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Abstract

Modern IoT ecosystems are the preferred target of threat actors wanting to incorpo-
rate resource-constrained devices within a botnet or leak sensitive information. A major
research effort is then devoted to create countermeasures for mitigating attacks, for instance,
hardware-level verification mechanisms or effective network intrusion detection frameworks.
Unfortunately, advanced malware is often endowed with the ability of cloaking communi-
cations within network traffic, e.g., to orchestrate compromised IoT nodes or exfiltrate data
without being noticed. Therefore, this paper showcases how different autoencoder-based
architectures can spot the presence of malicious communications hidden in conversations,
especially in the TTL of IPv4 traffic. To conduct tests, this work considers [oT traffic traces
gathered in a real setting and the presence of an attacker deploying two hiding schemes (i.e.,
naive and “elusive” approaches). Collected results showcase the effectiveness of our method
as well as the feasibility of deploying autoencoders in production-quality IoT settings.
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1 Introduction

The flexibility of Internet of Things (IoT) technologies is the main driver for their diffusion,
especially in large-scale scenarios, such as the remote monitoring of critical infrastructures or
the control of complex cyber-physical systems. Despite the proliferation of products targeting
the mass market (e.g., for smart lighting) as well as the integration of sensors to create novel
use cases (e.g., for health applications or the engagement of tourists (Balandina et al., 2015)),
IoT ecosystems are frequently plagued by countless security and privacy flaws (Neshenko
et al., 2019). Specifically, the resource-constrained nature of many affordable devices often
requires “lean” protocols/services, which could partially fail to guarantee suitable degrees of
security. Moreover, the consumer-oriented nature of several [oT ecosystems may cause erratic
configuration policies, the presence of aged devices without any timely fix against new CVEs,
and incorrect traffic partitioning schemes. As a consequence, threat actors intensified their
activity against IoT deployments in the last years. For instance, the Mirai malware allowed to
access a multitude of IoT devices to launch attacks against many international organizations
(Antonakakis et al., 2017), while traffic inspection and fingerprinting have been largely used
to derive habits or gather sensitive information (Sivanathan et al., 2018).

Therefore, both industry and academia are making considerable efforts to prevent and
detect attacks against [oT nodes, also by deploying Artificial Intelligence (Al) and Machine
Learning (ML) techniques (see, e.g., (Sahu et al., 2021)). Unfortunately, this spawned an
“arm race”, leading to a new-wave of malware endowed with mechanisms to remain unno-
ticed, bypass secure execution perimeters, or resist forensics and reverse-engineering attempts
(Chakkaravarthy et al., 2019). Among the various offensive techniques, the ability to cloak
network activity or implement hidden communications services are demonstrating their effec-
tiveness. For instance, nodes of a botnet may encrypt traffic, mimic other applications and
protocols, or eavesdrop well-known services (Vormayr et al., 2017). To this aim, an emerging
attack scheme exploits network covert channels, i.e., parasitic communication paths cloaked
within legitimate traffic flows (Mazurczyk and Caviglione, 2015). In more detail, they can
make it difficult to recognize Command & Control (C&C) flows or the exfiltration of data
within the bulk of traffic. Covert channels can be also used to bypass traffic blockages or
firewalls, for instance, to orchestrate compromised devices. Alas, each method for hiding the
presence of a malicious communication requires a tight coupling with the abused protocol,
thus making the design and deployments of countermeasures poorly generalizable (Zander
et al., 2007). Fortunately, the various cloaking mechanisms could be brought back to a set of
recurrent “hiding patterns”, mainly based on the overwriting of a field or the manipulation
of a temporal behavior, see, (Wendzel et al. (2015); Wendzel et al. (2021)) for a detailed
taxonomy.

To partially balance the intrinsic asymmetry between attack and defense phases, AI/ML
demonstrated to be effective in detecting network-wide threats and improving the security
of IoT frameworks (Elsadig and Gafar, 2022) even if additional vulnerabilities may arise
(Caviglione et al., 2023). However, the very recent surge of malware targeting loT devices
using hidden communications has been almost neglected except for the problem of identifying
timing channels in SCADA applications (Alcaraz et al., 2019), which are outside the scope
of our research.

Hence, this work addresses the problem of detecting network covert channels targeting
[oT ecosystems, i.e., devices compromised by an attacker that remotely exchanges data while
remaining unnoticed. In more detail, to identify such anomalous behavior, we propose a Deep
Learning (DL) technique adopting an unsupervised incremental learning approach based on
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an ensemble of neural networks. This allows for learning effective detection models when a
labeled training set is not available and can be incrementally updated to make the deployment
feasible on resource-constrained IoT devices. The contribution of this work is two-fold: i)
the design of an Al-based framework to spot communications hidden in the TTL field of
the header of IPv4 packets, and ii) an extensive comparison of different neural architectures
when handling real traffic traces. Since middleboxes for protecting IoT ecosystems are often
implemented in resource-constrained devices (e.g., home gateways), emphasis has been put
on evaluating the time requirements of the various Al approaches.

