
Journal of Intelligent Information Systems
https://doi.org/10.1007/s10844-024-00841-4

RESEARCH

Data- & compute-efficient deviance mining via active
learning and fast ensembles

Francesco Folino1 · Gianluigi Folino1 ·Massimo Guarascio1 · Luigi Pontieri1

Received: 28 July 2023 / Revised: 1 November 2023 / Accepted: 10 January 2024
© The Author(s) 2024

Abstract
Detecting deviant traces in business process logs is crucial formodern organizations, given the
harmful impact of deviant behaviours (e.g., attacks or faults). However, training a Deviance
Prediction Model (DPM) by solely using supervised learning methods is impractical in sce-
narios where only few examples are labelled. To address this challenge, we propose an
Active-Learning-based approach that leverages multiple DPMs and a temporal ensembling
method that can train and merge them in a few training epochs. Our method needs expert
supervision only for a few unlabelled traces exhibiting high prediction uncertainty. Tests on
real data (of either complete or ongoing process instances) confirm the effectiveness of the
proposed approach.

Keywords Process deviance · Deep ensembles · Active learning · Green AI · XAI · Log
analysis

1 Introduction

(Process) Deviance mining (Folino & Pontieri, 2019) refers to the problem of detecting
and analyzing traces exhibiting “deviant” behaviors in a process log. This problem received
increasing attention recently, as deviant executions (e.g., linked to faults, attacks or frauds)
can impact seriously on business process quality. For example, deviance mining techniques

Francesco Folino, Gianluigi Folino, Massimo Guarascio, and Luigi Pontieri contributed equally to this work.

B Luigi Pontieri
luigi.pontieri@icar.cnr.it

Francesco Folino
francesco.folino@icar.cnr.it

Gianluigi Folino
gianluigi.folino@icar.cnr.it

Massimo Guarascio
massimo.guarascio@icar.cnr.it

1 ICAR, CNR, Via P. Bucci 8-9C, Rende 87036, CS, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-024-00841-4&domain=pdf

Journal of Intelligent Information Systems

can be used to discover malicious behaviours in container logs, linked to hidden malware
and/or covert attacks.

Most existing solutions (e.g., (Bose & van der Aalst, 2013; Nguyen et al., 2014; Lo
et al., 2009; Cuzzocrea et al., 2016b; Folino et al., 2013)) reuse Machine Learning (ML)
methods to train aDeviance PredictionModel (DPM), i.e., a classifier discriminating deviant
traces from normal ones, on propositional trace representations derived by extracting relevant
behavioural patterns from the traces and using them as data features. Notably, such a pattern-
based approach allows for dealing with interpretable data representations, which will turn
helpful when trying to explain/justify the predictions that the discovered DPMmakes on new
traces. In particular, Bose& van der Aalst (2013); Nguyen et al. (2014) showed the advantage
of mixing up different pattern families for the sake of higher expressivity, while Cuzzocrea
et al. (2016b) proposed to train an ensemble of DPMs via a multi-view learning strategy,
where each DPM is induced from a distinct pattern-based view of the training data.

Starting from empirical evidence of the superiority of deep models w.r.t. shallowML ones
in predictive process mining tasks, the approach in Cuzzocrea et al. (2016b) was recently
enhanced in Folino et al. (2020) by using Deep Neural Networks (DNNs) to implement the
base DPMs of the ensemble and different combination functions. Notably, instead of training
an NN model with a sequence-oriented architecture (like Recurrent and Transformer-based
NNs), for the sake of explainability, efficiency and generalization, also Folino et al. (2020)
keeps on using a (pattern-based) flat representation of the traces to train a simpler MLP-like
classifier.

Small training data problem, active learning for DPM discovery and open issues As
noted in Cuzzocrea et al. (2016b), in many real-life deviance mining scenarios, a small
fraction of log traces have a known deviance-class label, as labelling a process instance
as either deviant or normal is time-consuming and costly. Notably, such scenarios can be
addressed effectively and efficiently by leveraging an Active Learning (AL) approach (Ren
et al., 2021), where human experts are put in the learning loop by repeatedly asking them to
inspect and label few unlabelled log traces (chosen based on prediction uncertainty) to help
improve the current DPM.

Example 1 (running example) Consider a hospital process for handling gynecologic patients,
like that originating the dataset BPIdM16 used in the tests of Section 6. Detecting patients
suffering from relatively rare cancer-related diseases can be regarded as a special kind of
supervised deviance mining task, which can be addressed by leveraging a powerful (deep)
DPM trained on labelled patient traces. However, few labelled patient traces are usually avail-
able in such a scenario, so that the resultingDPMmaywell deemhealthy individuals as at-risk
and overlook critical cases. Having skilled physiciansmanually label large amounts of patient
traces is impractical because of the limited availability and high costs of such specialized
staff. More efficiently, one can exploit an human-in-the-loop AL-based training approach,
where only few unlabeled cases are passed to the expert, in order to be labelled.Whenever re-
trained over the collection of examples augmented this way, the DPM is expected to improve
progressively, and eventually reach satisfactory accuracy performances.

However, adapting AL strategies to discover deep DPMs poses some critical issues. First,
as the class-membership probabilities returned by such classifiers are not calibrated, selecting
the examples to label based on (uncertainty scores derived from) these probabilities may
performworse than random sampling (Ren et al., 2021). On the other hand, though reasonable
uncertainty estimates can be obtained with Bayesian DNNs or DNN ensembles, such models

123

Journal of Intelligent Information Systems

are far more costly to train and apply (Ren et al., 2021), and less suitable for interactive AL
settings.

Anyway, deep models need to be trained with large amounts of (labelled or unlabelled)
example data, whichmay not be available in several real-life contexts, especially in Green-AI
applications where restrictions to data accesses and data processing operations hold (Adadi,
2021). Thus, the DNN architecture and training method must be devised carefully to reduce
the risk of obtaining an under/over-fitted DPM when using a relatively small amount of
training data.

Contribution In light of the considerations above, a novel approach to the DPM discovery
problem is addressed here, in both offline and online settings (i.e. for completed and running
process instances, respectively), which leverages a synergistic combination of ad hoc (data
efficient) Active Learning and (Fast) Ensemble Learning schemes, in order to compensate for
the scarcity and approximated representation of the training sample by exploiting a carefully
devised discovery approach.

This paper extends the work presented in Folino et al. (2022) to a substantial extent. Some
major technical features of our proposal are:

1. All the base DPMs are devised to ingest propositional trace representations obtained
with interpretable and compact trace encoding schemes (see Section 2), including two of
those used in Cuzzocrea et al. (2016b); Folino et al. (2020); Bose & van der Aalst (2013);
Nguyen et al. (2014) to curb the feature sparsity and heterogeneity and the computational
costs.

2. For the sake of efficiency and feasibility in anAL-oriented setting, we discover an approx-
imatedDPMensemble via a fast temporal ensemble-learning strategy (Huang et al., 2017)
(see Section 5) that finds diverse deep DPMs in as many training epochs as those needed
to optimize a single DNN of the same structure and use non-trainable functions to fuse
the base DPMs’ predictions; to ensure repeated rapid convergence to good local optima,
we employ a cyclic learning-rate schedule and a DNN architecture with both dropout
and residual-like components (see Section 5.2). Then, the unlabeled instances to pass to
the expert are chosen according to their prediction uncertainty, estimated based on how
the base DPMs probabilistically classified them (see Section 5).

3. In thiswork,we have also explored the usage of Soup ensembles (based on fusingmultiple
snapshot-like instances of a DNN in the parameter space, rather than on combining their
output) (Neyshabur et al., 2020). Applying such a model takes the same costs, in terms
of both memory and FLOPs, as a single DNN instance, while training it requires less
memory than training a snapshot ensemble like those discovered inFolino et al. (2022).As
confirmed by test evidence, the resulting condensed DPMmanages to achieve nearly the
same prediction performances as the DPM ensemble it was derived from, while reducing
the computation cost of inference steps of a factor equal to the number of snapshots (i.e.,
of base DPMs).

Experiments conducted on real-life log data (Section 6) showed that this approach yields
compelling accuracy results at the cost of reasonable efforts by the experts, even if compared
to the results that (computationallymore costly) state-of-the-art methods obtained in the ideal
unlikely scenario where all log traces are labelled. This confirms its ability to effectively deal
with a challenging mix of data/energy efficiency, accuracy and explainability requirements
that will likely arise in the near future across many application contexts. The potential useful-
ness of the proposed approach in the healthcare scenario of our running example is provided
below.

123

Journal of Intelligent Information Systems

Example 2 (contd.) Assume that the AL-based framework proposed here is deployed in the
deviance mining scenario of Example 1 having some expert physicians to revise the class
labels of 20 process instances (selected as the unlabelled ones getting the 20 most uncertain
predictions from the DPM ensemble) every two days along a 6-day period. This operational
setting was simulated in the tests that we performed on dataset BPIdM16 to validate the
proposed approach (see Section 6.3). Interestingly, the accuracy achievements obtained in
this tests were quite satisfactory, at the cost of quite a light burden for the experts (a total of
60 instances to label in 6 days) and relatively small computational cost in terms of both time
(3 training sessions of just 32 epochs each) and memory (when using the Soup ensemble
mode, the size of the entire ensemble is the same as those of one base model). Note that
the labeling task performed by the expert can be eased and sped up by providing her with
easy-to-interpret post-hoc explanations (like those reported in Section 6.5) for the predictions
that the DPM ensemble suggests for the instances she is asked to label.

