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Abstract
The growth of Big Data has resulted in an overwhelming increase in the volume of data avail-
able, including the number of features. Feature selection, the process of selecting relevant
features and discarding irrelevant ones, has been successfully used to reduce the dimen-
sionality of datasets. However, with numerous feature selection approaches in the literature,
determining the best strategy for a specific problem is not straightforward. In this study,
we compare the performance of various feature selection approaches to a random selection
to identify the most effective strategy for a given type of problem. We use a large number
of datasets to cover a broad range of real-world challenges. We evaluate the performance of
seven popular feature selection approaches and five classifiers. Our findings show that feature
selection is a valuable tool in machine learning and that correlation-based feature selection
is the most effective strategy regardless of the scenario. Additionally, we found that using
improper thresholds with ranker approaches produces results as poor as randomly selecting
a subset of features.

Keywords Dimensionality reduction · Feature selection · Filters · Classification

1 Introduction

Artificial intelligence has made significant breakthroughs in recent years, owing to recent
developments in algorithms, computing power, and big data. In particular, machine learning
has had a lot of success due to its outstanding capacity to evaluate massive volumes of
data automatically. Classification is one of the most important tasks in machine learning,
as it allows for the prediction of events in a wide range of applications, from medical to
finance. However, when faced with a high number of irrelevant and/or redundant features,
several of the most popular classification algorithms can deteriorate their performance. This
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phenomenon is known as curse of dimensionality and is the reason why dimensionality
reduction methods play an important role in preprocessing the data.

Feature selection is one of these dimensionality reduction approaches, which is described
as the process of selecting relevant features and rejecting irrelevant or redundant ones. There
are numerous noisy and meaningless features that are frequently gathered or generated by
various sensors and algorithms, all of which consume a significant amount of computational
resources. As a result of this, feature selection is critical in the context of machine learning,
as it allows for the removal of nonsense features while keeping a small subset of features to
reduce computational complexity.

Feature selection methods can be classified into three categories based on their relation-
ship to the induction algorithm (Guyon et al., 2008): (i) filters, which are independent of
the induction algorithm and use metrics like mutual information or statistics like Chi2 to
determine the importance of the features; (ii) wrappers, which use the induction algorithm
accuracy to determine the importance of the features; and (iii) embedded methods, which
perform feature selection in the process of training and are usually specific to given learning
machines. Furthermore, feature selection approaches are classified as univariate (when they
compute the relevance of a single feature to the predictive class) and multivariate (when they
take into account the interactions among subsets of features).

Unlike other dimensionality reduction techniques that are gaining popularity, such as fea-
ture extraction based on embeddings or deep neural networks (Salau & Jain, 2019; Kasongo
& Sun, 2020), there are various applications where finding relevant features is required. In
bioinformatics (for example, to discover a few important biomolecules that account for the
majority of a phenotype (Climente-González et al., 2019)), in terms of decision-making fair-
ness (e.g., instead of focusing on the fairness of the choice outcomes, locate the input features
employed in the decision process (Grgic-Hlaca et al., 2018)), or in nanotechnology (for exam-
ple, to establish the most important experimental conditions and physicochemical features
to take into account when making a nanotoxicology risk assessment (Furxhi et al., 2020)).
These applications all have one thing in common: they are not pure classification problems.
In fact, knowing which features are relevant is just as crucial as correctly classifying them,
because these features may provide new information about the underlying system.

However, there are numerous feature selection methods to choose from, and most
researchers agree that the best feature selection approach does not exist (Bolón-Canedo
et al., 2013). On top of this, new feature selection methods are appearing every year, which
makes us ask the questions: do we really need so many feature selection methods? Which
ones are the best to use for each type of data? In light of these concerns, the purpose of this
paper is to examine the most common feature selection approaches in two scenarios: syn-
thetic and real datasets, using random selection as a baseline. Our goal is to analyze if there
are some methods that produce results that are not considerably better than those obtained
by randomly selecting a subset of features. Differently from our previous work (Morán-
Fernández & Bolón-Canedo, 2021), in this paper we (a) include seven synthetic datasets,
trying to check the behavior of the feature and random selection when the relevant features
are known, (b) examine the effects of including different levels of noise in the inputs, (c)
analyze the impact of discretization on feature selection through a case study involving the
variation of the number of bins in the Equal-width method, (d) compare the results obtained
by applying the rough set attribute method QuickReduct with the Correlation-based Feature
Selection method and (e) perform an illustrative example of feature selection over Mnist
dataset.

The remainder of the paper is organized as follows: Section 3 presents the different feature
selection methods employed in the study and provides a brief description of the 7 synthetic
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and 55 real datasets used to reduce data dimensionality. Section 4 details the experimental
results carried out, including several case studies. Finally, Section 5 contains our concluding
remarks and proposals for future research.

2 Background

Machine learning researchers face an interesting dilemma when datasets expand in size; to
citeDonoho (2000)“our task is to find a needle in a haystack, teasing the relevant information
out of a vast pile of glut”. Ultra-high dimensionality necessitates a large amount of memory
and a significant training computational cost. Furthermore, what is known as the “curse of
dimensionality” undermines generalization abilities. As a result, in a society where huge
amounts of data and features are required in a variety of fields, new solutions for dealing
with the critical issue of feature selection are urgently needed (Bolón-Canedo et al., 2015).

