95%
70.00% 55.00% i 5235%
68.43% .
68.00% 50.00% 48.30% 48.50%
45.79%
66.00% 45.00% 43.47%
64.01%
64.00% 40.00%
62.00% I 35.00%
60.00% 30.00%
Negative Positive Anger Fear Joy Sadness
(a) sentiment (b) emotion

Fig.4 F1 score of best-performing algorithms on (a) sentiment polarity and (b) emotion classification tasks

5 Experimental results

This section provides the experimental results obtained from various sentiment and emotion
classifiers trained and validated on our dataset. The configuration settings for the deep learning
models employed in our dataset are given in Table 5.

The findings illustrated in Fig. 4 show that the best performance is achieved by deep
learning models in both sentiment polarity and emotion classification tasks. Class-wise per-
formance with respect to the F1 score for sentiment polarity and emotion classification tasks
is given in Fig. 4. For the sake of space, we present results obtained from only two best-
performing models, including one from conventional machine learning and one from deep
learning.

Table 6 Performance of ML and DL models for sentiment polarity classification

Classifier P (%) R (%) F1 (%) Acc (%)
Naive Bayes 65.69 65.67 65.54 63.27
Logistic Regression 66.34 66.37 66.31 66.37
Linear SVC 66.27 66.29 66.27 66.29
Decision Tree 61.80 54.62 57.99 53.86
AdaBoost 62.49 58.52 60.44 58.52
DNN Baseline 67.80 67.76 67.62 67.76
ID-CNN + FastText 69.70 69.43 69.42 69.43
LSTM + FastText 70.75 70.69 70.70 70.69
GRU + FastText 70.33 70.32 70.33 70.32
BiLSTM + GloVe 70.17 70.05 70.06 70.05
BiLSTM + GloVe Twitter 70.86 70.84 70.85 70.84
BiLSTM + FastText 70.93 70.91 70.92 70.91
CNN_BIiLSTM + FastText 70.23 70.22 70.22 70.22
BERT 69.87 69.87 69.87 69.87
RoBERTa 67.07 69.55 68.30 69.55
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5.1 Sentiment polarity classification

We used the D1a dataset (described in Section 4.1) for training conventional machine learn-
ing and deep learning models for sentiment polarity classification. Table 6 summarizes the
models’ performance on 10% test data.

The deep BiLSTM with FastText pre-trained word embeddings and an attention layer,
outperforms other deep learning models in sentiment polarity classification in our dataset,
achieving an F1 score of 70.92%. This represents an average performance improvement of
3.3 percentage points compared to the baseline results. Additionally, the deep BiLSTM +
FastText model demonstrates superior overall accuracy compared to the RoOBERTa model,
surpassing it by 2.62 percentage points. Moreover, it outperforms the BERT model by 1.05
percentage points.

5.2 Emotion classification

We used the D2 dataset (described in Section 4.1), excluding disgust and surprise, to train
various deep learning models for multiclass emotion classification. Table 7 summarizes the
models’ performance on 10% test data. The deep BiLSTM with FastText pre-trained word
embeddings and an attention layer outperforms other deep learning models for multiclass
emotion classification task, achieving an F1 score of 54.85%. This marks an average perfor-
mance improvement of 4.4 percentage points over the baseline results. Moreover, the overall
accuracy of the deep BiLSTM + FastText model surpasses that of the BERT model by 0.2
percentage points and the ROBERTa model by 1.0 percentage points.

Table 7 Performance of ML and DL models for emotion classification

Classifier P (%) R (%) F1 (%) Acc (%)
Naive Bayes 47.52 47.62 47.57 47.62
Logistic Regression 47.73 47.78 47.75 47.78
Linear SVC 48.31 48.45 48.38 48.45
Decision Tree 47.93 27.52 34.96 27.52
AdaBoost 42.77 35.67 38.90 35.66
DNN Baseline 50.38 50.52 50.40 50.52
ID-CNN + FastText 52.89 52.70 52.77 52.70
LSTM + FastText 54.32 54.45 54.34 54.45
GRU + FastText 53.83 53.93 53.85 53.93
BiLSTM + GloVe 53.64 53.79 53.71 53.78
BiLSTM + GloVe Twitter 54.10 54.32 54.21 54.31
BiLSTM + FastText 54.75 54.95 54.85 54.94
CNN_BIiLSTM + FastText 53.82 53.96 53.89 53.96
BERT 54.74 54.56 54.65 54.56
RoBERTa 53.69 53.90 53.79 53.90
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Table 8 Performance of BiLSTM w/o attention for sentiment polarity classification