Organization The rest of the paper is structured as follows. Section 2 introduces a number
of basic concepts (including trace encoding and scalable deep ensembles). The problem of
discovering aDPM is stated in Section 3, for both online and offline deviancemining settings.
Section 4 offers an overview of major ML/DL approaches to deviance mining. Section 5
illustrates our AL-based approach to induce an ensemble of deep DPMs. Experiments on
real-life log data are discussed in Section 6, while concluding remark and feature research
directions are drawn in Section 7.

2 Background

Process events, traces and logs As usually done in Deviance Mining, we assume that, for
every execution instance of the process under analysis (a.k.a. process instance), a distin-
guished trace is stored, which consists of a (temporally ordered) sequence of events, plus
several instance-level attributes that do not vary along a process execution. Each event is a
tuple storing the activity that was executed correspondingly to the event and possibly more
information (e.g., the executor, data parameters). At run time, during the unfolding of a pro-
cess instance, a partial trace is recorded for it, storing the sequence of processing events
stored so far for the process instance. Such a trace is called a prefix trace and represents a
sort of pre-mortem log data.

Essentially, in this work, we want to devise a process mining approach to the discovery
of a Deviance Prediction Model (DPM), which can support the analyst in deciding on the
deviant nature of a process instance, based on its associated trace –be it the complete trace
of a fully executed instance (offline deviance prediction) or the prefix trace (online deviance
prediction) of a running instance. This problem was often addressed in the literature by
employing propositional log encoding instead of directly dealing with event sequences, in
order to reuse standard ML solutions, or for the sake of efficiency and explainability. Some
of the proposed encodings are described below, before defining the problem setting more
precisely.

Propositional trace encodings In many previous approaches to the discovery of a
DPM (Bose & van der Aalst, 2013; Nguyen et al., 2014; Lo et al., 2009; Cuzzocrea et al.,
2016b), all focusing on the offline setting, e traces are turned into symbolic sequences (usu-
ally by abstracting each event into its associated activity label), before extracting a number

123

Journal of Intelligent Information Systems

of sequential patterns from these symbolic sequences and then using them as features to
build up a fixed-length encoding of the traces. Different kinds of patterns have been used to
this end so far: individual activity patterns, discriminative pattern, and several pattern types
borrowed from bio-informatics (e.g., tandem/maximal repeats and their alphabet-abstracted
versions).

Specifically, Individual activity (IA) (Suriadi et al., 2013) patterns just correspond to
regarding every activity label a as a distinct feature (sort of “singleton” execution pattern)
for any trace τ , and use this feature to store how many times a occurs in τ . Discriminative
patterns (DP) (Lo et al., 2009) are frequent, closed, possibly non-contiguous sub-sequences
of activity labels aimed at capturing behaviours that repeatedly occur in either a trace or
multiple ones. DP patterns can be found efficiently using the CLIPPER algorithm of Lo et al.
(2009), which computes frequent candidates via an a-priori-like computation and then returns
the most discriminative ones based on the Fischer score. Each DP pattern is eventually used
as a non-negative integer feature for any trace τ , storing how frequently the pattern occurs
in τ .

Multi-perspective trace encodingmethods have also been proposed in the literature, which
take into account other event attributes than the activity-related one, According to the empir-
ical study of Teinemaa et al. (2019) and subsequent ones, the so-called aggregation encoding
(AE) looks the best performing one among these.

This encoding generalizes the IA-based one by applying specific aggregation functions
to every event attribute, all over the trace steps, namely, the AVG and STD functions to
numerical attributes (e.g., duration) and the COUNT function to categorical ones (including
activity labels, as done for IA).

All the above-described encoding schemes can be easily extended to incorporate global
instance properties (case attributes).

Fast (Snapshot/SOUP) DNN ensembles An efficient method for learning an ensemble
of predictive DNN models (e.g., classifiers), named snapshot ensemble, was introduced
in Huang et al. (2017). The key idea behind this method is that using a cyclic learning
rate schedule, a model explores different regions of the loss landscape during training, poten-
tially finding different local optima in each cycle. Formally, given a training set D enriched
with the ground-truth-labeled instances in X (and a validation set DV AL), the DNN can be
trained in the required number e of epochs by making it converge to k local minima along its
optimization path: the model parameters obtained for each minimum are saved in the ensem-
ble as a separate base model of the ensemble. A cyclic learning rate schedule is combined
with a classic SGD scheme to ensure repeated rapid convergence.

The idea behind the SOUP ensembles draws inspiration from the insights presented in
Neyshabur et al. (2020). This research demonstrated that when multiple models are inde-
pendently fine-tuned based on an identical base model, they inherently operate within the
same loss landscape basin. Based on this premise, interpolating two solutions (i.e., linearly
combining their respective parameter weights) could conceivably position the result nearer
to the basin’s epicentre. The main advantage of a SOUPmodel is its ability to create a single-
model (robust and reliable) classifier by merging multiple models in the space of parameters.
This avoids the need to use additional memory or computational time during inference. The
simplest way to build such a SOUP is to compute the parameter weights of the resulting
model as the average of the corresponding ones in the original models of the ensemble. This
approach is known as uniform soup. Though more sophisticated merging techniques were
proposed, such as greedy soups and learned soup (Wortsman et al., 2022), we opt for the
uniform approach for the sake of efficiency.

123

Journal of Intelligent Information Systems

3 Problem statement: offline and online deviancemining

We here want to state the problem of discovering a DPMs from a collection of log traces, after
turning them into a propositional form. Given a training set D of propositionally-encoded
log traces, we assume that only the training instances in a subset DL ⊂ D are equipped with
a known class label in {deviant, normal}, while the remaining subset DU = D \ DL consists
of unlabeled instances.

As a preliminary step for the discovery/application of aDPM, each log trace (be it complete
or a prefix one) τ is assumed to have been turned into a fixed-length tuple −→τ = x1, . . . , xN ,
where each xi is either one the features that result from applying a trace encoding scheme
(e.g., one of the IA, DP and AE -based ones in Section 2) to τ or one of the constant
case attributes (encoded in one-hot, if categorical) in the τ . Denoting as X1, . . . , XN the
domains these features are defined on, we will refer to the universe of such data instances as
U = X1×X2× . . .×XN . Several such encoded-trace instances are assumed to be available,
logically partitioned into two subsets: a set DL of instances equipped with a deviance-class
label in {normal, deviant} and a set DU of unlabelled instances.

The problem of learning a DPM (for offline/online analyses) is stated below.

Definition 1 (Offline and online DPM discovery problem) Let D = DL ∪ DU be a given
sample of data instances representing different complete traces (resp., prefix traces) of a
process, such that DL and DU gather the labelled and unlabelled, respectively, instances in
D. Then, the offline (resp., online) deviance mining problem amounts to training, using DL

and DU , a Deviance Prediction Model (DPM) that can estimate, for any novel (feature-
encoded) trace τ , the probability that the process instance generating τ was (resp., will
eventually be) deviant.

As usual, the labelled example traces in DL can be provided as input to any existing supervised
deviance mining approach in the literature in order to extract a DPM. In order to also exploit
the data in DU and human expert’s supervision, we propose to approach the problems above
by using anActive Learning strategy, where a DPM trained on DL is improved incrementally,
by using additional labelled examples, obtainedbyhaving the expert label few (wisely chosen)
instances from DU . Specifically, we assume that two parameters characterize the effort that
the human expert is willing to provide over the time: the number m of active learning steps,
and the number b of instances that (s)he can manually label in each of these steps. We will
call b and bT = b × m the active learning budget and total budget, respectively.

4 Related work

Deviance mining in business processes has been commonly addressed in an offline (post-
mortem) prediction setting, where the traces to be classified (as either deviant or normal)
are all complete ones. Different solutions have been proposed in the literature, which can
be categorized into three groups: supervised, unsupervised, and hybrid deviance mining
approaches. For the sake of space, this section focuses on supervised approaches, which are
closest to our work, in that they also employ a supervised learning method to discover a
classification model for discriminating among “normal” and “deviant” traces, from a given
collection of labelled traces. The discovered model can be used to decide whether a novel
trace is deviant or not (deviance detection), while possibly trying to understand which trace
features help explain why a deviance has occurred (deviance explanation).

123

Journal of Intelligent Information Systems

Supervised deviance mining (for offline deviance analyses) A selection of supervised
approaches to deviance mining is reported in Table 1. A typical approach in classification-
based deviance mining employs a two-phase scheme: (1) a propositional encoding scheme is
employed to convert the traces into a vectorial form; (2) a classifier is induced from labelled
vectors of this form (where the label represents the deviance class), by using some machine
learning method. As mentioned in Section 2, some of the proposed encoding schemes rely on
extracting behavioural patterns from the given traces and use these patterns as distinguished
data features.

For instance, Suriadi et al. (2013) utilized an IA-based log encoding to train a decision
tree to discriminate and explain deviances defined as traces with excessively long durations.
Swinnen et al. (2012) proposed a semi-automatic deviation analysis method that mixes pro-
cess mining and association rule mining methods. Bose & van der Aalst (2013) concentrated
on the discovery of a binary classifier from traces encoded on the basis of alternative pat-
tern families (e.g., IA, TR, MR, SMR, NSMR, etc.), with deviances capturing fraudulent
or faulty cases. Focusing on the case of software trace failures, Lo et al. (2009) introduced
the concept of closed unique iterative patterns (IPs) as encoding features –from which one
can extract a subset of discriminative ones, named Discriminative Patterns (DP) in Nguyen
et al. (2014). Nguyen et al. (2014) proposed a comprehensive scheme unifying previous
pattern-based deviance mining works, which includes oversampling, pattern mining, pattern
selection, pattern-based log encoding, and classifier induction.