The initial studies on feature selection date back to the 1960s (Hughes, 1968), but it was
not until the 1990s that significant advancements in feature selection for solving machine
learning problemsweremade. Because of its capacity to improve the performance of learning
algorithms, feature selection has gained popularity in the field of machine learning, particu-
larly in supervised and unsupervised processes like clustering, regression, and classification.
However, the most widely used feature selection approaches were created years ago, and
they are currently facing significant hurdles that could negatively impact their performance.
Feature selection is a difficult task, since for a dataset with m features, the total number of
possible alternatives for a feature subset is 2m − 1.

Furthermore, feature-to-feature correlations are common. There are a variety of two-way,
three-way, and more complex correlations. A weak correlation between two features may
become a strong correlation, when they are combined with other features. Furthermore, the
most common types of search in feature selection, such as sequential forward or sequential
backward selection, suffer from local convergence issues and significant computational costs.
Table 1 shows the computational cost of some of the most popular FS methods.

As can be seen, themost sophisticatedmethods have quadratic complexitywith the number
of features, an expensive calculation process usually derived from computing the correlation
of pairs of features. In this paper we will try to answer the question of if it is worth paying
the price of an expensive calculation for better performance results.

Table 1 Popular filter methods and their theoretical complexity where n is the number of samples, m is the
number of features, c + c is the double hashing time cost and P(m) is the power-set of conditional features

Method Complexity

Information gain (Hall & Smith, 1998) nm

ReliefF (Kononenko, 1994) n2m

minimum Redundancy Maximum Relevance (Peng et al., 2005) nm2

Joint Mutual Information (Yang & Moody, 2000) nm2

Correlation-based Feature Selection (Hall, 1999) nm2

INTERACT (Zhao & Liu, 2009) nm2

Mutual Information Maximisation (Lewis, 1992) nm

QuickReduct (Shen & Chouchoulas, 2000) n(c + c)P(m)
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3 Methods andmaterials

3.1 Feature selection techniques

In the classification literature, feature selection approaches have garnered a lot of attention,
and they can be divided into three categories based on their interaction with the induc-
tion algorithm (Guyon et al., 2008; Shahrjooihaghighi & Frigui, 2021): filters, wrappers,
and embedding methods. We choose filter methods over wrapper and embedded methods
because we want to avoid the interaction with the classifier. Furthermore, filter methods are
a popular choice in the new Big Data environment, owing to their lower computing cost as
compared to wrapper or embedded approaches. The seven filters used in the experiment are
described below,where two of them are univariate (InformationGain andMutual Information
Maximisation) and the other five are multivariate.

• Correlation-based Feature Selection (CFS) is a simplemultivariate filter technique that
ranks feature subsets using a heuristic evaluation function based on correlation (Hall,
1999). This function tries to find subsets of features that present correlation with the
class but not with one another. The idea is to remove those attributes whose correlation
with the class is low (and thus they are considered irrelevant), as well as those redundant
(correlation among them).

• The INTERACT (INT) algorithm works on the idea of symmetrical uncertainty (SU)
and adds a contribution for consistency (Zhao & Liu, 2009). This method works on two
steps. First, features are sorted in descending order according to their value of SU. In the
second step, the algorithm starts taking those features at the end of the feature ranking,
and it evaluates each feature one by one. If a feature’s consistency contribution is below
a predetermined threshold, it is deleted; otherwise, it is selected.

• Information Gain (IG) filter analyses a single feature at a time and evaluates it based
on its information gain (Hall & Smith, 1998). It gives an ordered classification of all
features, after which a threshold is used to choose a particular number of them based on
the order.

• ReliefF algorithm (RelF) (Kononenko, 1994) adds the ability to deal with noisy, incom-
plete, and multiple class datasets to the original Relief algorithm. This algorithm’s key
idea is to estimate features based on howwell their values discriminate between examples
that are close to each other.

• Mutual InformationMaximisation (MIM) (Lewis, 1992) obtains a ranking of attributes
according to their mutual information score and selects the top k features, where k is
determined by a predefined need for a certain number of features or another criterion.

• The minimum Redundancy Maximum Relevance (mRMR) (Peng et al., 2005)
approach selects features that fulfill two conditions: they are highly relevant to the target
class but no redundant among each other. Both the maximum-relevance and minimum-
redundancy optimization criteria are based on mutual information.

• Another feature selection approach based on mutual information is Joint Mutual Infor-
mation (JMI) (Yang & Moody, 2000), which uses a new criterion to evaluate candidate
features. In each phase, JMI selects the feature with the highest cumulative sum of joint
mutual information with the selected features and adds it to the subset S, until the number
of selected features exceeds k.

In addition, for case study III (see Section 4.3.3), we will use a method belonging to the
family of rough set attribute reduction algorithms:
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• QuickReduct (QR) (Shen & Chouchoulas, 2000; Chouchoulas & Shen, 2001) employs
a forward selection approach, utilizing a non-exhaustive hill-climbing search that may
encounter local optima, lacking a guarantee of global optimality. It evaluates attribute
subsets based on rough set dependency values. The objective is to reach a state where
the search identifies the highest achievable dependency value for the dataset.

3.2 Synthetic and real datasets

To investigate the effect of feature selection empirically, we used 7 synthetic datasets and 55
real datasets, 17 of which were microarray datasets. There are a range of features for each
dataset, some of which are binary/discrete and others which are continuous. Using the Equal-
width method, continuous features were discretized into 5 bins, while categorical features
were left unchanged.

The synthetic datasets used in thiswork (Table 2) are designed to address a variety of issues,
such as an increasing amount of irrelevant features, redundancy, noise, input variations, data
nonlinearity, etc. These factors make the task of feature selection methods, which are heavily
influenced by them, more complicated.