Class BiLSTM BiLSTM + Att

P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Negative 71.05 68.97 70.00 70.72 69.73 70.22
Positive 67.51 69.65 68.57 67.79 68.81 68.30
Weighted avg 69.35 69.30 69.31 69.31 69.29 69.30

5.3 Effect of attention mechanism

In this section, we examine the impact of the attention mechanism on capturing the long-
range dependencies in the collected tweets. For this purpose, an attention layer considering
a global and local context is used on top of BILSTM to extract high-level features. Global
context characterizes the entire tweet, and it is too broad. On the other hand, local context is
defined from a small window of different sizes. In our case, we have used the window size of
8 words based on the research work (Kastrati et al., 2021) as the optimal context to extract
semantic features using the attention mechanism.

This section provides an overview of the impact of the attention mechanism on the per-
formance of BiLSTM for the sentiment classification task. More precisely, we carried out
experiments with two different classification parameters with regard to the network architec-
ture used. In the first case, the network architecture consists of BILSTM layers with 256, 128,
64, and 32 units with ReLU, and a Flatten layer. In the second case, the network architecture
is extended with an attention layer integrated on top of BILSTM. The obtained results for the
sentiment classification task using both architectures (without and with attention mechanism)
with respect to precision, recall, and F1 score are summarized in Table 8. As can be seen
from Table 8, there is no performance improvement when the BiLSTM model is used with
the attention mechanism and the results are almost the same. On the other hand, regarding
the class-wise performance, there is a subtle shift in the performance, indicating that the
performance of the negative sentiment class improved at the cost of the positive one. As can
be seen from the table, the F1 score for negative sentiment increased from 70.00% to 70.22%
but decreased for positive sentiment from 68.57% to 68.30%.

Table 9 shows the obtained results for the multiclass emotion classification task using
both architectures (without and with attention mechanism) with respect to precision, recall,
and F1 score. As can be seen from Table 9, there is no impact on the overall performance
of the classifier for the task of emotion classification when the attention mechanism is used.
However, subtle shifts were observed in the class-specific metrics, indicating that the perfor-

Table 9 Performance of BiLSTM w/o attention for emotion classification

BiLSTM BiLSTM + Att
Class P (%) R (%) F1 (%) P (%) R (%) F1 (%)
Anger 58.83 62.50 60.61 59.35 61.52 60.42
Fear 52.47 51.63 52.04 51.84 52.90 52.36
Joy 49.54 50.46 50.00 50.54 47.68 49.07
Sadness 49.80 46.57 48.13 48.62 48.59 48.60
Weighted avg 52.66 52.79 52.69 52.58 52.67 52.61
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Table 10 F1 score of BILSTM model with different word embeddings for sentiment polarity classification

Classifier Negative Positive Weighted avg
BiLSTM 70.00 68.57 69.31
BiLSTM + GloVe 70.38 69.70 70.06
BiLSTM + GloVe Twitter 71.74 69.88 70.85
BiLSTM + FastText 71.81 69.95 70.92

mance of certain classes improved at the cost of others. For example, for fear emotion, the
F1 score increased from 52.04% to 52.36%, and for sadness from 48.13% to 48.60% but this
was at the cost of anger and joy emotions.

5.4 Effect of static word embeddings

In this section, we present the results obtained from the set of experiments conducted to see
the impact of general-purpose pre-trained word embeddings on the sentiment and emotion
classification tasks.

Tables 10 and 11 show the impact of three pre-trained word embeddings such as GloVe,
GloVe Twitter, and FastText on the best-performing model, that is, BILSTM for sentiment
polarity and emotion classification tasks. The results obtained showed that all three pre-trained
word embeddings initialize word vectors for the datasets effectively. The F1 score was slightly
different on different word vector methods. Furthermore, BILSTM with FastText pre-trained
word embeddings produced better results followed by BiLSTM with GloVe Twitter. This
proved that pre-trained word embeddings and especially FastText substantially affected the
accuracy of the entire model.