This paper largely extends the work presented in (Cassavia et al. (2022)). Compared to
such previous research, the present work has the following novel contents: i) it considers many
combination strategies for merging the outputs of the various ensembles, even with varying
sizes, ii) it compares the performances of different baseline architectures, iii) it analyzes the
convergence of Al methods deployed to spot the presence of hidden network communications,
iv) it further investigates the behavior of the proposed deep ensemble model when dealing
with a scarce amount of data, v) it evaluates the applicability of ML-capable frameworks in
realistic [oT settings, especially in terms of the time needed to process the data for detecting
the hidden transmission, and finally vi) it extends the original attack model by introducing
an “advanced” threat actor able to improve its stealthiness via a suitable encoding.

The rest of the paper is structured as follows. Section 2 reviews past research works on
hidden communications in IoT environments, whereas Section 3 introduces the considered
attack scenario and threats. Section 4 showcases the detection approach based on different
neural architectures, and Section 5 discusses numerical results. Finally, Section 6 concludes
the paper and outlines future research directions.

2 Related work

Ashinted, the mostrecent IoT ecosystems are characterized by a complex interplay of devices,
communication technologies, network protocols, and software layers. As a consequence,
their attack surface is difficult to outline, and vulnerabilities range from misconfiguration to
zero-day-based exploits (Noor and Hassan, 2019). Despite the wide array of offensive oppor-
tunities, network connectivity is still the preferred attack vector. For instance, a threat actor
can remotely inject malicious routines, gather traffic to infer habits of users, or orchestrate
compromised devices for launching Denial of Service (DoS) campaigns (Caviglione et al.,
2018; Caputo et al., 2020). As an example of the magnitude of the impact of hidden com-
munication techniques targeting IoT deployments, the work (Velinov et al., 2019) introduces
thirteen covert channels exploiting the Message Queuing Telemetry Transport (MQTT) pro-
tocol at the basis of the ubiquitous publish-subscribe paradigm. The motivation for assessing
such a protocol is rooted in the availability of about 50, 000 MQTT servers, which could
be accessed via the Internet without any password. Among the various hiding schemes, an
attacker could encode and transmit secret information by overwriting unused protocol fields
or by modulating the timing/ordering of topics exchanged by IoT nodes (e.g., subsequent
readings of a sensor). In this context, the most popular detection technique relies on the “com-
pressibility” metric, i.e., the more the timestamps of messages are regular, the higher would
be the compression ratio of their textual representation (Cabuk et al., 2004). Even if machine
learning approaches can be deployed to detect information cloaked in MQTT conversations,
the research community is still focused on creating suitable datasets to model more canonical
network attacks such as packet flooding, slow-DoS, and brute-force authentications (Vaccari
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et al., 2020). Moreover, [oT devices and gateways are often resource-constrained; hence pre-
venting the abuse of a network behavior is preferable to performing detection/mitigation at
run-time. For instance, if [oT nodes are devoted to sensing the environment, their update fre-
quency can be forced to be fixed, thus voiding artificial skews in the produced network traffic
carrying the measurement (Ho, 2019). Another early line of defense impairs the attacker
when trying to modulate the evolution of network traffic, including the envelope of through-
put. In this case, traffic normalization or the identification of well-defined “hiding patterns”
revealed to be effective tools (Frolova et al., 2021; Wendzel et al., 2021).

The tight coupling of IoT technologies with industrial, health, and cyber-physical applica-
tions has also spawned a vivid research area dealing with the creation of air-gapped channels.
In this case, a hidden communication path is created by abusing a physical behavior, which
can be remotely sensed by the attacker to infer information. For instance, light sources (e.g.,
a smart light bulb) can be adjusted to encode a signal without causing visible alterations
(Jung et al., 2022). Even if Al can be used to reveal anomalous patterns, the most effective
defensive approach concerns the adoption of trusted hardware (e.g., to avoid inoculation of
firmware capable of altering the physical behavior of an IoT node) or shielding mechanisms
(Carrara and Adams, 2015). Yet, addressing this type of channel is definitely outside the
scope of our work.

