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Abstract
LatentOut is a recently introduced algorithm for unsupervised anomaly detection which
enhances latent space-based neural methods, namely (Variational)Autoencoders,GANomaly
and ANOGan architectures. The main idea behind it is to exploit both the latent space and the
baseline score of these architectures in order to provide a refined anomaly score performing
density estimation in the augmented latent-space/baseline-score feature space. In this paper
we investigate the performance of LatentOut acting as a one-class classifier and we exper-
iment the combination of LatentOut with GAAL architectures, a novel type of Generative
Adversarial Networks for unsupervised anomaly detection. Moreover, we show that the fea-
ture space induced by LatentOut has the characteristic to enhance the separation between
normal and anomalous data. Indeed, we prove that standard data mining outlier detection
methods perform better when applied on this novel augmented latent space rather than on
the original data space.

Keywords Anomaly detection · Variational autoencode · Generative adversarial network

1 Introduction

The Anomaly Detection task consists in isolating samples in a dataset that are suspected of
not being generated by the same distribution as the majority of the data.

Depending on the setting of the dataset, we can distinguish three different families ofmeth-
ods for Anomaly Detection (Chandola et al., 2009; Aggarwal, 2013). Supervised methods
consider a dataset whose items are labeled as normal and abnormal and build a classifier, typ-
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ically the dataset is highly unbalanced and the anomalies form a rare class. Semi-supervised
methods, also called one-class classifiers, take in input only examples from the normal class
and use them to train the detector. Unsupervised methods assign an anomaly score to each
object of the input dataset in order to find anomalies in it. There exist several statistical, data
mining and machine learning approaches to perform the task of detecting outliers, such as
statistical-based (Davies & Gather, 1993; Barnett & Lewis, 1994), distance-based (Knorr
et al., 2000; Angiulli & Pizzuti, 2002, 2005; Angiulli et al., 2006; Angiulli & Fassetti, 2009),
density-based (Breunig et al., 2000; Jin et al., 2001), reverse nearest neighbor-based (Hau-
tamäki et al., 2004; Radovanović et al., 2015; Angiulli, 2017, 2020), SVM-based (Schölkopf
et al., 2001; Tax & Duin, 2004), deep learning-based (Goodfellow et al., 2016; Chalapathy
& Chawla, 2019), and many others (Chandola et al., 2009; Aggarwal, 2013).

Among deep learning methods for anomaly detection the ones based on Autoencoders
(AE) and Variational Autoencoders (VAE) have shown good performance (Hawkins et al.,
2002; An & Cho, 2015; Chalapathy & Chawla, 2019). The standard application of these
architectures to the task of anomaly detection is based on the concept of reconstruction
error, that is a measure of the difference between the input and the reconstructed data, and
relies on the assumption that, since the majority of the data with which they are trained
belongs to the normal class, these network are able to reconstruct the inliers better than the
outliers.

In Angiulli et al. (2020, 2022) the authors state that this approach is too simplistic and
highlight the problem that these architectures generalize so well that they can also well
reconstruct anomalies (An & Cho, 2015; Kawachi et al., 2018; Sun et al., 2018; Chalapathy
& Chawla, 2019); in order to overcome this issue they introduce a novel approach, called
LatentOut , that is based on the joint use of both the latent space and the reconstruction error.
In particular, they define two different anomaly scores:

• �−score that is obtained as a k-nearest neighbor estimation on the feature space com-
posed by the latent space combined with the reconstruction error;

• ζ−score that consists in the difference of the reconstruction error of a certain point with
the mean of the reconstruction error of its k nearest neighbor in the latent space.

Moreover, they extend the application of LatentOut also to other architectures such as
GANomaly (Akcay et al., 2018) and ANOGan (Schlegl et al., 2017).

In this work the LatentOut paradigm is expanded toward three directions:

• We implement a version of LatentOut for the semi-supervised scenario, we adapt the
scores to this setting and perform experiments to show the performances of LatentOut . In
particular, we test the technique exploiting V AE and GANomaly as base architectures
since they are easily adaptable to work on semi-supervised scenarios.

• We consider two new architectures, MO − GAAL and SO − GAAL (Liu et al., 2020)
and we modify them in order to make LatentOut applicable. We test on these both the
original scores.

• We show that the feature space induced by LatentOut has the characteristic to enhance
the separation between normal and anomalous data. This is accomplished by generalizing
the approach of LatentOut in order to exploit other definitions of scores. Specifically, we
define novel scores by coupling the LatentOut strategy with some existing data mining
outlier detectionmethods.As an important result, experimental results highlight that these
novel variants of LatentOut are able to improve performances over the corresponding
base methods.