In addition to these, there are also multi-encoding hybrid methods that combine different
kinds of patterns and classifier-induction algorithms. These methods, such as the ensemble-
based one proposed by Cuzzocrea et al. (2015, 2016b), automatically discover and combine
different patterns and induction algorithms to create a robust model for deviance prediction.
Cuzzocrea et al. (2016a) combined a simplified version of this approach with a conceptual
event clustering method to extract payload-aware event abstractions automatically.

Table 1 Major supervised deviance mining approaches proposed in the literature

Task Strategy Reference

Detection, Explanation Classifier induction (IA patterns) Suriadi et al. (2013)

Detection, Explanation Classifier induction (SET patterns) Swinnen et al. (2012)

Detection, Explanation Classifier induction (non IP sequence
patterns)

Bose & van der Aalst (2013)

Detection, Explanation Classifier induction (iterative patterns
(IPs))

Lo et al. (2009)

Detection, Explanation Classifier induction (IA and sequence
patterns)

Nguyen et al. (2014)

Detection Classifier ensemble induction (IA and
sequence patterns)

Cuzzocrea et al. (2015)

Detection Classifier ensemble induction (IA and
sequence patterns)

Cuzzocrea et al. (2016b)

Detection Classifier ensemble induction
(“abstract” IA and sequence patterns)

Cuzzocrea et al. (2016a)

Explanation Subgroup Discovery Fani Sani et al. (2017)

Explanation Deviance-oriented Conceptual
Clustering

Folino et al. (2017)

123

Journal of Intelligent Information Systems

Other approaches within supervised deviance mining include the use of subgroup discov-
ery techniques (Atzmueller, 2015) and deviance-aware conceptual clustering. In particular,
Fani Sani et al. (2017) proposed to extract explanations from labelled traces by applying clas-
sic subgroup discovery techniques. This method identifies unusual trace subgroups regarding
class distribution, providing valuable insights into deviant behaviours. Folino et al. (2017)
adopted a different approach, focusing on a setting where intriguing self-explaining deviance
scenarios are to be extracted from training traces associated with numerical deviance indica-
tors.

Online deviance detection and predictive process monitoring To the best of our knowl-
edge, the problems of estimating whether a running process instance is deviant or not (or the
probability of it being deviant) has never been addressed explicitly as a predictive learning
task in the literature. In fact, in online settings, the anticipated prediction (forecast) of deviant
behaviours has been commonly faced via reasoning-based approaches, e.g., in the contexts
of security breach detection (Fazzinga et al., 2018) and of compliance monitoring (Ly et al.,
2015).

However, as noted by Rinderle-Ma & Winter (2022), forecasting whether a running pro-
cess instance will deviate from a compliance model/constraint has sometimes been faced as a
formof predicate/outcome prediction in the field ofPredictive ProcessMining (Di Francesco-
marino & Ghidini, 2022). In this field, several deep learning approaches were proposed of
late, based on feed-forward NNs and more expressive sequence-oriented DL (e.g., recurrent,
convolutional or transformer-based) architectures (Neu et al., 2022).

Compelling accuracy results were also obtained with multi-view learning schemes
(Pasquadibisceglie et al., 2021a; Cuzzocrea et al., 2016a). However, the higher expressiv-
ity of such DL models, compared to feed-forward neural networks applied to pattern-based
trace encodings are likely to pose more difficulty in obtaining reliable and understandable
explanations for the returned predictions.

5 The proposed AL-based framework

Our approach learns a (homogenous) ensemble of DNNs, all sharing the architecture pre-
sented in Section 5.2, which takes the form defined below.

Definition 2 (DPM Ensemble) A DPM EnsembleM over the universe U of data instances
(trace encodings) is a tuple of the form 〈M1, . . . , Mk, φ〉 for some k ∈ N \ {1}, such that:
(i) for each i ∈ [1..k], Mi : U → [0, 1] is a DNN model that maps any instance −→τ ∈
U to a “deviance score” Mi (

−→τ) estimating the probability that the −→τ corresponds to a
deviant process instance, and (ii) φ : [0, 1]k → [0, 1] is an aggregation operator that, for
any −→τ ∈ U , merges the predictions returned by M1, . . . , Mk for −→τ into an overall one
φ({M1(

−→τ), . . . , Mk(
−→τ)}). Hereinafter, we will call M1, . . . , Mk the base models ofM and

φ the combiner of M .

DPM variants: ensembling modes In our approach, five different ensembling modes can
be used to instantiate the structure and behaviour of the DPM ensemble, and give rise to five
different variants this (abstract) class of prediction models.

Three of these modes apply to the standard case where the ensemble actually includes
multiple base models and allow for choosing among three different aggregation functions:

123

Journal of Intelligent Information Systems

the maximum (mode MAX), average (mode AVG) and median (mode MEDIAN). Notably,
these fixed combination functions are a faster (and more suitable for green-aware and Active
Learning settings) alternative to the trainable combiners of Cuzzocrea et al. (2016b); Folino
et al. (2020).

A further ensembling mode, SOUP, is devised to build a single-DNN DPM (i.e., a DPM
ensemble consisting of one model) by merging multiple base DPMs in the space of model
parameters (see Section 2). This allows for having just one DNN (of the same form as the
base DPMs) enjoying ensemble-like prediction abilities.

The last ensembling mode, NONE, serves the purpose of training a single base DPM,
using no ensemble learning strategy at all. Clearly, when using ensembling modes SOUP and
NONE, the role of the aggregation function gets immaterial, for there are not multiple base
models to combine.

5.1 Learning algorithm

Algorithm 1 illustrates, in the form of pseudo-code, our Active Learning (AL) approach
to the discovery of a DPM ensemble of the forms introduced in the previous subsection.
The algorithm assumes that a human expert (or a group of experts) is available to provide
supervision for updating the current DPM ensemble, by labeling a batch b of unlabeled data
instances for a number m of times. If wanting to deal with a stream-like DU , one can set
m = ∞ and use the current version of M at any moment without waiting for the end of the
algorithm.

A first version of the DPM ensemble is built by looking only at the given set in DL

of labelled data instances by leveraging a fast (“snapshot-based”) approximated ensemble-
learning procedure, denoted in the algorithm as train_ensemble. To improve this DPM
ensemble, limited feedback is acquired from experts, who are asked to iteratively analyze
and label a small number (controlled by parameter b, named from now on the expert budget)
of instances selected from the given set DU of unlabelled instances. The choice is based on
prediction uncertainty scores (higher scores are preferred), in order to provide the learning

Algorithm 1 Lifecycle of a DPM ensemble model in our approach.

1: Requires: labelled data DL ⊆ U , unlabelled data DU ⊆ U , a human expert available to pro-
vide supervision in m ∈ N ∪ {∞} AL steps by labeling b ∈ N instances per step, ensembling
mode mode ∈ {MAX, AVG, MEDIAN, SOUP, NONE}, number k of base models (with k = 1 if
mode ∈ {SOUP,NONE}), number e ∈ N of training epochs, initial learning rate lr, validation percentage
val_perc;

2: Returns: a DPM ensembleM = 〈M1, . . . , Mk , φ〉 conforming to the ensembling mode specified through
parameter mode.

3: Split DL into training/validation sets DL
T R and DL

V AL s.t. |DL
V AL | = |DL | × val_perc/100;

4: M := train_ensemble(DL
T R , DL

V AL , k,mode, epochs);
5: for i = 1..m do
6: wait for condition (|DU | ≥ b and an expert is available for labelling) = true;
7: Choose subset X ⊆ DU of b tuples M was most uncertain on (based on (2) or (1))
8: DL

T R = DL
T R ∪ X ;

9: M ′ := train_ensemble(DL
T R , DL

V AL , k,mode, epochs);

10: if M ′ performs better than M over DL
V AL then // according to F1 scores

11: M := M ′;
12: end if
13: end for

123

Journal of Intelligent Information Systems

procedure with novel labelled examples as informative as possible —details on this respect
are given later on.

Procedure train_ensemble Abstracting from the trivial case of training just one base
model (ensemblingmodeNONE), this procedure follows the fast snapshot ensemble approach
inHuang et al. (2017) (see Section 2). Given the set DL

T R of labelled instances and a validation
set DL

V AL , we train a DNN of the form described in Section 5.2 in the required number e of
epochs, by making it converge to k local minima, named snapshots, along its optimization
path, and regarding the parameter weights found at each snapshot as (the configuration
of) a distinct base model. Precisely, the first base model M1 of the ensemble is randomly
initialized and trained for �e/k epochs with a variable learning rate η: η is initially set to
lr and then progressively lowered, from one epoch to the next, according to a shifted-cosine
schedule (Huang et al., 2017).

In particular, when using one of the ensembling modes MAX, AVG and MEDIAN, k
different snapshot models are computed and kept as different base models: for 1 < i ≤ k a
novel base model Mi is initialized with the same weights as Mi−1, and trained by setting η

again to lr, and eventually selecting for it the parameter configuration achieving the highest
F1 score on DL

V AL over the different training epochs.
A variant of this procedure is used for mode SOUP, as there is no need to store all the

snapshot models but only to compute the average of their respective parameter weights. Thus,
the final ensemble-likemodel is computed by averaging the snapshot-wise parameter weights
incrementally, using just the parameter weights at the current snapshot and the sum/average
of the parameter weights of all the previous snapshots.