Concerning the use of AI/ML for detecting hidden communications, the survey in (Elsadig
and Gafar (2022)) offers a relevant corpus of works focusing on emerging scenarios, such
as threats targeting the IPv6 protocol, Voice over Long Term Evolution services, and IoT
deployments. Unfortunately, mechanisms specifically tailored for the peculiarities of the [oT
have been largely neglected in favor of more general frameworks. Even if reusing network-
or protocol-agnostic techniques could work in terms of accuracy (e.g., the ability to detect
traffic flows containing cloaked contents), this could be unfeasible in realistic deployments.
For instance, in IoT settings, the detection often happens at the border of the network d-la
edge, or data could not be sent or processed in a centralized manner due to encryption or
privacy constraints. In this perspective, the work (Thakkar and Lohiya, 2021) investigates
issues and challenges when ML/DL are used for intrusion detection in IoT scenarios. Alas, the
work does not consider covert communications, but it solely addresses standard threats, such
as worms, phishing attempts, DoS attacks, and diffusion of trojans. The work (Nowakowski
et al., 2021) is a notable exception since it proposes to use ML and data mining techniques
to exploit the hierarchical organization of frequent sets to reveal communications hidden
in the traffic of IoT nodes. Even if the paper also considers information nested in the TTL
field of IPv4 (along with other cloaking techniques targeting TCP and HTTP traffic), it does
not provide insights on the feasibility of the approach when adopted in production-quality
scenarios, privacy and scalability implications, or computational requirements. Moreover,
such a framework utilizes a mechanism for handling raw-data-specific representations rather
than general autoencoders to directly observe a protocol feature of interest.

Thus, to the best of the knowledge of the authors, the only works leveraging the adop-
tion of autoencoders while considering the benefits of an incremental deep ensemble are
(Cassavia et al. (2022)) and (Guarascio et al. (2022)). However, they are preliminary inves-
tigations and only focus on a very limited scenario, both in terms of neural architectures
and attack models. Summing up, Table 1 reports the various techniques already discussed in
the literature, including their relevance with respect to the considered [oT scenario and the
detection/mitigation methodology.
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3 Attack scenario and threat modelling

In this section, we first introduce the attack scenario and then we discuss the dataset built to
model malware covertly exchanging information within an IoT ecosystem.

3.1 Attack scenario

In this work, we investigate the problem of revealing malware communications targeting
the network traffic of IoT ecosystems also in the presence of different offensive behaviors.
Without loss of generality, we assume that the attacker has already taken control of the IoT
node, e.g., by using a well-documented CVE or by dropping a payload via phishing/spear-
phishing (Gupta et al., 2017; Blinowski and Piotrowski, 2020). The reference scenario is
depicted in Fig. 1. In more detail, Fig. 1a depicts the general attack model where a threat
actor can abuse an IoT node to create a network covert channel. The hidden communication
path can be used to exfiltrate information towards a remote server or to exchange commands
without being spotted by an intrusion detection system or blocked by a firewall. Despite almost
any protocol or traffic feature can be manipulated for hiding data, the resource-limited nature
of IoT nodes poses constraints on the complexity of the covert channel (Zander et al., 2007).
Hence, the hiding mechanism should be simple to not disclose the presence of the malware
due to additional delays, anomalous energy consumption, or intermittent connectivity when
an [oT node is remotely operated. To cope with such requirements, we consider a malware
cloaking data within the TTL field of the IPv4 header (Skowron et al., 2020; Zander et al.,
2007). Specifically, the malicious software manipulates the TTL of IPv4 traffic generated by
the compromised IoT node to transport arbitrary information. To not appear suspicious, the
malware should not directly write the secret data in the field (Zander et al., 2006). Rather, it
should encode the bits 1 and 0 by increasing or decreasing the observed TTL of a suitable
threshold or by exploiting the most popular values as “high” and “low” signals. The attacker
should then design a proper information hiding mechanism by taking into account the “clean”
traffic conditions and select accordingly how bits are encoded. To this aim, the threat actor
is expected to perform a reconnaissance campaign to gather traffic information (e.g., by
fingerprinting IoT devices) or deploy a packet sniffing routine for monitoring local network
conversations (Mazurczyk and Caviglione, 2021; Zorawski et al., 2023). To have a general
setting, we consider the two use cases depicted in Fig. 1b. In more detail:

e Case 1 (Naive Encoding Scheme): the malware encodes the bit 1 and 0 by selecting a
single TTL value for each bit;

e Case 2 (Advanced Threat Scheme): the malware encodes the bit 1 and 0 by randomly
selecting a single TTL value from three alternatives for each bit.