The rest of the paper is organized as follows: in Section 2 we discuss the related works, in
Section 3 we describe the instruments at the basis of our work and present the contributions
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in the three subsections, in Section 4 we experimentally test the introduced methods, finally
Section 5 concludes the paper.

2 Related works

Deep Learning models for anomaly detection (Ruff et al., 2021; Pang et al., 2020) can
be divided into two families: reconstruction error-based methods employing Autoencoders
(AE) and GAN-based methods relying on Generative Adversarial Networks (GAN).

Autoencoders (Kramer, 1991; Hecht-Nielsen, 1995; Goodfellow et al., 2016; Hawkins
et al., 2002) are a special type of neural networks that aim at obtaining a reconstruction x̂
as close as possible to the input sample x by minimizing the reconstruction error E(x) =
‖x − x̂‖22 after encoding x into a hidden representation in a latent space.

A variational autoencoder (VAE) is a stochastic generative model that can be seen as
a variant of standard AE (Kingma & Welling, 2013). The main differences are that a VAE
encodes each example as a normal distribution over the latent space instead that as single
points, and introduce a regularization term in the loss that maximizes similarity of these
distributions with the standard normal distribution.

The effect of these operations is that the latent space of a VAE is continuous, which means
that in this space close points will lead to close decoded representation, thus avoiding the
severe overfitting problem affecting standard autoencoders, for which some points of the
latent space will give meaningless content once decoded. In the field of anomaly detection
VAEs are used, in analogy with standard AE, by defining a reconstruction probability (An
& Cho, 2015).

AGenerative Adversarial Network (GAN) (Goodfellow et al., 2014) is a generativemodel
composed by two models trained simultaneously: a generator G that aims to capture the dis-
tribution of the data in order to reproduce samples as realistic as possible and a discriminator
D, that must distinguish the data belonging to the dataset from the ones artificially created
by G. AnoGAN (Schlegl et al., 2017), with its extensions GAN+ (Zenati et al., 2019) and
FastAnoGAN (Schlegl et al., 2019), and GANomaly (Akcay et al., 2018) are the first works
in which GAN are used for the task of anomaly detection.

In some recent works has been observed that the anomaly detection performances obtained
by both reconstruction error-based and GAN-based architectures can be enhanced by taking
into account both the reconstruction error and the latent space. In particular, in Angiulli et al.
(2020) authors propose to consider the enlarged feature spaceF = L×E , whereL represents
the latent space and E is the reconstruction error space (usually E ⊆ R) and introduce the first
variant of the LatentOut algorithm that consists in performing a KNN density estimation in
the space F .

Specifically, the �−score is defined as

�−score(xi ) = 1

k

∑

x j∈NF
k (xi )

dF (xi , x j ),

where NF
k (xi ) is the set of the k-nearest neighbors of the point xi according to the distance

dF that corresponds to the euclidean distance calculated between the images of xi and x j on
the feature space F .

In Angiulli et al. (2022) a variant of LatentOut considering an additional anomaly score,
called ζ−score, is presented. This score is related to the difference between the reconstruction
error E(xi ) of the point xi and the mean of the reconstruction errors of its k-nearest neighbors
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in the latent space, in formula

ζ−score
(
xi

) = E(xi ) − μ
(
NL
k (xi )

)

σ
(
NL
k (xi )

) ,

where NL
k (xi ) is the set of the k nearest neighbors in the latest space L of the image xi in the

same space, and

μ
(
NL
k (xi )

) = 1

k

∑

x j∈NL
k (xi )

E(x j ), σ 2(NL
k (xi )

) = 1

k

∑

x j∈NL
k (xi )

(
E(x j ) − μ

(
NL
k (xi )

))2
.

Next, we present the novel extensions of the LatentOut method.

3 Methodology

3.1 Extension to GAAL architectures

LatentOut has already been successfully applied to the above mentioned GAN-based archi-
tectures. Here we apply LatentOut on Single-Objective Generative Adversarial Active
Learning (SO−GAAL) (Liu et al., 2020), a novel adversarial method for anomaly detection
based on the mini-max game between a generator that creates potential anomalies and a
discriminator that tries to draw a separation boundary between the anomalies and the nor-
mal class. We deal also with Multiple-Objective GAAL (MO − GAAL), an extension of
SO−GAAL which employs multiple generators with different objectives in order to prevent
the generator from falling into the mode collapsing problem.

In the standard version of the GAAL architectures, the generator has a decoder structure
sampling from a low dimensional latent space L and producing the artificial anomalies. The
overall architecture does not contemplate an encoder module able to map the input data point
to the generator latent space, which is essential to apply our technique upon it.