Uncertainty estimation Let M = 〈M1, . . . , Mk, φ〉 be a DPM ensemble and x ∈ U be
any data instance representing some trace τ . Let pq(x) = Mq(x) be the prediction returned,
for x by the q-th model in the ensemble, and pM (x) = φ({Mi (x) | i ∈ [1..k]}) be the
prediction returned for x by the ensemble as a whole.

The total uncertainty affecting the ensemble prediction can be quantified as the entropy
score HM

tot (x) = −pM (x) × log pM (x) − (
1 − pM (x)

) × log
(
1 − pM (x)

)
.

This value sums up two components: an aleatoric (or irreducible) component HM
al (x) and

an epistemic one HM
ep (x), the latter of which could be possibly reduced by using further

training examples in the learning process.
The aleatoric uncertainty can be estimated as HM

al (x) ≈ 1
k

∑k
q=1 H

q(x), where Hq is
the entropy related to the prediction of each base model Mq , i.e.,

Hq (x) = −p(q)(x) × log p(q)(x) −
(
1 − p(q)(x)

)
× log

(
1 − p(q)(x)

)
(1)

The epistemic uncertainty involved in usingM to classify x is quantified as the difference
between the total and aleatoric entropies HM

ep ≈ HM
tot − HM

al , namely:

HM
ep ≈ −pM (x) × log pM (x) −

(
1 − pM (x)

)
× log

(
1 − pM (x)

)
− 1

k

k∑

q=1

Hq (x) (2)

Algorithm 1 uses the uncertainty score of (2) to choose the unlabelled data to give to the
expert when the DPM ensemble that is being built really consists of more than one base
models (i.e., mode ∈ {SOUP, NONE}). This strategy resembles the BALD criterion (Ren
et al., 2021), which prefers unlabelled instances that get more diverging predictions; though
the models in our ensembles are not trained truly independently, this approach is shown
effective in practice in our tests (Section 6).

123

Journal of Intelligent Information Systems

This equation cannot be used on singleton DPM ensembles (like those produced with the
SOUP ensembling mode). In this case, we just compute the total entropy of the sole model
in the ensemble, say Mq , by using (1). As to SOUP DPMs, we conjecture that this simple
approximate estimate somewhat captures the uncertainty in the set of DNNs it was derived
from. Anyway, we avoid using refined uncertainty estimationmethods like Bayesian dropout,
to keep our SOUP-based DPM ensembles as fast as possible (and suitable for online deviance
detection).

5.2 Base DNN architecture and loss function

The base classifiers in the proposed ensemble-based DPMmodel share the same architecture,
depicted on the left-hand side of Fig. 1. The architecture, including dropout and residual-like
modules, enables rapid convergence and high robustness to over/under-fitting a few training
examples.

In more detail, the architecture consists of the following stack of components: (i) an
input layer furnishing the propositional pattern-based encoding of any input trace; (ii) three
instances of a Residual Block sub-net (denoted in the figure as RB1, . . ., RB3), which consist
each of two instances of a Building-block sub-net linked one another by a skip connection
as shown in the right-hand side of Fig. 1; (iii) an output layer consisting of a single neuron
equipped with a sigmoid activation function, which eventually returns a deviance score in
[0,1]. Each building block is composed in its turn of three components: (i) a fully-connected
layer including 128 neurons with tanh activation functions, (ii) a batch-normalization layer
and (iii) a dropout layer with a dropout rate of 0.25.

Loss function A weighted variant of the Mean Absolute Error (MAE) is used as the loss
function for training the base DPM architecture, in order to deal with the case of unbal-
anced classes that frequently occurs deviance mining settings. The loss, which pays more
attention to the (rarer) training instances of the minority deviant class, is defined as follows:
loss(y(i), ỹ(i)) = 1

n

∑n
i=1 ‖y(i) − ỹ(i)‖ · weight(y(i)), where n is the number of instances

in the training set, y(i) and ỹ(i) are the real and predicted deviance score of the i-th instance,
and weight(y(i)) is the misclassification cost associated with the predicted class (i.e., the
deviant class if ỹ(i) > 0.5 or the normal one otherwise). By default, the costs are set to 1 and
2 for the normal and deviant classes, respectively.

Fig. 1 The DNN Architecture adopted for all base DPM models in our approach (left), and details on the
Residual Block (middle) and Building Block (right) sub-nets

123

Journal of Intelligent Information Systems

6 Experimental evaluation

In this section, we test the capability of our ensemble-based strategies, which leverage an
active learning (AL) strategy, to enhance their effectiveness in identifying deviant behaviours.
This examination is performed in two distinct experimental scenarios: (1) an offline setting
focused on the analysis of deviances in post-mortem log data; and (2) an online (early pre-
diction) setting wherein we attempt to forecast the deviance of a trace during its unfolding.
In both scenarios, we evaluate our solutions against a non-ensemble method and various
ensemble strategies prevalent in the current literature. This comparative analysis is designed
to highlight the benefits of our AL-centric approach within the context of real-world appli-
cations.

6.1 Datasets

Logs used for offline deviance mining tests As done in previous studies (Cuzzocrea
et al., 2016b; Nguyen et al., 2014), we used a real-life log from a Dutch hospital (van
Dongen, 2011), consisting of 1,142 traces, 150,291 events and 624 activities. Each trace stores
the activities (treatments/tests) performed on gynecology patients and several case/event
attributes. Case attributes include Diagnosis, Diagnosis code, Treatment code
and Age, while event attributes include Activity code, Specialism code, and
Group. Two derived case attributes (i.e. the case duration and number of trace events) were
added to each trace.

Following the same classification criteria as in the studies above, we generated two
datasets, dubbed BPIdM13 and BPIdM16. In these datasets, each trace was given a label,
either deviant (label = 1) if the diagnosis code was ‘M13’ or ‘M16’, respectively, or ’normal’
(label = 0) otherwise. Summary statistics of these datasets are shown in Table 2. Notably,
both datasets are class-imbalanced: 310 deviant traces vs 832 normal ones in BPIdM13, and
216 deviant traces vs 926 normal ones in BPIdM16.

In the traces of both datasets, we removed attributes (namely, Diagnosis, Diagnosis
code, Treatment code) that may disclose class label information and eventually con-
verted each trace into a tuple by concatenating the features produced for the former by the
AI and DP encodings (see Section 2).

Logs for online deviance mining The dataset (Mannhardt, 2016) used in this setting
registers a record of sepsis cases from a Dutch hospital from 2013-2015. The log stores
patients’ journey from their first interaction in the emergency room to their eventual hospital
discharge. Each trace in the dataset encodes the medical history of a patient undergo-
ing various medical procedures during their hospital stay. For the sake of privacy, the
information is anonymized. The dataset stores information on clinical procedures, diagnostic

Table 2 Summary statistics of used datasets

Dataset Setting #traces #deviant #regular Avg. len. Imbalanced

BPIdM13 offline 1,142 310 832 109 Yes

BPIdM16 offline 1,142 216 926 120 Yes

sepsis_cases_2 online 782 109 673 13 Yes

sepsis_cases_3 online 782 109 673 13 Yes

123

Journal of Intelligent Information Systems

tests (e.g., DiagnosticBlood, DiagnosticECG) and associated results, as well as
demographic and organizational data. We used the preprocessed versions of sepsis_cases_2
and sepsis_cases_3 logs made available in Pasquadibisceglie et al. (2021b). Some statistics
of these logs are shown in Table 2.

We leveraged prefixes up to specified lengths (13 for sepsis_cases_2 and 22 for
sepsis_cases_3) extracted from the original traces to train our predictive models. Each of
these prefixes was assigned a specific label. To label each prefix, we adhered to the same strat-
egy adopted byTeinemaa et al. (2019),where prefixeswere classified as eitherdeviant (label =
1) ornormal (label =0) basedon some labelling criterion. Specifically, in the sepsis_cases_2,
any trace (and all prefixes derived from it) was marked as deviant if the patient was eventually
admitted to the intensive care unit, regular otherwise. For sepsis_cases_3, a deviant label
was assigned to those traces corresponding to patients whose hospital discharge deviated
from the most common discharge protocol, referred to as ‘Release A’.

We employed the AE encoding from Section 2 to flatten each prefix trace.

6.2 Testbed

Experimental design We ran Algorithm 1 and tested it across various ensemble combina-
tion methods, with the number of Active Learning (AL) steps m varying from 0 to 8 –we did
not consider higher values of m because they were empirically found not to improve accu-
racy performance appreciably (see Fig. 2 and associated comments), yet entailing heavier
intervention from human experts. We set other parameters as follows: initial learning rate
lr = 0.001, number of training epochs e = 32, per-step AL budget b = 20, number of base
models k = 5, and validation set percentage val_perc = 10%.

In our simulated AL scenario, an expert is available for up to 8 days, with the capacity
to label b = 20 traces daily. This results in a maximum of bT = b × m = 160 samples.
The expert’s role was emulated using an oracle-like procedure by unveiling the ground-truth
labels of the selected b tuples.

We tested the algorithm with all possible ensembling modes, i.e., MAX, AVG, MEDIAN,
SOUP and NONE, the latter of which actually consists in training only one base DPM of the
form described in Section 5.2; hereinafter, these different configurations of the algorithmwill
be simply referred to as ensemble_max, ensemble_avg, ensemble_median, ensemble_soup
and single-model, respectively.