Similarly, the three pre-trained word embeddings used with the BiLSTM model for emo-
tion classification had a substantial impact on performance improvement, even better than
for the sentiment polarity classification task, as shown in Table 11.

5.5 Effect of having multiple classes

Recognizing that multiclass classification is characterized by several challenges, we aimed
to delve deeper and get better insight into the effects of multiclass classification of emotions.
To accomplish this, we initially performed a multiclass classification of emotions based on
Ekman’s six basic emotions, achieving an accuracy of 41.33%. Seeking for more compre-
hensive understanding, we performed the chi-squared test to identify the top 20 terms (top

Table 11 F1 score of BILSTM model with different word embeddings for emotion classification

Classifier Anger Fear Joy Sadness Weighted Avg
BiLSTM 60.61 52.04 50.00 48.13 52.69
BiLSTM + GloVe 62.02 53.44 51.26 47.71 53.71
BiLSTM + GloVe Twitter 62.50 54.16 50.74 48.86 54.21
BiLSTM + FastText 63.20 54.75 52.35 48.90 54.85
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10 uni-grams and top 10 bi-grams) most correlated with each emotional class. The analysis
revealed that many terms overlapped between the classes. Specifically, the anger and disgust
emotion classes share a lot of common terms, making their distinction challenging. Similarly,
fear and surprise shared numerous common terms, further complicating the differentiation
between these emotional classes.

This way, we continued our experiment to explore the effects of removing these prob-
lematic classes. We started by removing instances belonging to surprise from our dataset.
The decision was guided by its high level of overlap with fear, introducing ambiguity in
classification. Additionally, we acknowledged the complexity of surprise, as some instances
of this class are associated with positive valence and others with negative valence (Moham-
mad, 2021). As a result, our best-performing classifier (BiLSTM + FastText) demonstrated
an improvement of almost 6.5 percentage points in accuracy compared to the 6-class results.

Observing this change in performance, we further reduced the number of emotional classes
by removing disgust, which is also known for its complexity and higher overlap with anger
according to the chi-square test. This decision led to an even more substantial improvement,
with an additional 7.2 percentage points in accuracy compared to the 5-class results.

Continuing in this manner, our exploration culminated in binary classification, where
we assessed the classifier’s accuracy by comparing each emotional class against the oth-
ers. The results for binary classification were promising, and the highest accuracy achieved
was 79.22% for the [fear vs disgust] comparison. Almost all binary emotion classifications
achieved an accuracy higher than 70%, except the two pairs, [anger vs disgust] with an accu-
racy of 68.4%, and [fear vs surprise] having the lowest accuracy of 60.7% because of their
complexity and overlap problem mentioned above. The average accuracy obtained on all
binary classification pairs was 73.0%. A detailed analysis of the effect of multiple classes is
provided in the following subsections.

5.5.1 Six emotion classes

In our first experiment, we performed the multiclass classification of emotions based on
Ekman’s six basic emotions. For this experiment, we used the entire dataset of 12 million
tweets (2 million tweets for each emotion class). Table 12 shows the precision, recall, and F1
score of the best-performing model BILSTM + FastText on the balanced dataset on Ekman’s
six basic emotions such as anger, disgust, fear, joy, sadness, and surprise. The obtained
weighted average F1 score is 41.33%.

Table 12 Precision, Recall, and

F1 score for the 6-class emotion Class P R F1 (%

classification Anger 47.92 49.37 48.63
Disgust 39.32 47.55 43.04
Fear 39.90 42.50 41.16
Joy 42.66 44.05 43.34
Sadness 41.74 35.06 38.11
Surprise 36.14 29.70 32.61
Weight avg 41.28 41.38 41.33
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1 oo forthe 5-elase moton 018 P R (%) F1(%)

classification Anger 51.45 52.81 52.12
Disgust 42.74 47.44 44.97
Fear 50.40 53.77 52.03
Joy 48.57 46.40 47.46
Sadness 45.88 38.60 41.92
Weight avg 47381 47381 47.70

5.5.2 Five emotion classes

Table 13 shows the Precision, Recall, and F1 score of the best-performing model BiLSTM +
FastText on the dataset with five discrete emotions such as anger, disgust, fear, joy, and sad-
ness. Here we drop the sixth category - a surprise as it has the worst performance (overlapped
with fear emotion) and causes weighted average performance degradation.