Despite the specific reconnaissance and encoding mechanism, the final result could be
organized into a heatmap. Figure 1b. depicts the “distribution” of TTL values obtained in
a real ToT setup! during an observation window of 12 hours. As shown, the values for the
TTL aggregate in two main ranges 32 — 64 and 208 — 224. Other values have an intermit-
tent behavior, e.g., datagrams with a TTL equal to 128 are present only for 3 hours, thus
limiting the duration of a possible covert communication. To avoid that it could be easily
detected, the data hidden in the TTL should not represent an anomaly, i.e., disrupt the clean
traffic conditions. Therefore, when the malware deploys a naive mechanism (see Case 1 in

1 Heatmaps have been computed by using the 24-hour slice of data captured during Sept. 22-23, 2016, whereas
for the performance evaluation, we used traces containing traffic collected during Sept. 22-29, 2016.
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Fig. 1 Reference attack scenario

Fig. 1b), the bit 0 is encoded by using a TTL value equal to 64, whereas the bit 1 is encoded
by using 100. Differently, a more advanced scheme tries to reduce the footprint left in the
traffic, e.g., in terms of anomalous distributions or possible signatures. Hence, at each bit
sent, the malware can slightly adapt its encoding scheme by selecting a different TTL value
(see, Case 2 in Fig. 1b). As a result, the bit 0 is encoded by using a TTL value among 44, 56,
and 57, whereas the bit 1 is encoded by using a TTL value among 210, 223, and 224.

3.2 Datasets for modelling the covert channel

To model the malware hidden communications and to quantify the performance of our
approach, we built a benchmark dataset starting from real traffic traces described in
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(Sivanathan et al. (2018)). To avoid burdening the data, we removed IPv6, ICMP, DNS,
and NTP conversations, as well as multicast/broadcast traffic. This is not a limitation: for
instance, broadcast traffic is mainly link-local and thus not suitable for creating Internet-wide
covert channels. Moreover, many vendors are slowly migrating to more secure protocols, such
as the DNS Security Extensions. To prevent unwanted signatures, we also removed traffic
generated by non-IoT devices, e.g., smartphones and laptops. The final dataset contains the
traffic flows exchanged by 28 different [oT nodes (e.g., smart speakers and home hubs) over
an entire week.

A realistic attack template has been obtained by modeling the presence of a malware
compromising a specific IoT device. Typically, this requires exploiting a CVE for granting
access to the device or by leveraging a configuration error (e.g., weak/default credentials)
(Neshenko et al., 2019). In this work, we considered a threat abusing a smart camera to smug-
gle sensitive data towards a remote host controlled by the attacker. Specifically, the dataset
borrowed from (Sivanathan et al. (2018)) allowed to take into account a local network popu-
lated with a mixed set of devices, controllers, and appliances communicating both directly or
through the Internet. To model the threat depicted in Fig. 1b, we assumed that the Dropcam
IoT device present in the original dataset has been under the control of the malware for 3
days. To create the covert communication, we rewrote the flows generated by the Dropcam
directly in the original traffic captures by using the pcapStego tool (Zuppelli and Caviglione,
2021), and we implemented the two encoding schemes discussed in Section 3.1. Since we
want to investigate Internet-wide covert communications hidden in the TTL field of IPv4
packets, we do not consider the presence of additional middleboxes or NAT devices, which
can be considered “transparent” for our threat model.

To not make the detection trivial, we always used the most frequent/observed values
present in the traffic traces. Specifically, for the Naive Encoding Scheme of Case 1 and for
the Advanced Threat Scheme of Case 2, we used the values depicted in the heatmaps of Fig.
1b discussed in Section 3.2.

To prevent that bursts of manipulated datagrams would reveal the presence of the chan-
nel, we randomly interleaved packets containing hidden data with legitimate/unaltered ones
(Zander et al., 2006). The secret information transmitted by the malware via the covert chan-
nel has been modeled with randomly-generated strings: this represents an attacker using
some obfuscation technique, such as encryption or scrambling (McLaren et al., 2017). To
bear with the exfiltration of several contents (e.g., username+password pairs or configuration
files), each day of attack contains a different volume of hidden information, i.e., we consid-
ered the exfiltration of 69, 80, and 64 kbit of data. As a result, for both the encoding cases,
the compromised IoT node manipulates the 18%, 1%, and 12% of the overall daily traffic,
respectively. We point out that, since the resulting traffic traces are a modified subset of the
data provided in (Sivanathan et al. (2018)), they have not been publicly released. Yet, they
are available upon request, e.g., to advance the research in the field of covert communications
targeting IoT ecosystems.

4 Deep ensemble learning scheme

In this section, we illustrate the approach based on unsupervised learning of deep neural
network ensembles to spot hidden malware communications in IoT traffic. The main benefit
relies on the capability of the models to raise alarms also on never seen attacks: this is
a frequent scenario since covert channels are often undocumented and unknown a priori.
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Although our primary focus is revealing covert communications hidden within the TTL of
IPv4 packets, our results can be extended to other similar attack scenarios. Moreover, as it will
be shown, the use of Autoencoders (AEs) allows to consider different encoding mechanisms
(see Case 1 and Case 2 illustrated in Section 3) with the same neural architecture. Another
important aspect concerns the lack of labeled data. In fact, advanced persistent threats or
malware endowed with cloaking mechanisms often remain undetected for long time frames
or not recognized at all. Therefore, a fully unsupervised neural approach based on AEs is the
best option, especially since it does not require labeled training data, often unavailable. We
first illustrate the detection mechanism for a single model, and then we describe how it can
be extended to learn effective and scalable ensemble models.