0 2 4 6 8
m

0%

20%

40%

60%

80%

100%

F
1 m

 /
F

1 8 (
%

)

ensemble_max
ensemble_avg
ensemble_median
ensemble_soup

0 2 4 6 8
m

0%

20%

40%

60%

80%

100%

F
1 m

 /
F

1 8 (
%

)

ensemble_max
ensemble_avg
ensemble_median
ensemble_soup

Fig. 2 Ratio between the F1’s gain obtained in the offline setting by our approach, using fixed budget of
b = 20, after m ∈ [0, . . . , 8] AL iterations and that obtained after 8 AL iterations on BPIdM13 (left) and
BPIdM16 (right)

123

Journal of Intelligent Information Systems

A train-test split for each dataset was executed by reserving a 20% sample DT EST of
instances to evaluate the models discovered by Algorithm 1 and its competitors. Specifi-
cally, a random selection method was used in the offline setting to split the BPIdM13 and
BPIdM16 datasets. In contrast, we adopted a temporal split for sepsis_cases_2 and
sepsis_cases_3 in the online setting, aligning with the experimental design of Teine-
maa et al. (2019) and Pasquadibisceglie et al. (2021b).

The remaining 80% of training instances were then randomly divided into two equally-
sized subsets. These were used to instantiate the sets DL and DU of Algorithm 1, with DU

serving as a set of instances with undisclosed (though in reality, hidden) class labels from
which samples could be extracted during the AL procedure.

Evaluation metrics The accuracy of all DPMs was evaluated by resorting to three well-
known metrics: AUC, G-Mean, and F1 score. Since our tests involved imbalanced data (cf.
Table 2), the G-Mean and F1 scores are especially relevant as they are better suited in the
case of uneven class distributions. In particular, in the following analysis, we will primarily
rely on the F1 as our metric of choice.

6.3 Quantitative results for offline deviance detection

In this section, we comprehensively analyze the results obtained in the offline experimen-
tal setting. In particular, Table 3 elucidates the performance on different metrics across
two datasets and several AL iterations under various ensembling modes. A picture of the
F1 gain achieved through our approach is shown in Fig. 2, which portrays its progression
across different AL steps compared to the final iteration. Table 4 presents a comparative
evaluation of our best-performing ensemble solutions, positioning them against a simplified
(non-ensemble-based) approach and several cutting-edge models from recent literature.

A few noteworthy trends become evident when examining the results in Table 3. The
first is that ensemble_soup typically stands out as a better option in the deviance prediction
task, especially when considering the F1 and G-Mean metrics, better suited for evaluating
imbalanced logs like the ones at hand. This is particularly evident in the BPIdM13 dataset.
In the same log, despite ensemble_max yields a marginally higher AUC , the increase over
ensemble_soup is merely +0.7%, underscoring the latter’s overall robustness.

Inspecting the BPIdM16 dataset, ensemble_soup still excels in F1 scores after all AL
steps (m > 0) and keeps pace with (or slightly lags behind) other ensemble modes in terms
of G-Mean and AUC scores.

Interestingly, ensemble_soup is not the only standout. Excluding ensemble_soup,
ensemble_avg merits special recognition for its consistent performance. Across various
AL iterations and datasets, it consistently achieves top-tier results, establishing it as another
reliable and effective strategy among other ensemble methods. However, the strength of
ensemble_soup extends beyond performance metrics alone. As Wortsman et al. (2022)
points out, ensemble_soup eliminates the need for maintaining and executing multiple con-
current models during the inference phase. This distinctive advantage reduces computational
and memory demands, strengthening the case for ensemble_soup as a compelling strategy
for this setting.

Regardless of the chosen ensembling mode, Table 3 showcases the effectiveness of our
AL strategy in enhancing an ensemble DPM model over time. Indeed, using the budget bT
to add into DL 160 properly selected traces from DU over eight AL iterations significantly

123

Journal of Intelligent Information Systems

Table 3 Results obtained, using fixed budget of b = 20, with different ensembling modes after varying
numbers of AL iterations (i.e., different settings of hyperparameter m in Algorithm 1). The extreme setting
m = 0 corresponds to using only the labelled data in the training set, with no actual AL iteration. Best results
in bold

m Model BP IdM13 BP IdM16
AUC G-Mean F1 AUC G-Mean F1

0 ensemble_max 0.818 0.716 0.581 0.862 0.729 0.490

ensemble_avg 0.803 0.689 0.548 0.877 0.791 0.579

ensemble_median 0.807 0.687 0.544 0.878 0.791 0.579

ensemble_soup 0.822 0.740 0.614 0.872 0.754 0.574

1 ensemble_max 0.813 0.723 0.586 0.877 0.759 0.526

ensemble_avg 0.823 0.752 0.619 0.877 0.791 0.579

ensemble_median 0.817 0.747 0.614 0.872 0.799 0.602

ensemble_soup 0.822 0.740 0.614 0.853 0.793 0.615

2 ensemble_max 0.813 0.723 0.586 0.884 0.769 0.548

ensemble_avg 0.823 0.752 0.619 0.888 0.795 0.621

ensemble_median 0.817 0.747 0.614 0.883 0.805 0.629

ensemble_soup 0.831 0.759 0.631 0.891 0.797 0.646

3 ensemble_max 0.854 0.745 0.617 0.884 0.769 0.548

ensemble_avg 0.823 0.752 0.619 0.888 0.795 0.621

ensemble_median 0.817 0.747 0.614 0.883 0.805 0.629

ensemble_soup 0.831 0.759 0.631 0.878 0.815 0.653

4 ensemble_max 0.854 0.745 0.617 0.900 0.814 0.636

ensemble_avg 0.823 0.752 0.619 0.899 0.810 0.660

ensemble_median 0.817 0.747 0.614 0.902 0.815 0.653

ensemble_soup 0.848 0.785 0.667 0.890 0.814 0.697

5 ensemble_max 0.854 0.745 0.617 0.900 0.814 0.636

ensemble_avg 0.823 0.752 0.619 0.899 0.810 0.660

ensemble_median 0.817 0.747 0.614 0.886 0.810 0.660

ensemble_soup 0.848 0.785 0.667 0.890 0.814 0.697

6 ensemble_max 0.854 0.745 0.617 0.900 0.814 0.636

ensemble_avg 0.823 0.752 0.619 0.899 0.810 0.660

ensemble_median 0.817 0.747 0.614 0.886 0.810 0.660

ensemble_soup 0.848 0.785 0.667 0.890 0.814 0.697

7 ensemble_max 0.854 0.745 0.617 0.887 0.830 0.643

ensemble_avg 0.838 0.757 0.634 0.888 0.837 0.673

ensemble_median 0.844 0.743 0.619 0.899 0.849 0.686

ensemble_soup 0.848 0.785 0.667 0.890 0.814 0.697

8 ensemble_max 0.854 0.745 0.617 0.887 0.830 0.643

ensemble_avg 0.838 0.757 0.634 0.887 0.832 0.680

ensemble_median 0.847 0.763 0.643 0.899 0.849 0.686

ensemble_soup 0.848 0.785 0.667 0.890 0.814 0.697

123

Journal of Intelligent Information Systems

Ta
bl
e
4

O
ffl
in
e
de
vi
an
ce

m
in
in
g:

co
m
pa
ri
ng

ou
r
to
p-
pe
rf
or
m
in
g
D
PM

en
se
m
bl
es
,e
ns
em

bl
e_
so
u
p
an
d
en

se
m
bl
e_
av

g
w
ith

th
e
si
ng
le
-m

od
el

in
tw
o
se
tti
ng
s:
(i
)
N
o-
A
L
,u

si
ng

on
ly

th
e
la
be
lle
d
da
ta
(m

=
0)
,a
nd

(i
i)
A
L
,w

he
re

a
nu

m
be
r
m

∈{
4,
8}

of
ac
tiv

e
le
ar
ni
ng

ite
ra
tio

ns
ar
e
pe
rf
or
m
ed

af
te
r
tr
ai
ni
ng

th
e
m
od

el
ov
er

th
e
la
be
lle

d
da
ta
on

ly
.A

s
a
te
rm

of
co
m
pa
ri
so
n,

th
e
re
su
lts

of
fu
lly

su
pe
rv
is
ed

(F
S)

st
at
e-
of
-t
he
-a
rt
m
et
ho
ds

ar
e
re
po
rt
ed

fo
r
th
e
id
ea
ls
ce
na
ri
o
w
he
re

th
e
de
vi
an
ce

la
be
ls
ar
e
di
sc
lo
se
d
fo
r
al
lt
he

lo
g
tr
ac
es

(i
.e
.,

D
U

=
∅a

nd
D

=
D
L
)

Se
tti
ng

M
od
el

B
PI

dM
13

B
PI

dM
16

A
U
C

G
-M

ea
n

F
1

A
U
C

G
-M

ea
n

F
1

N
o-
A
L

en
se
m
bl
e_
so
up

(m
=

0)
0.
82

2
0.
74

0
0.
61

4
0.
87

2
0.
75

4
0.
57

4

en
se
m
bl
e_
av
g
(m

=
0)

0.
80

3
0.
68

9
0.
54

8
0.
87

7
0.
79

1
0.
57

9

si
ng
le
-m

od
el

(m
=

0)
0.
80

4
0.
71

9
0.
59

3
0.
84

7
0.
81

3
0.
64

7

A
L

en
se
m
bl
e_
so
up

(m
=

4)
0.
84

8
0.
78

5
0.
66

7
0.
89

0
0.
81

4
0.
69

7

en
se
m
bl
e_
av
g
(m

=
4)