We also examined 55 real datasets to make significant findings about the impact of fea-
ture selection. There were 38 datasets with at least nine features downloaded from the
UCI repository (Bache & Linchman, 2013), as well as 17 microarray datasets due to their
high dimensionality (Morán-Fernández et al., 2017; Remeseiro & Bolón-Canedo, 2019).
Tables 3 and 4 depict key properties of the datasets used in this investigation, such as sample
size, number of features and classes.

4 Experimental results

The different experiments consist of comparing the application of each of the seven feature
selection approaches individually, as well as random selection (represented as ‘Ran’ in the
tables/figures),whichwill serve as the comparison baseline.While twoof the feature selection
methods (CFS and INTERACT) produce a feature subset, the remaining five (IG, ReliefF,
MIM, JMI, and mRMR) are ranker methods, requiring a threshold to acquire a subset of
features. We chose to keep the top 10%, 20%, and log2(n) of the most significant features
in the ordered ranking in this study, where n is the number of features in a given dataset.

Table 2 Summary of the seven synthetic datasets

Dataset #samples #features Relevant Correlation Noise No linear #classes
features

CorrAL-100 32 99 1-4 � 2

XOR-100 50 99 1-2 � 2

Parity3+3 64 12 1-3 � 2

Monk3 122 6 2,4,5 � 2

Madelon 2400 500 1-5 � � 2

Led-25 50 24 1-7 � 10

Led-100 50 99 1-7 � 10

It shows the number of samples, the number of features, the relevant features and the number of classes, as
well as the presence of correlation, noise and no linearity
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Table 3 Summary of the 38 real datasets

Dataset #sam. #feat. #cl. Dataset #sam. #feat. #cl.

arrhythmia 452 279 13 molec-biol-promoter 106 57 2

bc-wisc-diag 569 30 2 molec-biol-splice 3190 60 3

bc-wisc-prog 198 33 2 musk-2 6598 166 2

breast 569 30 2 optdigits 5620 64 10

coil20 1440 1024 20 ozone 2536 72 2

congress 435 16 2 page-blocks 5473 10 5

conn-bench-sonar 208 60 2 parkinsons 195 22 2

connect-4 67557 42 2 pendigits 10992 16 10

dermatology 366 34 6 satimage 6435 36 6

gisette 7000 5000 2 segmentation 2310 19 7

glass 214 9 6 semeion 1593 256 10

heart 270 13 2 sonar 208 60 2

hill-valley 606 100 2 soybeansmall 47 36 4

ionosphere 351 35 2 spect 267 23 2

isolet 7797 617 2 splice 3175 60 3

krvskp 3196 36 2 USPS 9298 256 10

landstat 5435 36 6 waveform 5000 40 3

libras 360 90 15 wine 178 13 3

low-res-spect 531 100 9 zoo 101 17 7

It shows the number of samples (#sam.), features (#feat.) and classes (#cl.)

Because of the mismatch between dimensionality and sample size in microarray datasets,
the thresholds picked the top 5%, 10%, and log2(n) features, respectively. To estimate the
error rate, we used 3× 5 cross validation.

The best classifier will not be the same for all datasets, according to the No-Free-Lunch
theorem (Wolpert, 1996). As a result, the behavior of feature selection approaches will be
evaluated using the classification error acquired from five different classifiers, each of which
belongs to a different family. Two linear classifiers (naive Bayes and Support VectorMachine
with a linear kernel) and three nonlinear classifiers (C4.5, k-Nearest Neighbor with k = 3,

Table 4 Summary of the 17 DNA microarary datasets

Dataset #sam. #feat. #cl. Dataset #sam. #feat. #cl.

9-tumors 60 5726 9 gli85 85 22283 2

11-tumors 174 12533 11 leukemia-1 72 5327 3

brain 21 12625 2 leukemia-2 72 11225 3

brain-tumor-1 90 5920 5 lung-cancer 203 12600 5

brain-tumor-2 50 10367 4 ovarian 253 15154 2

CLL-SUB-111 111 11340 3 smk 187 19993 2

CNS 60 7129 2 SRBCT 83 2308 4

colon 62 2000 2 TOX-171 171 5748 4

DLBCL 47 4026 2

It shows the number of samples (#sam.), features (#feat.) and classes (#cl.)
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and Random Forest) were used. The Matlab (2022b) and Weka (3.8) tools were used to
run the experiments on Windows 10 operating system (Intel(R) Core(TM) i7-4790 CPU @
3.60GHz 16GB RAM). The QuickReduct algorithm was executed using the package (Scully
& Jensen, 2011) for Weka.

4.1 Synthetic datasets

The initial step in determining the efficacy of a feature selection approach should be to use
synthetic data, because knowing the optimal features and having the ability to change the
experimental conditions allows for more useful conclusions to be drawn. Thus, the experi-
mental findings obtained by the different feature selection approaches over the seven synthetic
datasets, depending on the classifier, are reported in this section. To investigate the statistical
significance of our classification results, we used a Friedman test with a Nemenyi post-hoc
test to examine the classification error. The following figures present the critical different
(CD) diagrams, proposed by Demšar (2006), where how groups of methods that are not sig-
nificantly different (at alpha = 0.10) are connected. The top line in the critical difference
diagram is the axis on which we plot the average ranks of methods. The axis is turned so
that the lowest (best) ranks are to the right since we perceive the methods on the right side
as better.