4.1 Detection through a single autoencoder

The idea behind our solution is to adopt a neural encoder-decoder architecture trained against
traffic data. Basically, an autoencoder is an unsupervised (i.e., trained without any information
concerning the nature of the attack/normal behavior) neural network model performing two
main operations. First, it compresses the input data (i.e., a number of statistics computed over
the traffic generated by the IoT network and described in Section 5.1) within a latent space.
Then, it reconstructs the original information provided as input. In our setting, the model
is only trained against the normal behavior. The underlying intuition is that the legitimate
input data should be (almost) correctly reconstructed by the autoencoder. In other words, the
encoding/decoding phases should not introduce a heavy distortion in the output. By contrast,
outliers and anomalous values in the input will yield a deviant output.

The usage of the reconstruction error as a measure of outlierness to discover abnormal
behaviors has already been proposed in the literature, but the adoption of unsupervised
techniques (and in particular of encoder-decoder architectures) for revealing covert channels
is substantially unexplored (Ahmad et al., 2021; Darwish et al., 2019; Elsadig and Gafar,
2022). As discussed in (Hinton and Salakhutdinov (2006); Bengio et al. (2006)), autoencoders
are considered a valid solution to the problem of effectively summarizing the information
of a given input into a low-dimensionality representation. In essence, these neural network
models aim at yielding a duplicate of the input as output.

In this work, we employ the Sparse U-Net neural model shown in Fig. 2. Basically,
it includes two main components, named Encoder and Decoder, respectively. Let x =
{x1,...,xn} be a set of numeric features (in our case, a number of traffic flow statistics
computed for a time slot). The former sub-network is devoted to mapping the input data
with a latent space (encoding), i.e., learning a function z = enc(x), whereas the second one
yields the overall network output by reconstructing the input from the features extracted
by the encoder y = dec(z) (decoding). Gradient descent is employed to learn the model
weights by minimizing a suitable loss function. In our approach, the Mean Square Error, i.e.,
Lossysg(X) = % > lIxi — yill2, is used as loss.

Notably, the architecture of Fig. 2 exhibits two main differences w.r.t. a standard encoder-
decoder model: (i) Skip Connections are used to boost the predictive performances of the
model and to reduce the number of iterations required for the learning algorithm convergence,
and (ii) a hybrid approach including the usage of Sparse Dense Layers is adopted to make the
autoencoder more robust to noise, especially since flows cloaking secret data often exhibit
slight differences compared with normal behaviors. Both the encoder and decoder are com-
posed of M hidden layers, therefore we adopted a symmetric architecture. The choice of skip
connections simplifies the learning process of the network by providing as input to each layer
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of the decoder (D-DL;), except for the shared latent space, both the previous (D-DL;_1)
and the correspondent encoder layer (E-DLj—;1). As regards the Sparse Layers, they are
used to generate a wider number of discriminative features, which allow to extract a more
representative latent space.

Figure 3 illustrates the detection process for covert channels targeting the TTL field of
IPv4 datagrams. This mechanism can be co-located within the firewall depicted in Fig. 1a
or implemented through a dedicated appliance. Without loss of generality, we assume to
monitor an “infinite datastream”, i.e., the traffic of the various IoT nodes feeds our detection
mechanism in a continuous manner. At pre-fixed time intervals (i.e., a time slot in Fig. 3), we
compute several statistics to describe the behavior of the TTL fields composing the aggregate
traffic flow. Specifically, we compute metrics such as the minimum, average, maximum,
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Fig.3 Detection mechanism for revealing the presence of network covert channels
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or different percentiles, starting from TTL values gathered in a time slot. Preliminary, an
autoencoder, pre-trained only against legitimate data flows, is used to reproduce the statistics,
then the reconstruction error is calculated for the current example as the MSE between x and
y. If the error is smaller than a given outlierness threshold, the current data are labeled as
“normal” and update the model, otherwise a warning is raised.

In the context of AE-based anomaly detectors, different techniques are commonly
employed to compute anomaly scores. As mentioned above, these models primarily operate
by learning to reconstruct input data and then quantifying the dissimilarity between the orig-
inal input and the reconstructed output. Common methods for computing anomaly scores
include Reconstruction Error, Probability Density Estimation, Clustering-based Approaches,
and Ensemble Techniques. Additionally, an essential aspect of anomaly detection is deter-
mining the threshold for anomaly scores, which significantly impacts model performance.
Several thresholding strategies are available, including Fixed Thresholding, Statistical Meth-
ods, Quantile-Based Thresholding, Density Estimation, Precision-Recall Curve Analysis,
Domain-Specific Knowledge Incorporation, and Dynamic Thresholding. Although more
sophisticated techniques may be used, we mainly focused on demonstrating the robustness
of our approach by evaluating its performance across different threshold values, highlighting
its effectiveness under various scenarios.