Indeed, even if the discriminator includes an encoder, this is designed to solve a different
problem, that is to map the data points to a real number expressing their distance to the
decision boundary.

Since, in order to be applied, LatentOut needs an architecture that, besides producing
an anomaly score and having a latent space L, has a proper encoder, i. e. a mechanism to
map data points from their original space into L, in this paper we modify the SO − GAAL
(respectivelyMO−GAAL) by adding one (respectively many) encoder submodule to enable
the application of LatentOut .

With the aim of solving this issue, we modify the architecture of SO−GAAL by adding
an encoder fφ that receives in input the original data xi and outputs its latent representation
zi , that in turn is passed to the generator.

The same problem arises for theMO−GAALarchitecture, we face it by adding an encoder
for each of the M generators f (1)

φ , . . . , f (M)
φ of the network. In this way, each point xi is

associated with M latent representations z(1)i = f (1)
φ , . . . , z(M)

i (xi ), where z
( j)
i = f ( j)

φ (xi )
for each j = 1, . . . , M , therefore we define as latent transformation of xi the mean of these
points

zi = 1

M

k∑

j=1

z( j)i .
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Finally, in all the three parts of the GAAL (encoders, generators and discriminator) we
add some convolutional layers in order to make them deeper and more suitable for image
data.

3.2 Semi-supervised outlier detection with LatentOut

The semi-supervised setting is characterized by the presence of a training set T = {t1, . . . , tn}
composed only by normal items and a test set X = {x1, . . . , xm} with binary labels Y =
{y1, . . . , ym}, where yi = 0 if xi is normal and yi = 1 if it is an anomaly.

The application of LatentOut to this context, instead of to the classical unsupervised
setting for which it has been designed, requires to deal with the fact that the models are
trained only on normal data. In particular, given a point xi in the test set, the semi-supervised
versions of both �−score and ζ−score require the computation of the distance, in the
enlarged latent space F , between xi and each example ti of the training set. Thus,

�−score(xi ) = 1

k

∑

t j∈NF
k (xi )

dF (xi , t j ), ζ−score
(
xi

) = E(xi ) − μT
(
NL
k (xi )

)

σT
(
NL
k (xi )

) ,

where

μT
(
NL
k (xi )

) = 1

k

∑

t j∈NL
k (xi )

E(t j ), σ 2
T

(
NL
k (xi )

) = 1

k

∑

t j∈NL
k (xi )

(
E(t j ) − μ

(
NL
k (xi )

))2
.

We note that in this scenario the elements of the neighborhood Nk(xi ) of xi ∈ X are selected
among the objects of the training set T .

3.3 Novel anomaly scores

In this section we generalize the approach of LatentOut in order to exploit other definitions
of scores. Indeed, our goal is to show that the feature space F induced by LatentOut has the
characteristic to enhance the separation between normal and anomalous data. Basically, this
implies that any way of perceiving anomalous behaviour will take advantage of replacing the
original data with its mapping in the LatentOut feature space F .

Specifically, given a generic anomaly score σ , we call σ–LatentOut the variant of
LatentOut which applies the score σ within the feature space F ; thus, σ–LatentOut(x)
coincides with σF (x), that is the value of the score σ associated with the mapping of the
instance x in the feature space F . Figure 1 reports a scheme of the overall methodology.

Fig. 1 LatentOut receives the dataset as input and maps it into F . The transformed dataset is then processed
by unsupervised anomaly detection methods which provide an anomaly score for each point
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To substantiate our claim, in thisworkwe consider 6 standard datamining outlier detection
scores and compare their performances in the original feature spacewith that in theLatentOut
feature space.

The methods considered in our analysis are Concentration Free Outlier Factor (CFOF)
(Angiulli, 2017), Gaussian Mixture Models (GMM) (Reynolds et al., 2009), Isolation Forest
(IF) (Liu et al., 2012), k-nearest neighbor (k-NN) (Ramaswamy et al., 2000) (whose applica-
tion on F coincides with the �−score of LatentOut), Local Outlier Factor (LOF) (Breunig
et al., 2000) and One-Class Support Vector Machine (OC-SVM) (Schölkopf et al., 2001).

In the following we denote by zi the image of the point xi mapped in the space F . Next,
the definitions of the above listed methods are recalled.

Concentration free outlier factor
The Concentration Free Outlier Factor (CFOF) is based on the reverse neighborhood of
the data points, for our aims the neighborhood relationship is defined according to the data
representations in the space F , in more details

CFOFF (xi ) = min
1≤k′≤n

{
k′

n
: nFk′ (xi ) ≥ nρ

}
,

where nFk (xi ) = ∣∣{x j : xi ∈ NF
k (x j )

}∣∣ is the reverse k nearest neighbor count, that is the
number of objects having xi among their k nearest neighbors, and NF

k (x j ) is the set of the k
nearest neighbor of x j .