0.
82

3
0.
75

2
0.
61

9
0.
89

9
0.
81

0
0.
66

0

si
ng
le
-m

od
el

(m
=

4)
0.
83

1
0.
72

8
0.
60

6
0.
86

1
0.
80

2
0.
66

0

en
se
m
bl
e_
so
up

(m
=

8)
0.
84

8
0.
78

5
0.
66

7
0.
89

0
0.
81

4
0.
69

7

en
se
m
bl
e_
av
g
(m

=
8)

0.
83

8
0.
75

7
0.
63

4
0.
88

7
0.
83

2
0.
68

0

si
ng
le
-m

od
el

(m
=

8)
0.
80

0
0.
75

7
0.
63

0
0.
87

0
0.
82

0
0.
66

7

FS
H
O
-D

P
M
-m

in
e
(C
uz
zo
cr
ea

et
al
.,
20

16
b)

0.
84

1
0.
74

1
0.
63

3
0.
87

8
0.
77

8
0.
64

3

M
V
D
E
-S
ta
ck

(F
ol
in
o
et
al
.,
20

20
)

0.
87

8
0.
80

1
0.
67

5
0.
87

4
0.
81

5
0.
60

8

M
V
D
E
-M

a
x
(F
ol
in
o
et
al
.,
20

20
)

0.
86

4
0.
65

4
0.
56

6
0.
90

7
0.
66

8
0.
54

5

123

Journal of Intelligent Information Systems

improves the performance of the DPM ensemble models across all metrics and datasets.
Notably, when m = 8, ensemble_median shows an improvement in terms of AUC , G-
Mean, and F1 of approximately 5%, 11%, and 18% on the BPIdM13 dataset, and 2%, 7%,
and 18%on theBPIdM16 dataset if compared to the non-AL-enhanced settingm = 0. Similar
improvements are observed on theBPIdM16 dataset for the ensemble_avg, ensemble_soup,
and ensemble_max strategies —these latter ensemble strategies seem to benefit less from
the AL approach on BPIdM13.

Further insights on the effectiveness of the AL procedure can be drawn from Fig. 2,
which illustrates the ratio �F1m%/�F18% for m = 0, . . . , 8. This ratio represents the
performance difference (in terms of F1) between the DPM ensemble obtained after m AL
iterations and that at the last iteration. This figure helps us see that after just 3-4 AL iterations
(i.e., using half the expert budget bT = 160) all DPM ensembles perform nearly equivalently
to their respective fully-grown versions discovered after m = 8 AL steps. For example, on
dataset BPIdM13 (Fig. 2, left), if making the expert label only 60 or 80 traces (i.e. 13% or
18% of the traces in DU , respectively), ensemble_max and ensemble_soup would reach,
in 4 AL iterations, 100% of the F1 score obtained once exploited the full budget bT . The
ensemble_avg and ensemble_median modes reach 81% and 72% of the F1 value when
m = 8, respectively. Comparable results are seen with dataset BPIdM16 (Fig. 2, right).

Figure 3 highlights the relationship between the budget b used in the AL cycles and the
model’s predictive performance. The model’s predictive capabilities improve as b grows,
providing more instances for expert evaluation. This trend is reasonably expected, given that
strategic tuple selection enables training more accurate models. Anyway, the results achieved
with the (relatively low) default budget value of b = 20 are satisfactory enough and not so far
from those obtained when using twice that budget. This means that b = 20 can be regarded as
an option that ensures an acceptable trade-off between the accuracy and the practical usability
and sustainability of the approach. In fact, in real-world scenarios, there are limitations to how
many instances an expert can feasibly label. For example, while labelling 20 instances daily

5 10 20 30 40
0

0.2

0.4

0.6

0.8

1
F1 G-Mean AUC

Fig. 3 Trend of the three performance metrics (AUC, G-Mean, and F1) obtained by model ensemble_soup
when m = 8 across different settings of the budget hyperparameter b (namely, b = 5, 10, 20, 30, 40) on
dataset BPIdM16

123

Journal of Intelligent Information Systems

might be manageable, expecting an expert to label twice that amount becomes unrealistic.
This practical consideration is precisely why we have chosen a budget of b = 20.

Finally, as we look at Table 4, we find a comparison of results from our best-performing
ensemble models ensemble_soup and ensemble_avg (as discerned from Table 3) against
those obtained by the following DPM discovery methods: (1) a non-ensemble-based
approach, denoted as single-model, that consists in training (just one instance of) the base
DPM architecture of Section 5.2 against the labelled set DL at the m = 0, 4, 8 iterations of
the AL procedure encoded by Algorithm 1; and (2) three state-of-the-art multi-view ensem-
bling approaches, namely methodHO-DPM-mine (Cuzzocrea et al., 2016b) and two variants
of method MVDE (Folino et al., 2020), evaluated in an ideal fully-supervised (FS) scenario
where the class labels of all the instances in DL ∪ DU are exploited to train the DPM mod-
els. In contrast, ensemble_soup and ensemble_avg only use the labels associated with the
instances stored in DL and the few iteratively selected from DU during the AL procedure.

Interestingly, from Table 4, ensemble_soup shows remarkable consistency across all AL
stages and data scenarios. For instance, at the beginning stepm = 0, it surpasses single-model
(and ensemble_avg) in all metrics on the BPIdM13 dataset. Even though the simpler single-
model scores slightly higher on the BPIdM16 dataset at the same stage, ensemble_soup still
maintains solid performances. As m increases to 4 and 8, we observe performance enhance-
ments for both ensemble_soup and ensemble_avg across all metrics. This advancement is
notably more pronounced than that of single-model, highlighting the convenience of contin-
uing the AL procedure in our ensemble-based DPMs. By the final AL iteration at m = 8,
ensemble_avg shows minor improvements over ensemble_soup in the G-Mean score on
BPIdM16.

Overall, ensemble_soup and ensemble_avg typically deliver performance superior to
single-model across diverse data scenarios, while maintaining the same learning cost. In
addition, even amidst occasional fluctuations where ensemble_avg edges out, the overall
performances of ensemble_soup remain quite competitive by ensuring no additional com-
putational and memory overheads associated with snapshot-based ensemble models. These
performances make ensemble_soup a particularly appealing choice for the deviance predic-
tion task within an AL setting, especially when high-stakes efficiency requirements call to
be met.

The comparison with fully-supervised methods in Table 4 highlights the surprising com-
petitiveness of our ensemble methods. Indeed, at the end of the AL process, ensemble_soup
and ensemble_avgmanage to hold their ground and occasionally outperform these advanced
models. This advantage is notable on both BPIdM13 and BPIdM16 datasets when evaluated
with the important metrics G-Mean and F1 —the comparison in terms of AUC is, instead,
slightly less favourable.

Delving into specifics, ensemble_soup and ensemble_avg consistently outperformHO-
DPM-mine and MVDE-Max, but fall a bit short of MVDE-Stack on the BPIdM13 dataset.
However, it is worth highlighting that MVDE-Stack, besides being multi-view, employs a
trainable (thus,more complex and costlier) stacking-based function tomerge predictions from
all base models. In contrast, ensemble_soup merely amalgamates the weights of different
steps of the base DPM model to yield a single one, while ensemble_avg straightforwardly
averages the predictions of all DPM snapshots. These markedly more efficient approaches
empower them to balance performance and computational efficiency optimally. This bal-
ance becomes especially significant in scenarios where DPM ensembles require frequent
updates.

123

Journal of Intelligent Information Systems

6.4 Quantitative results for online deviance prediction

Table 5 seeks to examine the effectiveness of the ensemble_soup and ensemble_avg mod-
els, previously assessed in Table 4, when they cope with a predictive monitoring task, that
is significantly more demanding than offline deviance prediction. The focus here is to eval-
uate their ability to forecast whether an ongoing trace is deviant using two prefix datasets
extracted from the original sepsis_cases_2 and sepsis_cases_3 logs. Similarly to the offline
setting, the comparison involves the single-model within the AL context and other renowned
predictive models from existing literature in the FS context, including the ensemble-based
XGBoost and Random Forest models from Teinemaa et al. (2019) and the fuzzy model FOX
(Pasquadibisceglie et al., 2021b).

Examining Table 5, it is clear that ensemble_soup and ensemble_avg reap substantial
benefits from the AL process, generally exceeding that of the single-model. These models
display an upward performance trajectory as the AL iterations increase in both datasets. This
trend confirms the observed in the offline setting that AL strategy progressively enhances our
models’ predictive ability.

Looking deeper at case m=0, one sees that both ensemble_avg and ensemble_soup
beat single-model in all metrics on sepsis_cases_2, but ensemble_soup gets slightly worse
AUC and F1 scores on sepsis_cases_3 than single-model.

Comparing the ensemble models, ensemble_avg outperforms ensemble_soup in AUC
on sepsis_cases_2, whereas ensemble_soup excels in F1 on the same dataset. On
sepsis_cases_3, ensemble_avg leads over ensemble_soup in both thesemetrics. This land-
scape changes at m = 4. At this step, ensemble_avg surpasses both the single-model and
ensemble_soup in all performance measures on sepsis_cases_3 and in terms of G-Mean
and F1 on sepsis_cases_2. Conversely, ensemble_soup surpasses the single-model in all
metrics for sepsis_cases_2 but lags in G-Mean and F1 on sepsis_cases_3. At the last AL
step m = 8, both models’ performance plateau. Notably, ensemble_avg retains its advan-
tage over ensemble_soup and single-model, except for AUC on sepsis_cases_2 where
ensemble_soup leads. These results suggest that despite minor performance fluctuations,
both ensemble_avg and ensemble_soup consistently leverage the AL process to enhance
their predictive performance over time, with ensemble_avg stably surpassing the single-
model across all metrics and datasets, and ensemble_soup outperforming single-model in
sepsis_cases_2.