As it will be detailed in Section 5.3, the collection of TTL values can be done by using
limited computing resources to prevent a decay in the overall traffic performance. A viable
approach may require to instrument gateways with a lightweight and non-invasive software
layer (Repetto et al., 2021).

4.2 Learning and combining different detectors

A main limitation of the described approach relies on the necessity to learn the neural net-
work model against the whole training set (that could be unfeasible in IoT networks with
tight computational resources). Moreover, in real scenarios, the limited resources of the
device where the detector is deployed and the presence of concept drifts in the observed
behaviors (Folino et al., 2019) can affect the predictive performances of the autoencoder. To
mitigate such issues, we devised an incremental learning scheme based on an ensemble of
encoder-decoder architectures shown in Fig. 4. Basically, we consider the case where only a
limited number of training examples D can be gathered and stored in a data chunk (denoted
as D; in the figure). Our ensemble solution relies on building up a series of k base Deep
Neural Network detectors (denoted as M;, M;_1, ..., M;_;) sharing the same neural archi-
tecture described above. These autoencoders are trained from disjoint data chunks (denoted
as D;, Dj_1, ..., Di_g, respectively), which are fed with data instances gathered in different
temporal intervals. Specifically, the incremental learning process adopted in our solution is
loosely inspired by the work (Folino et al., 2021) proposing an ensemble-based deep learn-
ing approach trained on disjoint data chunks. Differently from this work where each model
is trained independently, in our solution the model M; is trained (i.e., fine-tuned) from the
weights of the model M;_; and the sample D;. The same procedure is also applied to all the
models composing the ensemble. In this way the detection model will be able to gradually
adapt to normal concept drifts that can occur, for instance, due to the deployment of new
devices in the network that can modify the network statistics. This approach can also reduce
the risk of catastrophic forgetting (Parisi et al., 2019) that affects DL models (and also
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Fig.4 Incremental Deep Ensemble model approach

different types of shallow architectures) when learned incrementally. Specifically, catas-
trophic forgetting refers to the phenomenon where a neural network trained on a new task
or dataset tends to forget or overwrite knowledge it acquired during previous training on
different tasks or datasets. In the literature, different solutions have been proposed to address
this issue effectively, e.g., in (Faber et al. (2023)), the authors blend a lifelong change point
detection with a suitable model update strategy to learn robust anomaly detectors, whereas
(Lietal., 2022) use an experience replay mechanism based on self-imitation learning. While
not the primary focus of our work, we attempted to address the issue of catastrophic forget-
ting by combining multiple models trained on data collected from distinct time windows.
This approach allows us to mitigate the risk by preserving information about various normal
behaviors. Then, the final anomaly score is computed by adopting a non-trainable com-
bination strategy. By denoting the reconstruction error as Deviance Score (DS) (see, Fig.
4), we then consider the median, max, and average value of the k reconstruction errors
{DS;, ..., DS;_i} yielded by the base models.

5 Experimental investigation

In this section, we present a series of experiments for assessing the detection capability of
our approach against the scenarios and threat models of Section 3. Tests were carried out
to: i) evaluate and compare different combination schemes and ensemble sizes, ii) compare
our neural model with other unsupervised deep architectures, iii) analyze the behavior of our
ensemble learning approach when a limited portion of training data is available, and finally
iv) evaluate the convergence rate of the proposed model and the data processing time in the
deployment stage.

In Section 5.1, we supply more insights on the used datasets, parameters, and neural
architectures, whereas in Section 5.2 we discuss how we compare different base models,
ensemble parameters and robustness to lack of data. Finally, in Section 5.3, we present the
results of the convergence analysis and the efficiency of the proposal.
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5.1 Datasets, parameters and evaluation metrics
5.1.1 Datasets and evaluation protocol

To perform the experiments, we prepared the datasets starting from the main features of the
traffic illustrated in Section 3.2. In particular, for each time slot we extracted the following
fields: a progressive timestamp, the number of incoming packets, the average and median
values of observed TTLs, the values of the 10", 25", 75! and 90" percentile, minimum
and maximum TTLs, as well as a label indicating the presence of the attack (i.e., for testing
purposes). As our approach employs a “slotted” mechanism (see Fig. 3), we considered a
time slot with a duration of 5 seconds. In the following, with the term “instance” we refer to
a tuple composed of the extracted fields and the label observed within the chosen time slot.
Data have been partitioned in training and test sets using a temporal split. The data gathered
in the first 96 hours only contain legitimate traffic and has been used for the learning phase
of the ensemble. The remaining 72 hours contain the traffic used to generate the two test sets
for the attack strategies of Case 1 and Case 2 (see Fig. 1b). As a result, the training set is
composed of 69, 116 legitimate instances, whereas the test sets include 51, 837 instances.
From now on, we will refer to the test sets as Testset Case 1 and Testset Case 2, respectively.