By working with synthetic datasets, we know what their relevant features are. Therefore,
apart from the results obtained by the different feature selection methods and the random
selection (Ran), those obtainedwhen the relevant features are used are also presented (labeled
in the figures/tables as “Relevant”). Thus, we can see in Fig. 1 that, regardless of the classifier
used, the lowest classification errors are obtained when the model is trained with the known
relevant features. If we look at the different feature selection methods, INTERACT (INT)
seems to be one of the most appropriate for this type of datasets. Besides, if we analyze
the results of the univariate methods, MIM obtains competitive results (and sometimes even
better) than the multivariate methods. This makes this method an appropriate choice for
scenarios where it is important to consider the computational cost. Regarding the threshold of
the rankers that achieves lower classification errors, the results are highly variable depending
on the classifier, with 10% and the logarithm generally standing out. The synthetic datasets
used have a number of relevant features between 2 and 7, far from the average of 25 features
that are selected when using the 20% threshold. In this case, irrelevant and/or redundant
features are surely being included that make the classification task difficult.

On the other hand, random selection along with thresholds of 10 and 20 percent show
the worst classification results. However, it appears that random selection shows competitive
results against other feature selection methods when selecting the log2(n) features of the
dataset. Thus, anddue to the drawbacks of the traditional tests of contrast of the null hypothesis
pointed up by Benavoli et al. (2017), we have chosen to apply the Bayesian hypothesis test
(Kuncheva, 2020), in order to analyze the classification results achieved by “Ran-log” and
the ranker methods. A previous step is required for this type of study, which is the defining of
the Region of Practical Equivalence (Rope). If the mean differences between two approaches
for a given metric are smaller than a predefined threshold, they are considered practically
equal in practice. In our situation, if the difference in error is less than 1%, we will consider
two methods as equivalent.

For the whole benchmark and each pair of methods, we calculate the probability of the
three possibilities: (i) with a difference greater than rope, random selection (Ran) wins over
filter method, (ii) filter method wins over random selection with a difference larger than
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Fig. 1 Critical difference diagrams showing the ranks after applying feature selection over the seven synthetic
datasets. For feature selection methods that require a threshold, the option to keep 10% is indicated by ‘-10’,
the option to stay with 20% is indicated by ‘-20’, and the option ‘-log’ refers to use log2

rope, and (iii) the difference between the outcomes is inside the rope area. We consider a
substantial difference if one of these probabilities is greater than 95%. As a result, using
simplex graphs, Fig. 2 depicts the distribution of differences between each pair of methods.
As can be seen, although the CD diagrams showed a slight superiority of the random selection
together with the 20% threshold compared to the ranker Information Gain (IG), the simplex
graphs show that there are no significant differences. In fact, facing only these two methods,
the probabilities are 75% skewed to the feature selection method. This may be due to the
fact that, in their attempt to compare all the proposed methods, the CD diagrams ignore the
individual confrontations carried out by means of the simplex graphs.

Table 5 displays the classification error obtained by the five classifiers and the eight fea-
ture selection methods—the seven filters and random selection—over the seven synthetic
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(a) C45 classifier (b) NB classifier

(c) 3NN classifier (d) Random Forest classifier

Fig. 2 Simplex graphs for pair comparison of each feature selection method and the baseline random selection
(Ran) over the seven real datasets using Bayesian hierarchical tests: random selection (left) and filter method
(right)

Table 5 Classification errors
obtained by the five classifiers for
the seven synthetic datasets tested

C4.5 NB 3NN SVM RF

Relevant 9.04 25.55 10.15 25.63 3.80

CFS 30.80 31.17 34.00 33.34 27.95

INT 29.74 31.14 32.50 33.09 26.79

IG-10 40.50 43.49 45.36 42.49 39.19

IG-20 34.86 41.71 44.20 39.04 37.57

IG-log 25.94 35.54 28.01 36.10 23.90

RelF-10 36.92 42.49 41.53 41.68 35.51

RelF-20 33.72 38.92 39.49 39.52 34.46

RelF-log 30.03 34.77 33.18 36.80 30.15

MIM-10 35.41 37.94 37.72 37.00 34.51

MIM-20 30.25 35.24 37.46 35.01 31.53

MIM-log 29.13 31.67 31.02 32.00 29.17

mRMR-10 37.58 37.9 39.67 36.24 34.79

mRMR-20 31.76 34.91 37.94 35.62 32.93
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Table 5 continued C4.5 NB 3NN SVM RF

mRMR-log 32.12 32.15 35.15 32.72 32.53

JMI-10 34.03 38.61 36.07 38.04 32.54

JMI-20 29.27 35.65 35.75 35.33 32.69

JMI-log 28.17 32.30 31.24 33.49 28.85

Ran-10 57.99 59.79 58.40 57.72 59.11

Ran-20 54.28 56.18 58.72 56.19 56.36

Ran-log 52.29 54.53 55.51 54.23 52.61

The first row (Relevant) corresponds to the error obtained by the model
when the known relevant features are used

datasets using the five different classifiers (the lowest classification error obtained for each
feature selection method is in bold). As can be seen, the lowest classification errors have
been obtained by the non-linear classifiers C4.5 and Random Forest. Let us remember that
within the seven synthetic datasets used, three of them (XOR-100, Parity3+3 and Made-
lon), represent non-linear scenarios. Therefore, and taking into account that SVM and naive
Bayes are linear classifiers (a linear kernel is being used for SVM), good results were not
expected. Furthermore, it can also be clearly observed that random selection obtains theworst
classification results, with hardly any differences across the different classifiers.