Gaussian mixture models
The goal of Gaussian Mixture Models (GMM) is to reconstruct the unknown density of the
data projections in the feature space F as a mixture of k distributions

p
(
zi |ω j , μ j , � j

) =
k∑

j=1

ω j g
(
zi |μ j , � j

)
.

where each g(·|μ j , � j ), j = 1, . . . , k, is a d + 1-dimensional Gaussian distribution in the
feature space F :

g
(
zi |μ j , � j

) = 1

(2π)(d+1)/2 |� j |1/2
exp

(
− (

zi − μ j
)T

�−1
j

(
zi − μ j

))
.

The parameters ω j ∈ R, μ j ∈ R
d+1, and � j ∈ R

d×d of the mixture are estimated by using
the Expectation-Minimization algorithm. Notice that the � j are diagonal matrices, since
co-variances are assumed to be null.

The anomaly score of xi is defined as the value of the density obtained with the parameters
ω j , μ j , � j that maximize the expectation, in formula

GMMF (xi ) = p
(
xi |ω j , μ j , � j

)
.

Isolation forest
The Isolation Forest technique builds a data-induced tree, also called Isolation Tree (or iTree),
by recursively and randomly partitioning instances, until all of them are isolated. The random
partitioning produces shorter paths for anomalies.

In our context, the points of the dataset {x1, . . . , xn} are partitioned by considering split
values on the features of their representation {z1, . . . , zn} in the space F .

The path length h(x) of a data point x is the number of edges traversed in order to reach the
external node containing only x . An iTree is built by recursively expanding non-leaf nodes
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(initially each data point is associated with a single internal node) by randomly selecting an
attribute a and a split value v.

The anomaly score obtained from this process is given by

IFF (xi ) = 2− E[h(x)]
c(n)

where E[h(x)] denotes the average path length of x in the collection of iTrees and c(n) is a
normalization constant which depends on the total number of data points.

Local outlier factor
In our application, the concepts of reachability-distance (rdk) between two data points xi
and x j exploited by the Local Outlier Factor (LOF) is based on the distance dF introduced
in Section 2 rather than on the standard euclidean distance, i. e.

rdk
(
xi , x j

) = max
(
dF,k(xi ), dF (xi , x j )

)
,

where dF,k(xi ) is the dF distance between xi and its k-th nearest neighbor. Then, the LOF
anomaly score of the point xi is defined as usual, specifically

LOFF (xi ) =
∑

x j∈NF
k (xi )

lrdk
(
x j

)

∣∣NF
k (xi )

∣∣ lrdk (xi )
,

where lrdk is the local reachability density

lrdk (xi ) =
∣∣NF

k

∣∣
∑

x j∈NF
k (xi )

rdk
(
xi , x j

) .

One-class support vector machine
The application of the One-Class Support Vector Machine (OC-SVM) methodology to our
paradigm is based on the idea of building an hyperplane that provides an optimal separation
between the representations of normal and anomalous point in F .

Specifically, the separation is obtained through the following constrained optimization
problem

w∗ = argminw∈R
+1‖w‖2
yi 〈zi , w〉 ≥ 1 i = 1, . . . ,m. (1)

The anomaly score of a point x is given by the distance of its mapping z ∈ F from the
hyperplane represented by the solution w∗ of the optimization problem in (1)

OC − SVMF (x) = 〈z, w∗〉
‖w∗‖ .

To manage non-linear separable problems, the soft-SVM algorithm is employed in the prac-
tice, which admits some of the above constraints to be violated while minimizing also the
entity of their violation.

Moreover, for tackling problems where linear separators achieve poor generalization
results, SVMs are equipped with kernel functions applying a non-linear transformation of the
data andmapping them into a higher dimensional space in which they can be better separated.
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4 Experimental results

In this section we report experiments conducted to study the behavior of the proposed tech-
niques.

In particular, we focus on the following three aspects:

• the behavior of LatentOut algorithm in the semi-supervised (one-class) setting in com-
parison with baseline architectures;

• the application of all LatentOut scores on the new architectures SO−GAAL and MO−
GAAL and comparison with baseline method;

• the analysis of the behaviour of standard anomaly detection algorithmon the feature space
F and the comparison between their standard application on the original data space.