5.5.3 Four emotion classes

Table 14 shows the obtained results with regard to the Precision, Recall, and F1 score of the
best-performing model BiLSTM + FastText on the emotion-balanced dataset on four discrete
emotions such as anger, fear, joy, and sadness. Here we drop the second category - disgust as
it is characterized by class overlapping with anger and causes weighted average performance
degradation.

5.5.4 Three emotion classes

Table 15 shows the Precision, Recall, and F1 score of the best-performing model BiLSTM
+ FastText on the emotion-balanced dataset on three basic emotions such as anger, joy, and
sadness. Here we drop the third category - fear to leave only three basic emotions.

5.5.5 Two emotion classes

Table 16 shows the Precision, Recall, and F1 score of the best-performing model BiLSTM
+ FastText on the emotion-balanced dataset on two basic emotions such as joy and sadness.

Table 17 shows the weighted average Precision, Recall, F1 score, and Accuracy of the
best-performing model BiLSTM + FastText on the emotion-balanced dataset on two basic

1 Scon for e 4 elase moton 018 P R (%) F1(%)

classification Anger 60.18 66.54 63.20
Fear 54.69 54.45 54.57
Joy 51.69 53.02 52.35
Sadness 52.44 45.81 48.90
Weighted avg 54.75 54.95 54.85
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F1 ncore fon he 3oclase amoton 18 P (%) R (%) F1 (%)

classification Anger 68.80 68.19 68.50
Joy 60.72 66.13 6331
Sadness 59.78 54.98 57.28
Weighted avg 63.11 63.11 63.03

emotions (binary classification) for all pairs of emotions. Almost all emotion binary classifi-
cation tasks achieved an Accuracy higher than 70%, except the two pairs, [anger vs disgust]
with an accuracy of 68.4%, and [fear vs surprise] having the lowest of 60.7%. The average
Accuracy of classification is 73.0%. It is worth mentioning that each emotion is comprised
of the same number of tweets - 2 million tweets per emotion.

5.6 Effect of the size of training data

In this section, we examine the effect of increasing the size of the training data on the accuracy
of the best-performing classifier BILSTM with FastText. Since most of the existing studies on
sentiment analysis and emotion identification in tweets are conducted on datasets comprising
afew thousand tweets, we expect to derive new insights and benefits from using large training
data. In our case, we started with a small sample consisting of 20 thousand (20K) randomly
selected tweets and continued this way increasing the number of tweets up to 13.3 million
(13M) for sentiment classification and 8 million (8M) for the emotion classification task.

Figure 5 shows the result of training the BiLSTM with FastText classifies on each subset in
the sequence and the F1 score achieved on 10% test instances by the model for the sentiment
and emotion classification tasks.

From Fig. 5 we observe that as the size of training data increases from 20 thousand (20K)
to 13.3 million (13M), we got an F1 score between 60.98% and 70.92% for the sentiment
classification task, an average performance improvement of nearly 10 percentage points
on the smallest subset results. On the other hand, for the emotion classification task, by
increasing the size of the training data from 20 thousand (20K) to 8 million (8M), we got an
F1 score between 44.45% and 54.85%, an average performance improvement of more than
10 percentage points on the smallest subset results.

5.7 Effect of class imbalance

In this section, we investigate the effects of class imbalance on the performance of deep
neural network-based classifiers for sentiment polarity and emotion classification tasks. The
investigation is performed using the best performing model i.e. BILSTM with FastText model
trained on our newly created Twitter dataset. The experimental results obtained show that