4.2 Real datasets

In this section we will perform experiments on real datasets, to check if the results are similar
to those obtained on synthetic data. For this task, we selected a suite of 38 real datasets.
CFS and INTERACT, regardless of the classifier used, appear to be the most suitable feature
selection methods for this type of datasets, as shown in Fig. 3. Apart from obtaining good
results, these two feature selection methods have an added advantage: they do not require to
establish a threshold for the number of features to keep. When it comes to ranker methods
(which do need a threshold), a percentage of 20% appears to be the best option overall.
Moreover, as for the synthetic datasets, the univariate MIM method achieves good results
despite its simplicity. Although in this case it only manages to obtain better classification
results than the ReliefF multivariate method.

Now, we proceed to compare the results obtained by the feature selection methods tested
with the baseline, which we established as the Random selection (Ran). As expected, the
random selection is the worst option, when using the thresholds logarithmic and 10%. Nev-
ertheless, when we allow the random selection to keep more features (threshold 20%), it is
interesting to see that the random selection is competitive when compared with the other
methods. Thus, using simplex graphs as we did with synthetic datasets, Fig. 4 depicts the
distribution of differences between random selection (with a 20% threshold) and the ranker
methods Information Gain, ReliefF, and MIM (with a 10% threshold). Even although the
random selection with a 20% threshold is not statistically significant when compared to the
outcomes of numerous ranker methods, it consistently outperforms them. This indicates that
the rankermethods (ReliefF, InfoGain, andMIM) are very dependant of the chosen threshold,
so a bad choice of threshold produces results that are similar to randomly choosing 20% of
features. These findings highlight the importance of choosing a proper threshold, which is
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Fig. 3 Critical difference diagrams showing the ranks after applying feature selection over the 38 real datasets.
For feature selection methods that require a threshold, the option to keep 10% is indicated by ‘-10’, the option
to stay with 20% is indicated by ‘-20’, and the option ‘-log’ refers to use log2

a difficult procedure that is frequently dependent on the problem to solve (and sometimes,
even the classifier that is subsequently used).

Table 6 displays the classification error on 38 real datasets, for each classifier and feature
selection method (seven filters and the random selection). A total of five classifiers were
employed, and lowest classification errors are marked in bold face. Despite the fact that there
are no significant differences among the feature selection methods, it is worth highlighting
that Random Forest seems to be the best classifier in this setting.
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(a) C45 classifier (b) SVM classifier (c) SVM classifier

(d) SVM classifier (e) Random Forest classifier (f) Random Forest classifier

Fig. 4 Simplex graphs for pair comparison of each feature selection method and the baseline random selection
(Ran) over the 38 real datasets using Bayesian hierarchical tests: random selection (left) and filter method
(right)

Table 6 Classification errors
obtained by the five classifiers for
the 38 real datasets tested

C4.5 NB 3NN SVM RF

CFS 15.17 18.05 14.83 14.85 13.06

INT 15.01 18.87 14.99 14.98 12.80

IG-10 22.05 26.51 21.96 24.93 21.12

IG-20 18.17 23.52 18.20 19.88 16.88

IG-log 21.65 27.30 21.96 25.84 20.92

RelF-10 23.66 27.67 23.88 25.13 22.87

RelF-20 19.86 24.39 19.84 20.33 18.11

RelF-log 23.57 28.12 23.40 26.27 22.67

MIM-10 22.08 26.64 22.24 25.08 21.23

MIM-20 18.13 23.55 17.92 19.88 16.69

MIM-log 21.88 27.37 22.23 26.04 20.98

mRMR-10 20.79 24.15 20.64 23.19 19.56

mRMR-20 18.10 23.35 17.88 19.66 16.57

mRMR-log 19.48 23.79 19.31 22.93 18.39

JMI-10 20.34 23.29 19.95 22.44 19.02

JMI-20 16.84 20.70 16.40 17.95 15.05

JMI-log 18.89 22.43 18.55 21.98 17.64

Ran-10 30.34 34.87 30.87 32.08 29.45

Ran-20 23.66 29.15 24.12 24.96 22.13

Ran-log 29.16 34.66 29.69 32.66 28.57
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4.2.1 Microrrray datasets

The mismatch between dimensionality and sample size has been seen as a specific issue
for machine learning researchers when it comes to DNA microarray classification. Several
studies have shown that the majority of genes detected in microarray experiments do not
contribute to accurate sample classification (Bolón-Canedo et al., 2014). Feature selection
is recommended to avoid the curse of dimensionality by identifying the specific genes that
improve classification accuracy.

Figure 5 illustrates the critical difference diagrams for each classification algorithm, based
on the same study as for the previous datasets, in order to examine the ranks of the feature
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(d) SVM classifier
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(e) Random Forest classifier

Fig. 5 Critical difference diagram showing the ranks after applying feature selection over the 17 microarray
datasets. For feature selection methods that require a threshold, the option to keep 5% is indicated by ‘-5’, the
option to stay with 10% is indicated by ‘-10’, and the option ‘-log’ refers to use log2
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selection methods throughout the 17 DNA microarray datasets. The ideal feature selection
strategy varies depending on the classifier, as can be seen. In general, though, we can say
that CFS is the best option. Regarding the results obtained by the univariate methods, and
unlikewith the synthetic and real datasets, the IGmethod seems towork better thanMIM, also
achieving results similar to those of othermore complexmultivariatemethods. Thepercentage
that maintains 5% of the features appears to be the best fit for these high-dimensional datasets
among the many thresholds used by ranker algorithms.