4.1 Experimental settings

In our experimentswe employ three standard benchmark datasets, two composed bygrayscale
images, MNIST (Deng, 2012) and Fashion-MNIST (Xiao et al., 2017), and one composed
by three-channels colour images, CIFAR-10 (Krizhevsky et al., 2009). Both the grayscale
datasets consist of 60,000 28 × 28 pixels images divided in 10 classes, CIFAR-10 consists
of 60,000 32 × 32 colour images partitioned in 10 classes. In some experiments, we also
consider some tabular datasets belonging to the ODDS repository (Rayana, 2016), namely
annthyroid, satellite, satimage-2, thyroid, vertebral, wine.

Some of these dataset are multi-labelled, thus, in order to make them suitable for anomaly
detection, we decide to adopt a one-vs-all policy, which means that we consider one class as
normal and all the others as anomalous.

In particular, in the unsupervised setting, we consider a dataset composed by all the
examples of the normal class in the training set and a quantity s = 10 of randomly selected
examples from each other class as anomalies. Thus, the resulting dataset meets the rarity and
heterogeneity requirements characterizing Anomaly Detection scenarios.

On the other hand, in the semi-supervised (one-class) setting the training set is composed
only by examples from the normal class, while the test set coincides with the original test
sets of the considered datasets, thus it is composed of examples from both the normal and
the anomalous classes.

The performances of the various algorithms are measured by means of the Area Under
the ROC Curve (which we refer to in the paper as AUC).

Tables reporting experimental results highlight in bold the method scoring the best AUC
value within each considered setting.

4.2 LatentOut in the semi-supervised scenario

In this section we test LatentOut in the semi-supervised (one-class) setting by considering
the architectures VAE and GANomaly as baseline.

The results are reported in Table 1; for each dataset and each architecture, on the left
column there is the AUC of the baseline and on the right column there is the best AUC
obtained by the two scores of LatentOut . Mean and standard deviations are measured on 10
runs, each considering the same normal instances and a different set of randomly selected
anomalies.
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Table 1 AUC for MNIST, Fashion-MNIST and CIFAR-10 in the one-vs-all semi-supervised setting

Class MNIST Fashion-MNIST CIFAR-10
VAE LatentOut VAE LatentOut VAE LatentOut

0 .989±.010 .991±.007 .711±.007 .897±.011 .618±.027 .625±.033

1 .999±.000 .996±.000 .981±.000 .982±.005 .658±.014 .691±.010

2 .891±.010 .957±.006 .696±.015 .885±.014 .474±.022 .641±.006

3 .868±.011 .931±.008 .937±.015 .930±.029 .627±.034 .628±.033

4 .932±.021 .942±.004 .780±.014 .912±.003 .445±.025 .701±.024

5 .939±.010 .953±.001 .939±.007 .936±.004 .554±.025 .577±.035

6 .978±.011 .990±.002 .563±.017 .789±.009 .605±.013 .728±.039

7 .954±.011 .967±.002 .971±.008 .981±.016 .526±.024 .555±.067

8 .825±.016 .948±.019 .679±.019 .889±.022 .577±.004 .658±.009

9 .927±.003 .964±.011 .848±.029 .966±.005 .693±.048 .697±.057

Class MNIST Fashion-MNIST CIFAR-10

GANomaly LatentOut GANomaly LatentOut GANomaly LatentOut

0 .715±.094 .884±.018 .775±.012 .898±.020 .633±.030 .716±.015

1 .986±.052 .997±.006 .935±.005 .972±.003 .581±.048 .592±.010

2 .737±.046 .792±.030 .773±.067 .849±.090 .628±.001 .663±.011

3 .752±.039 .846±.017 .779±.019 .872±.027 .571±.049 .575±.017

4 .835±.017 .899±.036 .806±.011 .846±.017 .712±.007 .730±.007

5 .744±.016 .808±.016 .776±.066 .834±.029 .539±.022 .550±.007

6 .853±.051 .912±.022 .604±.007 .766±.066 .697±.039 .712±.003

7 .764±.097 .933±.001 .918±.075 .968±.020 .543±.019 .573±.028

8 .578±.033 .796±.047 .713±.010 .804±.026 .580±.031 .650±.041

9 .797±.035 .781±.004 .895±.017 .938±.064 .531±.002 .613±.031

For each row, we report in bold the maximum between the elements in columns 2-3, 4-5, and 6-7

We vary the dimension of the latent space in the interval [2, 64]; the best results are
obtained in the interval [8, 16] for LatentOutV AE , [16, 32] for LatentOutGANomaly, for [4, 8]
for standard VAE and for [16, 64] for standard GANomaly.

From these results it is clear that LatentOut outperforms both the considered baselines,
and the improvement in many cases is huge.