Considering the less favourable FS setting in Table 5, while ensemble_avg and
ensemble_soup do not achieve the highest metric values, they perform satisfactorily com-
pared to the competitors. For example, at the intermediate AL step m = 4, ensemble_avg
already surpasses both XGBoost and Random Forest in terms of F1 on sepsis_cases_2 and
significantly outperforms (+249%) them on sepsis_cases_3 in the same metric. In compari-
son, ensemble_soup holds a similar considerable gain on F1 on sepsis_cases_3 but yields
some ground on the same metric on sepsis_cases_2. Both ensemble models perform worse
than their competitors in the AUC measure.

ThoughXGBoost andRandomForest yield comparable, or slightly better, F1 scores in the
FS setting on sepsis_cases_2 and a more noticeable increase in AUC across both datasets,
achieving such performance typically requires using a substantial high number (sometimes
hundreds) of base learners. This highlights the efficiency of the learning strategy adopted in
ensemble_soup, which achieves good performances by combining only five base models
while reducing the computational and memory costs associated with traditional ensemble-
based learning approaches. This effectiveness-efficiency trade-off is relevant in an online
predictive context.

123

Journal of Intelligent Information Systems

Ta
bl
e
5

O
nl
in
e
de
vi
an
ce

m
in
in
g:

co
m
pa
ri
ng

ou
r
to
p-
pe
rf
or
m
in
g
D
PM

en
se
m
bl
es
,e
ns
em

bl
e_
so
u
p
an
d
en

se
m
bl
e_
av

g
w
ith

th
e
si
ng
le
-m

od
el

in
tw
o
se
tti
ng
s:
(i
)
N
o-
A
L
,u

si
ng

on
ly

th
e
la
be
le
d
da
ta
(m

=
0)
,a
nd

(i
i)
A
L
,w

he
re

a
nu

m
be
r
m

∈{
4,
8}

of
A
ct
iv
e
L
ea
rn
in
g
ite

ra
tio

ns
ar
e
pe
rf
or
m
ed

af
te
r
tr
ai
ni
ng

th
e
m
od

el
ov
er

th
e
la
be
lle

d
da
ta
on

ly
.A

s
a
te
rm

of
co
m
pa
ri
so
n,

th
e
re
su
lts

of
fu
lly

su
pe
rv
is
ed

(F
S)

st
at
e-
of
-t
he
-a
rt
m
et
ho
ds

ar
e
re
po
rt
ed

fo
r
th
e
id
ea
ls
ce
na
ri
o
w
he
re

th
e
de
vi
an
ce

la
be
ls
ar
e
di
sc
lo
se
d
fo
r
al
lt
he

lo
g
tr
ac
es

(i
.e
.,

D
U

=
∅a

nd
D

=
D
L
)

Se
tti
ng

M
od

el
se
ps
is
_c
as
es
_2

se
ps
is
_c
as
es
_3

A
U
C

G
-M

ea
n

F
1

A
U
C

G
-M

ea
n

F
1

N
o-
A
L

en
se
m
bl
e_
so
up

(m
=

0)
0.
70

3
0.
58

5
0.
31

8
0.
60

6
0.
45

8
0.
87

0

en
se
m
bl
e_
av
g
(m

=
0)

0.
74

1
0.
47

9
0.
31

1
0.
61

4
0.
43

3
0.
89

3

si
ng
le
-m

od
el

(m
=

0)
0.
56

0
0.
33

5
0.
16

4
0.
67

3
0.
46

1
0.
89

2

A
L

en
se
m
bl
e_
so
up

(m
=

4)
0.
72

6
0.
54

7
0.
33

6
0.
60

4
0.
40

6
0.
89

8

en
se
m
bl
e_
av
g
(m

=
4)

0.
70

7
0.
60

0
0.
41

5
0.
66

0
0.
46

7
0.
90

4

si
ng
le
-m

od
el

(m
=

4)
0.
68

8
0.
50

3
0.
33

1
0.
57

8
0.
44

1
0.
90

0

en
se
m
bl
e_
so
up

(m
=

8)
0.
72

6
0.
54

7
0.
33

6
0.
60

4
0.
40

6
0.
89

8

en
se
m
bl
e_
av
g
(m

=
8)

0.
70

7
0.
60

0
0.
41

5
0.
68

8
0.
47

6
0.
90

8

si
ng
le
-m

od
el

(m
=

8)
0.
68

8
0.
50

3
0.
33

1
0.
57

8
0.
44

1
0.
90

0

FS
X
G
B
oo

st
(T
ei
ne
m
aa

et
al
.,
20

19
)

0.
80

0
−

0.
40

0
0.
71

0
−

0.
21

0

R
an

d
om

F
or
es
t
(T
ei
ne
m
aa

et
al
.,
20

19
)

0.
76

0
−

0.
41

0
0.
70

0
−

0.
26

0

F
O
X
(P
as
qu
ad
ib
is
ce
gl
ie
et
al
.,
20

21
b)

0.
73

0
−

−
0.
68

0
−

−

123

Journal of Intelligent Information Systems

Comparing our ensemble models at the last AL iteration with FOX yields interesting
observations. The performance of ensemble_avg and ensemble_soup is indeed compara-
ble with that of FOX in terms of AUC , except for sepsis_cases_3, where ensemble_soup
scores lower. However, despite the renowned fuzzy models’ efficiency in terms of mem-
ory and computation, FOX comes with a considerable number of rules (Pasquadibisceglie
et al., 2021b) (729 and 81 for sepsis_cases_3 and sepsis_cases_2, respectively), causing
a computational overhead possibly offsetting its efficiency benefits when compared to our
ensemble models.

In predictive monitoring, a key property of a predictive model consists in its ability
to forecast outcomes at early stages accurately enough. To evaluate this property for the
DPMs discovered by our approach, we computed the average AUC score achieved by the
ensemble_soup variant of the approach (at its final AL iteration, i.e. m = 8) against differ-
ent sub-sets of the test traces of datasets sepsis_cases_2 and sepsis_cases_3, grouped by
prefix length. Figure 4 illustrates the progression of these AUC scores over varying prefix
lengths for both datasets.

For both datasets, theAUC trend is in linewithwhat expected: the score is acceptable (well
above 0.5) for short prefixes and tends to increase asmore information becomes available, i.e.,
as the prefix length gets longer than 5 or 10, respectively in the two cases. A performance peak
is reached at the 9th and the 13th execution steps for sepsis_cases_2 and sepsis_cases_3,
respectively. Then, beyond these steps, the AUC tends to slightly decline –a trend that looks
more pronounced on sepsis_cases_3.

At first glance, this may seem counter-intuitive, as longer prefixes are more informative.
Yet, similar AUC trends were seen in previous studies like Teinemaa et al. (2019). Notably,
the observed AUC dip for longer prefixes does not necessarily indicate a model’s flaw. In our
opinion, this decline can be attributed to a lack of large and homogeneous enough subsets of
prefixes with those higher lengths, since, as posited in Teinemaa et al. (2019), most of the
fully-grown traces are far shorter and predicting the outcome of their associated prefixes is
an easy task even if these prefixes consist of few events (but not so far from the last event of
the process instance).

6.5 Qualitative results: deviance prediction explanations

To help the user understand and critically analyze the factors that could have led a discovered
DPM (or DPM ensemble) to predict a test instance as deviant/normal, in the prototypal

5 10
Prefix length

0

0.2

0.4

0.6

0.8

AU
C

5 10 15 20
Prefix length

0

0.2

0.4

0.6

0.8

AU
C

Fig. 4 Average AUC scores, for varying prefix lengths, of the ensemble_soup models found (with m = 8)
for datasets sepsis_cases_2 (left) and sepsis_cases_3 (right)

123

Journal of Intelligent Information Systems

implementation of our approach, a public Python implementation of the post-hoc explanation
method LIME (Ribeiro et al., 2016) was integrated. Though different frameworks (e.g.,
SHAP and Grad-CAM) have been proposed in the literature to make interpretable black-box
models, LIME is adopted in our solution to limit the computational costs required to yield
the explanations.

Figure 5 shows an example of an explanation obtained with LIME about why traces are
deemed deviant by our ensemble model when applied to the dataset BP IdM16. Basically,
it seems that the prediction of deviance/normality is mainly concerned with specific values
of some event attributes in the family of “specialism code” (i.e., Specialism code,
Specialism code 1 and Specialism code 2), and with the presence/absence of
specific patterns (either IA or DP) in the data —all patterns (very long sets of attributes,
potentially) have been mapped, for the sake of readability, with an enumerated field (e.g.,
Field95, Field97 etc.) in the figure.

In particular, from Fig. 5 it emerges that the presence of value ‘7’ for the attribute
Specialism code as well as the absence of value ‘13’ (resp., ‘61’ and ‘13’) for the
attribute Specialism code 2 (resp., Specialism code 1) are all positively cor-
related with the prediction of deviance for the trace at hand. By contrast, the absence of
the value ‘7’ for the attribute Specialism code 1 and that of the pattern Field95
negatively correlates with the prediction of deviance for the same trace. Further explanation
artefacts and analyses are not reported here for lack of space.

Figure 6 is meant to summarize some insights derived from DPM ensemble’s predictions
on dataset BPIdM16. This chart emphasizes the features exhibiting the strongest positive and
negative correlations to the deviance class. For the sake of clarity, we here focus on the top
10 features per correlation direction.