Random selection gives the worst classification accuracy in the C4.5, NB, 3NN, and
RandomForest classifiers, both for the thresholds that retain 5 and 10% and for the logarithm,
according to the statistical test findings. The results of the SVM reveal a very striking pattern.
When the number of features is low (in contrast to the dataset’s initial size), this classification
strategy appears to perform poorly (Miller, 2002). Remember that if the ranker approaches

Fig. 6 Simplex graphs for pair comparison of each feature selection method and the baseline random selection
(Ran) over the 17 microarray datasets for SVM classifier using Bayesian hierarchical tests: random selection
(left) and filter method (right)
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utilize a threshold to select the top log2(n) features, the number of features used to train the
model for these datasets will be limited to 15 (less than 1%of the originalmicroarray dataset’s
features). Figure 6 depicts the distribution of the differences between random selection—with
5% and 10% thresholds—and the ranker methods with the logarithm threshold using simplex
graphs, just as it does with real datasets. Random selection outperforms ranker methods that
keep the top log2(n) features on average and statistically significant, as can be seen. These
data illustrate, once again, and much more clearly in this example, that when utilizing ranker
methods, an incorrect threshold decision can result in performance comparable to a random
selection of features. This is a challenging problem to tackle because the only way to be
sure we are using the right threshold is to attempt a large number of them and compute the
classification performance for that subset of features, which would result in inadmissible
computation times.

The classification error produced by the five classifiers and the eight feature selection
methods over the 17 DNA microarray datasets is shown in Table 7 (the lowest error rates
highlighted in bold). As mentioned in Navarro (2011), these results demonstrate the superi-
ority in performance of SVM over other classifiers in this domain.

4.3 Case studies

After presenting the experimental results, and before discussing and analyzing them in detail,
we will describe several cases of study.

Table 7 Classification errors
obtained by the five classifiers for
the 17 DNA microarray datasets
tested

C4.5 NB 3NN SVM RF

CFS 30.15 19.77 19.49 17.53 22.52

INT 30.40 20.26 19.56 18.46 22.56

IG-5 27.10 21.98 20.08 15.88 23.73

IG-10 27.52 22.05 20.55 15.73 23.52

IG-log 30.54 23.37 24.73 25.60 23.98

RelF-5 27.46 22.99 19.00 16.90 23.16

RelF-10 27.10 23.01 19.04 16.81 24.81

RelF-log 31.76 27.24 25.73 27.30 26.91

MIM-5 29.08 23.73 20.37 16.70 24.40

MIM-10 28.83 22.94 21.15 15.82 25.28

MIM-log 31.90 24.95 25.78 24.86 27.00

mRMR-5 30.07 21.67 18.92 16.74 24.63

mRMR-10 29.45 22.94 21.15 15.82 25.97

mRMR-log 30.33 23.56 23.71 24.31 24.84

JMI-5 32.72 24.17 23.19 17.89 27.77

JMI-10 32.06 25.19 23.68 16.72 29.36

JMI-log 32.51 25.91 27.21 26.28 27.16

Ran-5 33.00 28.08 28.22 19.62 32.08

Ran-10 32.69 26.66 28.11 17.83 32.96

Ran-log 43.70 43.00 41.62 41.47 41.35
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4.3.1 Case study I: Dealing with noise in the inputs

There are various scenarios that can obstruct the feature selection process, including the
presence of irrelevant and redundant features, attribute interaction, and data noise. Therefore,
in this case study we will analyze the influence of the presence of noise at the input for the
Led-25 dataset (see Table 2). The LED dataset requires properly identifying seven LEDs
that correspond to values ranging from 0 to 9. The Led-25 dataset was created by adding 17
irrelevant features. Different levels of noise in the inputs (10 and 20 percent) were added to
make this dataset more challenging. It is worth noting that, because the features are binary,
adding noise results in the wrong value being assigned to the relevant features.

Figure 7 depicts the behavior of feature selection approaches in response to different levels
of noise, as measured by the classification error of SVM and Random Forest classifiers. For
the rankings methods, only the thresholds of 10 and 20 percent are shown, since in the case
of this dataset, the number of features retained by the 20% threshold is the same as that of the
logarithm. As we would expect, the classification error grows as the level of noise increases,
regardless of the feature selection method used. Furthermore, it is interesting to see that as
the noise level at the input is increased, the difference in terms of classification error between
the feature selection methods and the random selection is markedly reduced. In fact, when
the noise level is 20%, random selection achieves better classification results than various
feature selection methods.

This highlights the low robustness of feature selection methods to noise in the inputs,
where the methods most resistant are ReliefF, mRMR, and JMI, while the subsets filters
(CFS and INTERACT) and the univariate approach Information Gain are the most affected
by noise.

4.3.2 Case study II: Influence of discretization

Many feature selection algorithms are designed to handle only discrete data (Bolón-Canedo
et al., 2011). To apply these algorithms to numeric features, a common practice is to discretize
the data before conducting feature selection. However, the choice of how to group continuous
values, the number of intervals to generate, and the positioning of interval cut points on the
continuous attribute scale may differ among various discretization methods. Among the
discretization methods available in the literature, we opted to use Equal-width due to its
widespread popularity. Equal-width divides the number line between vmin and vmax into b
intervals (or bins) of equal width, where b is a user-predefined parameter.