4.3 Performance of LatentOut on GAAL architectures

In this section we test LatentOut scores on MO − GAAL and SO − GAAL architectures.
Table 2 shows the results of the two LatentOut scores and the baseline on MNIST and
Fashion-MNIST in a one-vs-all unsupervised setting, since the architectures MO − GAAL
and SO − GAAL are specific for unsupervised anomaly detection.

In this experiment we fix the value of the parameter k for each score, and in particular
we follow the indications given in Angiulli et al. (2022) and set k = 50 and k = 200,
respectively. On the other hand, the value of the dimension of the latent space is variable
in the interval [8, 128]. For both architectures the best values are obtained in the interval
[32, 64]. Mean and standard deviations are measured on 10 runs, each considering the same
normal instances and a different set of randomly selected anomalies.
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Table 2 AUC for MNIST and Fashion-MNIST in the one-vs-all unsupervised setting (s = 10)

MNIST
Class SO-GAAL LatentOutSO−GAAL MO-GAAL LatentOutMO−GAAL

ζ−score �−score ζ−score �−score

0 .940±.005 .834±.062 .989±.004 .942±.006 .901±.011 .982±.006

1 .966±.011 .934±.023 .997±.000 .985±.007 .947±.005 .998±.000

2 .835±.025 .740±.031 .920±.025 .842±.015 .766±.021 .912±.008

3 .864±.020 .782±.027 .889±.047 .885±.017 .826±.047 .878±.018

4 .900±.008 .874±.020 .912±.016 .903±.030 .890±.017 .923±.023

5 .669±.101 .636±.114 .909±.017 .731±.006 .659±.035 .902±.011

6 .908±.051 .833±.044 .980±.005 .911±.036 .879±.036 .971±.002

7 .872±.028 .854±.020 .958±.009 .900±.040 .862±.047 .952±.004

8 .855±.003 .789±.027 .876±.013 .824±.032 .802±.038 .864±.037

9 .858±.041 .816±.070 .947±.010 .863±.067 .846±.087 .950±.004

Fashion-MNIST

Class SO-GAAL LatentOutSO−GAAL MO-GAAL LatentOutMO−GAAL

ζ−score �−score ζ−score �−score

T-shirt/top .779±.035 .771±.053 .906±.015 .845±.002 .763±.027 .881±.015

Trouser .976±.003 .932±.019 .986±.002 .949±.028 .884±.020 .983±.003

Pullover .726±.064 .714±.008 .884±.007 .830±.004 .835±.053 .819±.011

Dress .917±.016 .905±.006 .915±.014 .915±.003 .868±.015 .907±.008

Coat .847±.017 .747±.012 .907±.006 .883±.037 .845±.040 .886±.003

Sandal .864±.039 .866±.029 .879±.005 .794±.008 .837±.019 .831±.041

Shirt .660±.013 .761±.002 .802±.005 .740±.035 .736±.041 .763±.008

Sneaker .979±.007 .960±.013 .973±.007 .966±.015 .960±.015 .973±.005

Bag .719±.019 .589±.055 .909±.005 .808±.042 .778±.037 .775±.011

Ankle boot .904±.091 .882±.023 .975±.004 .984±.006 .970±.014 .960±.008

For each row, we report in bold the maximum between the elements in column 2-4, and 5-7

From these results we can conclude that LatentOut is very effective also applied in these
architecture, since it always guarantees an improvement over the standard baseline.

In particular, we can observe that �−score is the best score for the majority of the classes,
and, in those cases in which this is not true, its performance is almost always very close to
the one of the best method.

4.4 Analysis of LatentOutwith the novel scores

In this section we analyze the behavior of σ–LatentOut , where σ is one of the following
six methods: Concentration Free Outlier Factor (CFOF), Gaussian Mixture Models (GMM),
Isolation Forest (IF), k-nearest neighbor (k-NN), Local Outlier Factor (LOF) and One-Class
Support Vector Machine (OC-SVM).

In Table 3 we report the hyper-parameters and the corresponding set of values considered
for each method. As for the hyper-parameters not included in the table, we employed their
default values.
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Table 3 List of the hyperparameters employed for each method

Method Hyper-parameter Values

CFOF k 0.05

GMM k {1, 3, 5, 7, 9, 15}
k-NN k {3, 5, 7, 9, 15}
LOF k {3, 5, 7, 9, 15, 20}
OC-SVM kernel { linear, polynomial, Gaussian }

For the space F of LatentOut , we use a Variational Autoencoder and we vary the latent
space dimension 
 in the following set:


 ∈
{

i =

⌊
d

4i

⌋
: ∀i ∈ N

+ s.t.

⌊
d

4i

⌋
≥ 2

}
.