1 score for the > clase emotion 1% P (%) R (%) F1(%)

classification Joy 70.87 69.03 69.94
Sadness 69.97 71.78 70.86
Weighted avg 70.42 70.41 70.40
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Table 17 Precision, Recall, F1

score, and Accuracy of Emotion classes P (%) R (%) F1 score (%) Acc (%)

best-performing model for binary  yoy vs Anger 7813 78.11  78.10 78.10

emotion classification .
Joy vs Disgust 76.64 76.41 76.36 76.40
Joy vs Fear 70.85 70.82 70.81 70.81
Joy vs Sadness 70.42 70.41 70.40 70.41
Joy vs Surprise 70.70 70.69 70.69 70.69
Sadness vs Disgust 70.26 70.11 70.06 70.11
Fear vs Disgust 79.22 79.22 79.22 79.22
Anger vs Disgust 68.43 68.42 68.42 68.42
Anger vs Fear 78.80 78.78 78.78 78.78
Anger vs Sadness 75.80 75.80 75.80 75.80
Anger vs Surprise 76.45 76.45 76.44 76.45
Disgust vs Surprise 75.85 75.83 75.82 75.83
Fear vs Surprise 60.70 60.69 60.69 60.69
Sadness vs Surprise 70.85 70.74 70.70 70.70
Fear vs Sadness 73.58 73.57 73.57 73.56

the performance of the classifier deteriorates when a class imbalance exists within training
data. Specifically, the performance obtained from our best-performing classifier showed a
bias towards the majority class, respectively joy class. To overcome this issue, for the set of
experiments conducted in this study, we intentionally balanced the dataset to have an equal
number of instances among all classes. Table 18 summarizes classifiers’ performance on 10%
test data. The results are obtained using the BILSTM + FastText classifier on the imbalanced
dataset for the multiclass emotion classification task. Observe that the dataset has an unequal
distribution of emotions. Furthermore, the Joy emotion class has a larger number of instances
compared to other emotion classes, thus, as a consequence, the classifier exhibits bias towards
the majority class. More precisely, the performance given in terms of the F1 score for the
Joy emotion class is much higher (63.58%) compared to other emotion classes, but poor
performance can be seen in the other two emotions (i.e., sadness and surprise), especially on
the minority class where the F1 score achieved is 20.23%. The difference in the weighted

—8—BilSTM —8—LR —@—LinearSVC —0—BilSTM —8—LR —@—LinearSVC
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Fig.5 F1 score of the best-performing deep learning model with varied sizes of training data for (a) sentiment
and (b) emotion classification
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Table 18 Precisiqn, Recall, and Class P(%) R (%) F1 (%) # of instances
F1 score for emotion
classification on the imbalanced Anger 46.54 44.46 45.48 211,119
dataset Disgust 3924 33.60 36.20 218,027
Fear 40.77 31.24 35.37 232,209
Joy 53.18 79.04 63.58 636,382
Sadness 41.32 27.62 33.11 245,630
Surprise 38.05 13.77 20.23 208,317
Weight avg 45.54 47.91 44.82 1,751,684

average for the Precision and F1 score (Precision: 47.91% and F1 score: 44.82%) shown in
Table 18 is a result of the class imbalance.

Table 19 summarizes classifiers’ performance on 10% test data. The results are obtained
using the BiLSTM + FastText classifier on the emotion-balanced dataset for the multiclass
emotion classification task. The dataset used here is balanced, we randomly selected 2 million
tweets for each emotion category from the original D1 dataset. As mentioned in the previous
paragraph, here there is almost no difference between the weighted average of the precision
and F1 score.

Tables 20 and 21 summarize classifiers’ performance on imbalanced and well-balanced
datasets for the sentiment polarity classification task. As can be seen from the right-most
column in Table 20 (# of instances) the dataset has an unequal distribution of sentiment
polarity classes. Furthermore, the negative class has a larger number of instances compared
to positive classes, thus, as a consequence, the classifier exhibits bias towards the majority
class. The difference in class-wise performance is around 14 percentage points with regard
to the F1 score.

Table 21 summarizes classifiers’ performance on 10% test data. The results are obtained
using the BILSTM + FastText classifier on the sentiment-balanced dataset for the sentiment
classification task. The dataset used here is almost equally balanced after removing tweets
belonging to the disgust and surprise emotion classes. As can be seen, here there is almost
no difference between the weighted average of the Precision and F1 score.