To investigate the impact of discretization, particularly theEqual-widthmethod, on the fea-
ture selection process, we will conduct a case study. During this study, we will systematically
vary the number of bins, exploring the effects of 5, 10, 15, and 20 bins on the analysis. For this
purpose, we choose seven DNA microarray datasets from Table 4, namely 9-tumors, brain-
tumor-1, CNS, DLBCL, leukemia-1, SRBCT and TOX-171. Table 8 presents an overview
of the classification results obtained. The first observation indicates that the version using 5
bins yields the most favorable outcomes. Concerning the feature selection methods, ReliefF
demonstrates superior performance on average, followed closely by CFS and IG. Among the
ranking-based methods, the 5% threshold consistently achieves the lowest errors across the
five methods, with ReliefF showing a tie with the 10% threshold in this regard.

Finally, SVMstands out as the optimal classifier for this particular type of data, as indicated
in Table 9. Therefore, we can affirm that, overall, despite the variation in the number of bins
and the observed impact of discretization on feature selection, the conclusions drawn in
Section 4.2.1 remain consistent.
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Fig. 7 Classification error (%) for LED-25 dataset with different levels of noise (0%, 10% and 20%). Random
selection is indicated by a dashed line

4.3.3 Case study III: CFS vs the rough set attribute method QuickReduct

Rough Set Theory (Pawlak, 1991; Kopczynski & Grzes, 2022) is a formal mathematical
technique that aids in reducing dataset dimensionality by quantifying the information content
concerning a specific classification. Within rough set theory, the notion of an attribute reduct
holds significance, referring to a subset of attributes that, when taken together, effectively
retain a specific property of the dataset while ensuring that each attribute, individually, is
essential for this preservation. Thus, in order to analyse other feature selection methods
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Table 8 Average of the
classification errors obtained by
the five classifiers on the 7
microarray datasets for the
different feature selection
methods and number of bins of
the Equal-width discretization
method

FS Equal-width discretization Average
method 5 bins 10 bins 15 bins 20 bins

CFS 24.07 23.53 23.64 23.44 23.67

INT 25.72 25.09 25.08 24.63 25.13

IG-5 23.11 22.06 23.19 23.55 22.98

IG-10 23.48 23.14 23.31 23.91 23.46

IG-log 30.10 28.75 29.96 28.42 29.31

RelF-5 23.33 23.05 23.24 21.96 22.89

RelF-10 23.18 23.24 22.25 22.89 22.89

RelF-log 30.03 29.61 29.28 27.86 29.20

MIM-5 22.70 23.97 26.65 27.20 25.13

MIM-10 23.99 25.32 25.65 26.29 25.31

MIM-log 29.50 30.39 30.51 31.42 30.45

mRMR-5 23.16 24.73 24.68 25.73 24.58

mRMR-10 23.70 24.84 25.76 26.42 25.18

mRMR-log 27.58 29.43 30.76 32.49 30.06

JMI-5 25.93 27.33 29.20 30.39 28.21

JMI-10 25.87 27.91 29.94 29.65 28.34

JMI-log 28.74 34.01 35.20 39.69 34.41

Average 25.54 26.26 26.96 27.41

that return a set of features, in this case study we will compare the CFS method, explained
above, and the QuickReduct method, belonging to the family of rough set attribute reduction
algorithms.

For the experiments, we selected seven DNAmicroarray datasets from Table 4. The initial
part of our analysis presents the classification results obtained by the five previously used
classifiers after applying the CFS and QuickReduct feature selection methods, as shown in
Table 10. The results demonstrate that in nearly all datasets and classifier scenarios, CFS
consistently yields the lowest classification errors, often exhibiting a significant difference
compared to QuickReduct. The possible reason behind this can be observed in Table 11,
where QuickReduct selects significantly fewer features compared to CFS. The number of
features selected by QuickReduct is notably insufficient since the microarray datasets used
in this case study have a range of features between 2308 and 7129.

However, while CFS exhibits superiority in terms of the achieved classification results, it
comes at the expense of a longer execution time, as evidenced in Table 12.

Table 9 Average of the
classification errors obtained by
the five classifiers on the 7
microarray datasets and feature
selection methods for the
different number of bins of the
Equal-width discretization
method. Lower error rates
highlighted in bold

Equal-width Classifier
discretization C4.5 NB 3NN SVM RF

5 bins 34.01 24.99 22.75 18.54 27.41

10 bins 35.03 24.82 23.98 19.68 27.79

15 bins 36.22 25.78 24.58 19.80 28.41

20 bins 33.81 26.54 26.16 20.86 29.67
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Table 10 Classification errors obtained by the five classifiers for the CFS and QuickReduct feature selection
methods and the DNA microarray datasets 9-tumors, brain-tumor-1, CNS, DLBCL, leukemia-1, SRBCT and
TOX-171. Lower error rates highlighted in bold

Classifier FS Dataset
method 9-tum brain-1 CNS DLBCL leuk-1 SRBCT TOX-171

C4.5 CFS 68.33 31.11 48.33 23.56 9.81 19.49 39.75

QR 85.00 31.11 33.33 40.67 33.43 34.63 49.06

NB CFS 55.00 18.89 38.33 0.00 6.86 1.25 23.34

QR 66.67 23.33 58.33 40.67 33.14 32.28 47.90

3NN CFS 58.33 20.00 46.67 6.67 6.95 0.00 14.00

QR 80.00 20.00 35.00 28.44 33.52 39.71 43.75

SVM CFS 46.67 18.89 41.67 2.22 5.52 0.00 9.36

QR 86.67 18.89 35.00 40.89 41.52 44.56 47.28

RF CFS 50.00 20.00 43.33 6.44 4.10 2.43 16.92

QR 85.00 21.11 31.67 36.67 35.05 29.78 49.66

Table 11 Number of features selected by the CFS and QuickReduct methods for the DNAmicroarray datasets
9-tumors, brain-tumor-1, CNS, DLBCL, leukemia-1, SRBCT and TOX-171