Concerning the class distribution of the two test sets, the number of legitimate and mali-
cious instances between the Testset Case 1 and Testset Case 2 slightly differ. In more detail,
the number of legitimate instances for Testset Case 1 is 34, 306, while it is equal to 34, 272
for Testset Case 2. The malicious instances slightly differ as well, and turn out to be 17, 531
and 17,565 for Testset Case 1 and Testset Case 2, respectively. Such a behavior can be
ascribed to the the attack strategies used in Case 1 and Case 2, which require to modify
the traffic with different proportions. Finally, input data are further pre-processed through a
normalization procedure: a MinMax normalization has been adopted to map each feature in
the range {—1, 1} to improve the stability of the learning process.

5.1.2 Parameters and competitors

To assess the quality of the proposed approach in detecting network covert channels within
traffic aggregates, we developed a prototype with Python and TensorFlow?. As described in
Section 4, the base model composing the ensemble is a specific autoencoder architecture.
The Encoder is composed of four fully-connected dense layers. Three layers have been
instantiated with 32, 16, and 8 neurons and equipped with a ReLU (Rectified Linear Unit)
activation function. The fourth layer is the latent space, and it is instantiated as a dense
layer (shared between the encoder and the decoder) including 4 neurons and equipped with
a ReLU activation function. Symmetrically, the Decoder consists of three fully-connected
dense layers with the same dimensions and activation function. The output of the model is
yielded by a Dense Layer with the same size as the input and equipped with a Tanh activation
function since the input is normalized in the range {—1, 1}.

The analysis of the ensemble performances has been done by varying different values of
k. In particular, we tested the approach by including the last 3 and 5 base models while we
considered a data chunk size of ~ 5, 000 instances. Notably, k can influence the capability
of the model to keep the memory of past behaviors.

2 TensorFlow machine learning library. Available online at: https://www.tensorflow.org/ [Last Accessed: May
2023].
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Fig.5 Autoencoder-based architectures used as competitors

As regards the comparison among different base model architectures, we tested our base
U-Net-like model against the alternative AE-based models sketched in Fig. 5 that are widely
adopted in the literature for similar tasks. Specifically:

e the Deep Autoencoder (from now on referred as DAE), depicted in Fig. 5a. The encoder
is instantiated with two fully-connected dense layers with 9 (input size) and 8 neurons,
respectively. The third layer is the latent space and it is instantiated as a dense layer with 4
neurons. The decoder expands the latent representation (still of size 4) through the same
(but inverted) 2-layer sequence as the encoder;

e the “unsparse” version of our architecture (from now on referred to as U-Net), depicted
in Fig. 5b. Both its encoder and decoder parts are instantiated with two fully-connected
dense layers with 9 (input size) and 8 neurons, respectively. The middle (third) layer still
consists of 4 neurons;

e the Sparse Autoencoder (from now on referred as Sparse AE), depicted in Fig. Sc. It
features a single-hidden-layer shallow architecture with 32 neurons.

Differently from the solutions described in (Abderrahim et al. (2020); Corizzo et al.
(2021)), we adopted a simplified U-Net architecture that only integrates skip connections
between corresponding layers of the encoder and decoder. This design choice is mainly due
to the nature of the data: in our work, we consider flat data that summarize the underlying
distribution, while in the original work, it was used to process images where zooming capa-
bilities can help to improve the performances. As regards its capability in terms of pattern
extraction, the main idea is that the model should be able to map the original input to a
latent space where similar examples (i.e., tuples with similar traffic patterns) are grouped
(in a more efficient way by reducing the number of epochs required for the convergence).
Then, the model will tend to map exceptional examples far from normal ones, allowing to
reveal covert attacks. All the models have been trained over 16 epochs with a batch size of
16, whereas Adam is adopted as the optimizer with a learning rate ir = le™*.

Concerning the anomaly score, it is empirically estimated by computing the reconstruction
error for each instance contained in the training set and extracting the values corresponding to
90,95 and 99" percentiles. This simple strategy allows for easily computing an effective
threshold without requiring a large number of resources. Investigating more sophisticated
methods to estimate the anomaly threshold is part of our ongoing research, for instance to
automatically match the requirements of our scenario (Angiulli et al., 2017).