Table 19 Precisiqn, Recall, and Class P (%) R (%) F1 (%) # of instances
F1 score for emotion
classification on the balanced Anger 47.92 4937 48.63 199,823
dataset Disgust 39.32 47.55 43.04 199,882
Fear 39.90 42.50 41.16 200,594
Joy 42.66 44.05 43.34 200,220
Sadness 41.74 35.06 38.11 199,790
Surprise 36.14 29.70 32.61 199,691
Weight avg 41.28 41.38 41.33 1,200,000
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Table 20 Precision, Recall, and

. Class P(%) R (%) F1 (%) # of instances
F1 score for sentiment
classification on the imbalanced Negative 73.91 81.13 77.35 905.841
dataset ’
atase Positive 6887  59.32 63.74 637,568
Weight avg 71.83 72.12 71.73 1,543,409

6 Discussion

Returning to the research questions (RQs) posed at the beginning of this study, we can now
affirm that it is possible to automatically create a large-scale dataset with emotion labels (i.e.,
emotions-indicative emojis) for sentiment polarity and emotion classification tasks. This
approach demonstrates several advantages, as outlined below.

e RQ1: The emotion-indicative emojis in tweets are provided by the tweet’s author, which
is more natural and reliable as they represent the author’s intended interpretation or
emotional state, in contrast with emotion labels of other datasets given by a few annotators.
In addition to that, another function of emojis could also be to emphasize or strengthen
the emotion or sentiment conveyed by a message. Moreover, emojis can serve as explicit
sentiment markers. In contrast, manually annotated datasets generally are expensive, in
terms of time and money, which greatly limits the size of training data. Furthermore,
manual annotation is often inefficient and error-prone as detecting emotions in tweets
can be difficult even for humans.

e RQ2a: The size of the training data has a substantial effect on the performance of deep
neural networks, which tend to require very large amounts of training data. On the other
hand, it can provide comprehensive coverage of emotional moments in our daily lives.
Based on our experiments with different sizes of training data (randomly sampled from
our dataset), we demonstrated that by training deep neural networks with more data, their
performance continues to improve for both sentiment polarity and emotion recognition
tasks.

e RQ2b: Regarding the class imbalance issue, it is characteristic of almost all real-world
datasets, and our dataset makes no exception. The number of emojis that belong to
the joy emotion class is larger compared to the emojis used to query other emotion
classes. As a result, we got a larger number of tweets for the joy class compared to
other classes. As a consequence, the performance obtained from our experiments with
the imbalanced dataset was biased by the high proportion of the dominant class (joy
class). To overcome the imbalance problem, for the set of experiments conducted in this
study, we intentionally balanced the dataset by randomly selecting an equal number of
instances among all classes.

e RQ3: We demonstrated that pre-trained word embeddings such as Glove, Glove Twitter,
and FastText have a substantial impact on the performance of deep neural networks.

Table 21 Precisipn, Recall, and Class P(%) R (%) F1 (%) # of instances

F1 score for sentiment

classiﬁcation balanced dataset Negative 72.27 71 36 71.81 688 204
Positive 69.48 70.43 69.95 637,167
Weight avg 70.93 70.91 70.92 1,325,371
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Specifically, the findings reveal that BILSTM with FastText pre-trained word embeddings
and an attention layer provided the best performance on our dataset for sentiment polarity
and emotion classification tasks, with an F1 score of 70.92% for sentiment and 54.85%
for multiclass emotion classification (anger, fear, joy, and sadness). However, regarding
the attention mechanism, the findings revealed that it has no (or less) impact on the
performance of our models for sentiment and emotion classification tasks.

However, the study examines further possible improvements with regard to the quality of
the collected data (tweets) along the following lines.

e (i) Because of the very large size of the dataset, we were not able to manually verify
all the emotion tweets, and it is known that data obtained by distant supervision is often
noisy. We should further investigate applying some heuristics to remove irrelevant tweets
and incorrect annotations.

e (ii) Our newly created dataset does not contain tweets with neutral labels, which is a
common problem faced by automatically collecting training data for emotion analysis,
as there are tweets (text) that convey no emotion. We should further investigate to find a
solution to automatically identify collected neutral tweets.

e (iii) The dataset collected in its original form is imbalanced. The number of emojis that
convey joy emotion is a few times larger compared to the number of emojis for other
emotion classes. To have a well-balanced dataset, one possible way is to design a more
efficient collection approach that concentrates much more on collecting tweets from
minority classes.