FS Dataset
method 9-tum brain-1 CNS DLBCL leuk-1 SRBCT TOX-171

CFS 47.40 149.20 45.20 61.40 93.80 108.20 115.60

QR 5.80 40.20 1.40 7.40 3.40 2.20 13.80

Table 12 Runtimes (in seconds) for the CFS and QuickReduct methods for the DNA microarray datasets
9-tumors, brain-tumor-1, CNS, DLBCL, leukemia-1, SRBCT and TOX-171

FS Dataset
method 9-tum brain-1 CNS DLBCL leuk-1 SRBCT TOX-171

CFS 248.34 1253.76 398.29 84.02 574.81 115.46 1339.91

QR 141.43 976.07 113.84 75.23 112.10 28.50 864.79
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Fig. 8 An example of the use of feature selection (ranker methods with logarithm threshold) for one sample
of the class “9” digit. Green dots mark selected features. For the sake of a clear visualization, those features
that correspond with pixels that are always in the white area are not marked
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Fig. 9 An example of the use of feature selection (ranker methods with 10% threshold) for one sample of the
class “9” digit. Green dots mark selected features. For the sake of a clear visualization, those features that
correspond with pixels that are always in the white area are not marked
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4.3.4 Case study IV: An illustrative example of feature selection over Mnist dataset

In this case of study, we will illustrate the feature selection process over the MNIST dataset
(LeCun et al., 1998), in which only two confusable classes are used: digits 4 and 9, because
of the small distinctions between them. We thus have 4000 examples per class available. In
the original representation, each digit image has 28× 28 gray level pixels (784 features).

For these experiments, in the case of the ranker methods, we have used both the 10% and
the logarithm for the threshold. Thus, in the following figures we can observe the features
selected by the different feature selection methods—marked in green—, as well as by the
random selection over the original digit image. As can be seen in Fig. 8, where the logarithm
threshold is used for the ranker methods, all feature selection methods select features that
illustrate the distinguishable part with the digit 4 (that is, the closed upper part of 9). However,
this does not happen in the case of random selection, which fails to define the area, where
only one of the 10 selected features falls on the representation of the digit. This makes the
classification task to distinguish digits 4 and 9 really complex. When we select the top 10%
of features for the ranking methods—i.e. we are left with 78 features—a greater part of the
digit is defined (see Fig. 9). In the case of feature selection methods, they continue to select
a greater number of features in the area distinguishable with the digit 4 (especially in the
case of ReliefF). Meanwhile, the random selection continues to select many features that fall
outside the representation of the digit, thus not leaving the upper part of the digit 9 defined.

5 Conclusions and future work

The goal of this research is to thoroughly examine the most common approaches in the
field of feature selection, make appropriate comparisons, as well as to determine if there
exist some methods that are not able to outperform those results obtained by the random
selection. We tested 62 synthetic and real datasets (including the challenging family of DNA
microarray datasets) and found that feature selection is effective in general, and that feature
selection approaches are superior than random selection in most circumstances, as expected.
Our experiments revealed, in particular, that:

• CFS is an excellent choice for any dataset. As a result, when having no knowledge of the
specifics of the problem to be solved, we recommend using the CFS method, which has
the extra benefit of not requiring the establishment of a threshold. However, if we take
into account the computational cost of the feature selection methods used, the univariate
filter MIM seems an appropriate choice, which manages to obtain competitive results
compared to other more complex multivariate methods.

• Regarding the use of different thresholds, it seems that 10% is more appropriate for
the synthetic datasets. For real datasets, the 20% criterion for normal datasets (although
worse than the subset approaches, which are the winning option for this type of dataset)
and the 5% threshold for microarray datasets appear to be more appropriate. Indeed,
when using ranker feature selection methods, the threshold selection is crucial, as our
research demonstrated. For some thresholds, in particular, the outcomes were as poor as
if some features were chosen at random.

• Despite the fact that the classification results obtained were not significantly different
between the feature selection methods used—as discussed in Morán-Fernández et al.
(2020)—, we can conclude that Random Forest in the case of synthetic and real datasets
and SVM in the case ofmicroarrayswere the ones that obtained the best results in terms of
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classification precision in a general way across all datasets used, as Fernández-Delgado
et al. (2014) concluded in their study.

• With respect to the presence of noise, and as we would have expected, the classification
accuracy decreases when the level of noise increases. Besides, the feature selectionmeth-
ods have not proved to be very robust to noise, obtaining classification errors similar to
those given by random selection. This highlights the importance of working with quality
data.

• Concerning the impact of discretization on feature selection, and particularly in this study,
the choice of 5 bins in the Equal-width method yields the most favorable results.

As previously stated, determining an appropriate threshold for ranker-type approaches
is a major issue in feature selection that has yet to be solved. As a result, we plan to test
a wider number of thresholds in the future, as well as establish an automatic threshold for
each dataset type. Another interesting line of research would be to develop feature selection
methods more robust to noise, as well as testing other discretization methods to gain further
insights into their potential effects on feature selection.
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