The number of layers composing the architecture of the Variational Autoencoder is
inversely proportional to the latent space dimension 
i . Specifically, for each j < i there is
one hidden layer of dimension 
 j in the encoder and the symmetric one in the decoder.

Let σ denote the generic basic anomaly detection method. Figures 2 and 3 report the com-
parison between the AUC obtained by σ–LatentOut (on the y-axis) and the AUC obtained
by σ (on the x-axis) in the unsupervised scenario. Each point is associated with a specific
configuration of the hyper-parameters, namely a specific latent space dimension 
i and a
specific basic method hyper-parameter value (see Table 3). Figure 2 shows results on the
MNIST, Fashion-MNIST and CIFAR10 image datasets, while Fig. 3 concerns the ODDS
shallow datasets.

The figures highlight that σ–LatentOut is able to improve the performances of σ very
often. This behavior is muchmore evident on the complex image datasets which are naturally

Fig. 2 Comparison between theAUCofσ andσ–LatentOut for differentmethodsσ .MNIST, Fashion-MNIST
and CIFAR10 datasets
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Fig. 3 Comparison between the AUC of σ and σ–LatentOut for different methods σ . ODDS datasets

richer in correlations, but also on the shallow datasets the analysismay take benefit ofworking
in the LatentOut feature space.

As a further detail, Tables 4 and 5 report the maximum AUC of GMM, LOF, and OC-
SVM and their LatentOut counterpart for each class of the most two difficult image datasets,
namely Fashion-MNIST and CIFAR10. We do not report details on CFOF and iForest since
they use the default values for their hyper-parameters and have considerably less points in the
plots, while k-NN corresponds to the ρ-score already considered in previous experiments.

Table 6 summarizes the results of the experiments reported in Figs. 2 and 3 by reporting
the mean AUC of the various methods. Importantly, the table highlights that the average
performances of existing anomaly detection scores almost always improve when they are
applied to the LatentOut feature space F .
Since LatentOut is able to generate a feature space having a positive impact on the anomaly
detection task, we introduce a variant that we call φ–LatentOut . This approach performs

Table 4 Maximum AUC on Fashion-MNIST

Class GMM LOF OC-SVM
standard LatentOut standard LatentOut standard LatentOut

T-shirt/top 0.8800 0.9489 0.7022 0.8832 0.8730 0.9210

Trouser 0.9828 0.9904 0.8761 0.8976 0.9721 0.9865

Pullover 0.8992 0.9390 0.8000 0.9116 0.8584 0.9077

Dress 0.9106 0.9447 0.8540 0.9211 0.9179 0.9069

Coat 0.8992 0.9429 0.9100 0.9392 0.8989 0.9208

Sandal 0.8985 0.9581 0.5300 0.9088 0.8508 0.9417

Shirt 0.7693 0.8722 0.7414 0.8154 0.8341 0.8320

Sneaker 0.9919 0.9824 0.5939 0.8387 0.9746 0.9767

Bag 0.8484 0.9251 0.7041 0.8178 0.8375 0.8765

Ankle boot 0.9869 0.9785 0.7139 0.9674 0.9724 0.9856

For each row, we report in bold the maximum between the elements in columns 2-3, 4-5, and 6-7
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Table 5 Maximum AUC on CIFAR10

Class GMM LOF OC-SVM
standard LatentOut standard LatentOut standard LatentOut

Airplanes 0.6659 0.7405 0.6680 0.6600 0.7351 0.8030

Cars 0.4992 0.6481 0.5742 0.6465 0.4863 0.6437

Birds 0.5829 0.6726 0.6882 0.6869 0.6243 0.6396

Cats 0.5969 0.5709 0.5333 0.5834 0.4687 0.5579

Deer 0.5921 0.7250 0.7246 0.7200 0.7258 0.7007

Dogs 0.6156 0.6478 0.5273 0.6215 0.5187 0.6132

Frogs 0.5043 0.7318 0.6718 0.7307 0.6623 0.7100

Horses 0.5159 0.5901 0.5321 0.5910 0.4833 0.5691

Ships 0.7027 0.7589 0.7083 0.7473 0.6570 0.7314

Trucks 0.4857 0.7053 0.4368 0.6801 0.5795 0.6671

For each row, we report in bold the maximum between the elements in columns 2-3, 4-5, and 6-7

a pre-training of LatentOut on a representative sample of the population. Then, the whole
set of observations to classify is mapped into the learned feature space F and the score σ is
evaluated on the mapped instances.

The advantage of this approach is that the execution time is reduced and, moreover, that
the mapping associated with φ–LatentOut can be stored and employed multiple times to
different test sets. The method assumes that each test set is representative at least of the
normal data population: if the information about this property is unknown it can be anyway
guaranteed by including the pre-training sample in the test set.