Regarding the performance of the classifiers, based on the experimental results, deep neural
networks (1D-CNN, LSTM, GRU, BiLSTM, and CNN_BIiLSTM) and transformer-based
(BERT and RoBERTa) models generally outperform conventional machine learning models
(NB, LR, Linear SVC, DT, and ADB). This advantage can be attributed to the capabilities of
deep neural networks and transformer-based models to learn multiple layers of representa-
tions (multiple feature learning) that improve data mining results and classification modeling
(Bengio et al., 2013, 2009).

It is worth mentioning that the performance of all the deep learning models utilized in
this study is improved using pre-trained word embeddings such as Glove, Glove Twitter, and
FastText, but there was no (or less) improvement in using the attention mechanism.

Despite the better classification performance that deep neural networks and transformer-
based models offered on our sentiment and emotion classification task, there are still certain
benefits of using conventional machine learning models for these tasks. Other benefits of using
these models include being easier to implement, generally requiring less data for training,
and being financially and computationally cheap as they can run on legacy CPUs.

These findings suggest that in general, the results are inspiring given the fact that the
tweets are characterized by several challenges when it comes to automatic natural language
processing tasks including sentiment and emotion analysis. These challenges include both
technical and linguistic-related aspects such as short texts originally restricted to 140 char-
acters (extended to 280 characters from Nov. 2017), creative uses of language (sarcasm,
irony, humor, and metaphor), terms not seen in dictionaries, including misspellings, cre-
atively spelled words, hashtagged words, emoticons, and abbreviations, etc., and many of
these terms convey emotions (Mohammad, 2021).
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7 Conclusion

In this study, we explored the tasks of sentiment polarity and multiclass emotion classifi-
cation. We presented and evaluated the use of emotion-indicative emojis to automatically
label a large-scale dataset of tweets with basic categorical emotions they express based on
Ekman’s model. We created this extensive dataset by selectively collecting only English
tweets that contain emotion-indicative emojis and tagging each tweet using a distant super-
vision approach with emojis that are present in tweets for sentiment and emotion analysis
purposes.

Supervised conventional machine learning (NB, LR, Linear SVC, DT, and ADB), deep
neural networks (DNN, CNN, LSTM, GRU, BiLSTM, and hybrid CNN-BiLSTM), and
transformer-based (BERT and RoBERTa) models were used for both sentiment polarity and
emotion classification from users’ tweets on the created dataset.

The experimental results showed that BILSTM with FastText pre-trained word embed-
dings and an attention layer outperforms all other deep learning and conventional machine
learning-based models in our dataset for both sentiment polarity and emotion classification.
It yielded an F1 score of 70.92% for sentiment polarity classification and an F1 score of
54.85% for the multiclass emotion classification task.

In addition, we investigated the effect of pre-trained word embeddings such as Glove,
Glove Twitter, and FastText on deep neural networks. It has been demonstrated that for the
BiLSTM architecture, the FastText pre-trained word embeddings provide the best results for
the task of sentiment and emotion classification.

We also investigated the effect of increasing the size of training data for deep neural
networks and conventional machine learning. We demonstrated that for deep neural networks,
training them with more data, their performance continues to increase for both sentiment and
emotion classification tasks. These findings are in line with the results reported in Ng (2017).

Furthermore, we explored the effects of having multiple classes on classification perfor-
mance. The study has confirmed that multiclass classification is difficult and associated with
several challenges that dropped the accuracy from about 73% (weighted average for binary
classifications) to 41.4% (multiclass classification on six basic emotions). These results are
also in line with the findings presented in Bouazizi and Ohtsuki (2019). The findings demon-
strate that there is a strong correlation between emojis and emotion annotations in tweets and
our method used for automatic labeling was suitable for some emotions such as anger, fear,
joy, and sadness, but less able to distinguish others such as surprise and disgust.

In future work, we will focus more on developing an efficient collection approach that
would address the class imbalance issue during the data collection phase. We will also focus
on introducing any heuristics or approach to further clean the dataset from irrelevant tweets
and introduce a neutral emotion class. Additionally, experimenting with any new and larger
deep learning architectures, and pre-trained word embedding models would be interesting to
further investigate in the future. Furthermore, experimenting with any unsupervised or weak
supervised learning paradigms would be of interest to explore in the future.
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