As seen in Fig. 5, LIME’s strength mainly lies in its ability to offer local explanations.
It does so by attributing a relevance score to features that primarily impact the prediction
of a particular process trace. To roughly quantify the global impact of the data features, we
averaged the scores returned by LIME across all traces in the test set. This allowed us to
obtain a (sort-of) global relevance score for each feature, like those shown in Fig. 6. Based
on these aggregated results, the features playing as main prediction drivers include various
“specialism codes”, patients’ ages, and a series of attributes encapsulated within distinct
enumerated fields.

Fig. 5 An example of LIME local explanation of a prediction made (with a DPM ensemble) for a trace of
dataset BP IdM16

123

Journal of Intelligent Information Systems

Fig. 6 Data features with the strongest (positive or negative) global influence on the deviance class, according
to the DPM ensemble mined from dataset BPIdM16. Positive and negative influence scores are shown in blue
and red, respectively

7 Conclusion and future work

An AL-based framework for discovering a deep DPM was proposed. The approach employs
a temporal ensembling method for training multiple base DPMs (sharing a DNN architecture
featuring dropout and residual-like components) and fusing them according to different alter-
native strategies concerning either model outputs or model parameters. The latter option, in
particular, is exploited by the soup variant of the framework, which is meant to save memory
and compute costs. Test results obtained on real-life log data for both completed and ongo-
ing process instances demonstrate the method’s effectiveness, even compared to the results
obtained by state-of-the-art supervised algorithms in the ideal case where all the trace labels
are known.

Some limits of our work concern the lack of: (i) a deep analysis (e.g., based on a user
study) of the practical utility of the features’ impact scores found in the tests, and (ii) tests
performed with alternative trace encoding and uncertainty estimation methods. As to future
work, besides bridging these two gaps, we plan to: (1) study how the features’ impact changes
across different prefix lengths; (2) evaluate the framework on streaming logs; and (3) extend
it with data/model distillation capabilities.

Acknowledgements This work was partially supported by projects SERICS (PE00000014) and FAIR
(PE00000013) funded by the EU under the NGEU program (and the associated NRRP MUR Italian pro-
gram), and by project PINPOINT funded by Italian ministry MUR (grant no. B27G22000160001) under
program PRIN.

Author Contributions These authors contributed equally to all the different parts of this work.

Funding Open access funding provided by Consiglio Nazionale Delle Ricerche (CNR) within the CRUI-
CARE Agreement.

Data Availability The data are publicly accessible (see associated references).

Declarations

Ethical Approval Not applicable.

123

Journal of Intelligent Information Systems

Competing interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Adadi, A. (2021). A survey on data-efficient algorithms in big data era. Journal of Big Data, 8, 24.
Atzmueller, M. (2015). Subgroup discovery - advanced review.Wiley Intl Rev Data Min and Knowl Disc, 5(1),

35–49.
Bose, R. P. J. C., van der Aalst W.M. P. (2013) Discovering signature patterns from event logs. In: IEEE Symp.

on Comput. Intell. and Data Mining (CIDM’13), pp 111–118
Cuzzocrea, A., Folino, F., Guarascio, M., et al. (2015) A multi-view learning approach to the discovery of

deviant process instances. In: OTM Confederated Intl. Conf.s” On the Move to Meaningful Internet
Systems”, Springer, pp 146–165

Cuzzocrea, A., Folino, F., Guarascio M, et al. (2016a) A multi-view multi-dimensional ensemble learning
approach to mining business process deviances. In: 2016 Intl. Joint Conf. on Neural Networks (IJCNN),
pp 3809–3816

Cuzzocrea A, Folino F, Guarascio M, et al (2016b) A robust and versatile multi-view learning framework for
the detection of deviant business process instances. International Journal of Cooperative Information
Systems25(04):1740,003

Di Francescomarino, C., & Ghidini, C. (2022) Predictive process monitoring. Process Mining Handbook pp
320–346

Fani Sani, M., van der Aalst, W., Bolt, A., et al. (2017) Subgroup discovery in process mining. In: Busi-
ness Information Systems: 20th Intl. Conf., BIS 2017, Poznan, Poland, June 28–30, 2017, Proceedings,
Springer, p 237

Fazzinga, B., Flesca, S., Furfaro, F., et al. (2018). Online and offline classification of traces of event logs on
the basis of security risks. J Intell Inf Syst, 50(1), 195–230.

Folino, F., & Pontieri, L. (2019) Business process deviancemining. In:Encyclopedia of BigData Technologies.
Springer

Folino, F., Folino, G., Guarascio, M., et al. (2020) A multi-view ensemble of deep models for the detection of
deviant process instances. In: ECML-PKDD Worksh, pp 249–262

Folino, F., Folino, G., Guarascio, M., et al. (2022) Combining active learning and fast DNN ensembles for pro-
cess deviance discovery. In: Proc. of 26th Intl Symp. on Foundations of Intelligent Systems (ISMIS’22),
pp 346–356

Folino, F., Guarascio, M., Pontieri, L. (2017) A descriptive clustering approach to the analysis of quantita-
tive business-process deviances. In: Proceedings of the 32nd ACM SIGAPP Symposium on Applied
Computing (SAC’17), ACM, pp 765–770

Folino, F., Guarascio, M., & Pontieri, L. (2013). Context-aware predictions on business processes: An
ensemble-based solution. New Frontiers in Mining Complex Patterns (pp. 215–229). Berlin Heidelberg,
Berlin, Heidelberg: Springer.

Huang, G., Li, Y., Pleiss, G., et al. (2017) Snapshot ensembles: Train 1, get M for free. In: 5th International
Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference
Track Proceedings

Lo, D., Cheng, H., Han, J., et al. (2009) Classification of software behaviors for failure detection: A discrimi-
native pattern mining approach. In: Proc. of 15th Int. Conf. on Knowledge Discovery and Data Mining
(KDD’09), pp 557–566

Ly, L. T., Maggi, F. M., Montali, M., et al. (2015). Compliance monitoring in business processes: Functional-
ities, application, and tool-support. Information Systems, 54, 209–234.

Mannhardt, F. (2016). Sepsis cases - event log. https://doi.org/10.4121/UUID:915D2BFB-7E84-49AD-A286-
DC35F063A460

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4121/UUID:915D2BFB-7E84-49AD-A286-DC35F063A460
https://doi.org/10.4121/UUID:915D2BFB-7E84-49AD-A286-DC35F063A460

Journal of Intelligent Information Systems

Neu, D. A., Lahann, J., & Fettke, P. (2022). A systematic literature review on state-of-the-art deep learning
methods for process prediction. Artif Intell Rev, 55(2), 801–827.

Neyshabur, B., Sedghi, H., Zhang, C. (2020) What is being transferred in transfer learning? In: Advances in
Neural Information Processing Systems, pp 512–523

Nguyen, H., Dumas, M., Rosa, M. L., et al. (2014) Mining business process deviance: A quest for accuracy.
In: In Proc. of OTM 2014 Conferences, pp 436–445

Pasquadibisceglie, V., Appice, A., Castellano, G., et al. (2021). A multi-view deep learning approach for
predictive business process monitoring. IEEE Transactions on Services Computing, 15(4), 2382–2395.

Pasquadibisceglie V, Castellano G, Appice A, et al. (2021b) Fox: a neuro-fuzzy model for process outcome
prediction and explanation. In: 2021 3rd International Conference on Process Mining (ICPM), pp 112–
119

Ren, P., Xiao, Y., Chang, X., et al. (2021). A survey of deep active learning. ACMComputing Surveys (CSUR),
54(9), 1–40.

Ribeiro, M., Singh, S., Guestrin, C. (2016) “why should I trust you?”: Explaining the predictions of any
classifier. In: Proc. of 2016 Conf. of the North American Chapter of the Association for Computational
Linguistics: Demonstrations, pp 97–101

Rinderle-Ma, S.,&Winter,K. (2022). Predictive compliancemonitoring in process-aware information systems:
State of the art, functionalities, research directions. Inf Syst, 115(102), 210.

Suriadi S, WynnMT, Ouyang C, et al. (2013) Understanding process behaviours in a large insurance company
in australia: A case study. In: Proc of 25th Int. Conf. on Advanced Information Systems Engineering
(CAiSE’13), pp 449–464

Swinnen, J., Depaire, B., Jans, M. J., et al. (2012) A process deviation analysis–a case study. In: Proc. of Intl.
Conf. on Business Process Management, pp 87–98

Teinemaa, I., Dumas, M., La Rosa, M., et al. (2019). Outcome-oriented predictive process monitoring: Review
and benchmark. ACM Transactions on Knowledge Discovery from Data (TKDD), 13(2), 1–57.

van Dongen, B. (2011). Real-life event logs - hospital log. https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-
803b-0d1120ffcf54

Wortsman, M., Ilharco, G., Gadre, S. Y., et al. (2022) Model soups: averaging weights of multiple fine-
tuned models improves accuracy without increasing inference time. Proceedings of Machine Learning
Research, 162

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54
https://doi.org/10.4121/uuid:d9769f3d-0ab0-4fb8-803b-0d1120ffcf54

	Data- & compute-efficient deviance mining via active learning and fast ensembles
	Abstract
	1 Introduction
	2 Background
	3 Problem statement: offline and online deviance mining
	4 Related work
	5 The proposed AL-based framework
	5.1 Learning algorithm
	5.2 Base DNN architecture and loss function

	6 Experimental evaluation
	6.1 Datasets
	6.2 Testbed
	6.3 Quantitative results for offline deviance detection
	6.4 Quantitative results for online deviance prediction
	6.5 Qualitative results: deviance prediction explanations

	7 Conclusion and future work
	Acknowledgements
	References