We compare performances of LatentOut and φ–LatentOut in the unsupervised scenario
by taking into account the image datasets. Since these datasets contain all the normal class
instances (6000 points), the pre-training phase of φ–LatentOut is performed on the normal
class instances of the corresponding test set (1000 points).

Table 6 Average AUC on MNIST, Fashion-MNIST and CIFAR10

Method MNIST Fashion-MNIST CIFAR10 ODDS

CFOF 0.9484±0.0376 0.9157±0.0462 0.5638±0.1181 0.6882±0.2199

CFOF–LatentOut 0.9288±0.0458 0.9344±0.0313 0.7135±0.0352 0.707±0.1716

GMM 0.7693±0.1621 0.6528±0.2378 0.4863±0.0766 0.6528±0.2862

GMM–LatentOut 0.9523±0.0299 0.9417±0.0357 0.6676±0.0595 0.7671±0.1891

IF 0.8627±0.0793 0.9258±0.0440 0.5730±0.1106 0.7846±0.1944

IF–LatentOut 0.8969±0.0626 0.9316±0.0388 0.6672±0.0437 0.7530±0.1895

KNN 0.9250±0.0433 0.9105±0.0579 0.5883±0.1244 0.7036±0.2107

KNN–LatentOut 0.9278±0.0488 0.9316±0.0487 0.6681±0.0613 0.7727±0.1966

LOF 0.8663±0.0905 0.6125±0.1253 0.5866±0.1054 0.5601±0.1401

LOF–LatentOut 0.8998±0.0660 0.8083±0.0963 0.6451±0.0554 0.6236±0.1068

SVM 0.8023±0.0948 0.7269±0.1805 0.5221±0.1120 0.5953±0.2274

SVM–LatentOut 0.8608±0.0811 0.8774±0.0853 0.6320±0.0763 0.6597±0.2177

For each column, we report in bold the maximum between the elements of each row
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Fig. 4 Comparison between the performances LatentOut and φ–LatentOut in terms of AUC on MNIST,
Fashion-MNIST and CIFAR10

Figure 4 reports mean and standard deviation of the AUC obtained considering the same
combinations of the hyper-parameters discussed above. It can be seen that φ–LatentOut is
able to maintain a comparable accuracy, but at a reduced computational cost: Table 7 reports
the training time for epoch of LatentOut and φ–LatentOut . In these experiments the total
number of epochs has been set to 200.

Experiments have been performed on a Linux machine equipped with a 2.9 GHz Intel
CoreTM i7-10700, 32 GB of main memory and a NVIDIA GeForce RTX 2070 Super having
8 GB of dedicated memory.

To conclude the section, we also measure the execution time of the basic method σ when
executed in the original feature and in LatentOut feature space F having dimension 
.
Execution times are reported in Table 8 for MNIST and Table 9 for CIFAR10. The execution
times of k-NN and LOF are almost independent of k and, hence, we report only the results for
an intermediate k value, namely k = 7. As expected, by considering the reduced feature space
F of LatentOut , we also achieve an improvement of the time devoted to the computation of
the scores.

5 Conclusions

In this work we introduce three extensions of the LatentOut algorithm: an application to
the semi-supervised setting, a novel architecture, and a series of novel scores based on some
existing data mining outlier detection methods. The experiments show that in many cases the
scores of LatentOut improve the performance of the considered baseline methods, both in
the unsupervised and in the one-class scenarios.

Table 7 Training time (in
seconds) for each epochs of
LatentOut and φ–LatentOut on
MNIST and CIFAR10

Dataset LatentOut φ–LatentOut

MNIST (
 = 2) 0.2398±0.0158 0.1167±0.0073

MNIST (
 = 12) 0.2388±0.0163 0.1483±0.0033

MNIST (
 = 49) 0.2484±0.0142 0.1840±0.0046

MNIST (
 = 196) 0.2675±0.0193 0.2288±0.0123

CIFAR10 (
 = 2) 2.4131±0.0041 0.5532±0.0016

CIFAR10 (
 = 12) 2.0798±0.0030 0.5288±0.0129

CIFAR10 (
 = 48) 2.0806±0.0058 0.5559±0.0022

CIFAR10 (
 = 192) 2.0877±0.0083 0.5960±0.0113

CIFAR10 (
 = 768) 2.0912±0.0047 0.6413±0.0149
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The results obtained in this paper make us believe that the idea behind LatentOut of
exploiting both the baseline score and the latent space of neural architectures can be effective
in a wide range of different anomaly detection settings. Because of this, in the future, our
main goal is to deal with supervised scenarios in which some anomalies are known in phase
of training.
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