Lastly, to perform experiments, we used a machine with 32 Gb RAM, an Intel i17-4790K
CPU @4.00GHz, and a 1Tb SSD drive.
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5.1.3 Evaluation metrics

The effectiveness of our approach has been tested by considering some quality metrics widely-

adopted in the literature dealing with attack detection tasks (Cassavia et al., 2023, 2022).

Let us define 7T P as the number of positive cases correctly classified, F P as the number

of negative cases incorrectly classified as positive, F'N as the number of positive cases

incorrectly classified as negative, and 7N as the number of negative cases correctly classified.
Based on these values, we can compute the following metrics:

) . . . TP+TN .
e Accuracy: defined as the fraction of cases correctly classified, i.e., TPFFP+FNTTN

e Precision and Recall: metrics used to estimate the detection capability of a system since
they provide a measurement of accuracy in identifying attacks and avoiding false alarms.
Specifically, Precision is defined as %, while Recall as TPT_F%;

e F-Measure: summarizes the model performance and it is the harmonic mean of Preci-
sion and Recall. The F-Measures is particularly beneficial when the class distribution is
imbalanced and represents the best trade-off between Recall and Precision. Hence, it is
often preferred over other metrics when one searches for a unique criterion assessing the
goodness of a classification approach.

5.2 Numerical results

To showcase the effectiveness of our approach, we examine the micro-averaging of the
previously-defined metrics. Specifically, we will provide a comparison among performances
for different schemes and sizes, the impact of the various different base models, and a sen-
sitivity analysis accounting for the scarcity of training data.

5.2.1 Comparing different ensemble schemes and sizes

In this first suite of experiments, we investigate how the combination scheme and the ensem-
ble size influence the predictive performances of the approach. Table 2 reports the results
obtained by varying three parameters on the Testset Case 1: the combination strategy, the
number of base models, and the threshold used to distinguish between anomalous and normal
traffic flows. Specifically, for any combination scheme and ensemble size, we can observe that
the usage of a looser threshold (e.g., the 90" percentile) allows for improving the probability
of detection (i.e., the Recall) but at the price of a higher number of false alarms. By contrast,
a higher threshold (e.g., the 99" percentile) allows for limiting the number of FP, but a lesser
Recall value is obtained. In addition, the best result with the higher value of F-Measure is
obtained with an ensemble size equal to 3 and by considering the threshold value correspond-
ing to the 99" percentile and the median as a combination strategy. The slight reduction of
the predictive performances when increasing the ensemble size appears mainly due to the
evolving nature of traffic characterizing IoT ecosystems. Indeed, asynchronous activations of
nodes, external triggers, or periodical synchronizations account for broad changes in traffic
conditions. Therefore, recent data could be more informative for revealing an attack as the
“past history” may not capture the behavior of the actual network traffic conditions.

The same evaluation has been conducted on Testset Case 2 and reported in Table 3. The
best result (i.e., the higher value of F-Measure) is achieved again with an ensemble size equal
to 3. However, since Case 2 introduces an “advanced” encoding scheme based on multiple
TTL values, the adoption of a looser threshold is crucial for its identification: indeed, we
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Table 2 Experimental results for different combination schemes and ensemble sizes against Testset Case 1

Ensemble Size Strategy Detection Threshold Accuracy Precision Recall F-Measure
3 90" perc. 0.894 0.771 0.979 0.863
median 95'" perc. 0.947 0.902 0.948 0.924
99" perc. 0.955 0.950 0.915 0.932
90" perc. 0.894 0.772 0.974 0.861
max 95th perc. 0.946 0.901 0.945 0.922
99! perc. 0.948 0.941 0.902 0.921
90" perc. 0.892 0.767 0.980 0.860
avg 95" perc. 0.947 0.901 0.947 0.924
99" perc. 0.952 0.946 0.910 0.928
5 90" perc. 0.890 0.764 0.977 0.858
median 95th perc. 0.933 0.863 0.954 0.906
99" perc. 0.952 0.944 0.911 0.927
90" perc. 0.893 0.767 0.981 0.861
max 95" perc. 0.939 0.878 0.953 0.914
99" perc. 0.941 0.944 0.878 0.910
90" perc. 0.891 0.765 0.981 0.859
avg 95" perc. 0.941 0.884 0.951 0.916
99" perc. 0.951 0.942 0.912 0.927

The best results are reported in bold

Table 3 Experimental results for different combination schemes and ensemble sizes against Testset Case 2

Ensemble Size Strategy Detection Threshold Accuracy Precision Recall F-Measure
3 median 90" perc. 0.811 0.715 0.732 0.724
95'h perc. 0.728 0.735 0.308 0.434
max 90" perc. 0.779 0.687 0.640 0.663
95'h perc. 0.727 0.735 0.307 0.433
avg 90" perc. 0.803 0.706 0.720 0.713
95'" perc. 0.731 0.742 0315 0442
5 median 90'" perc. 0.786 0.688 0.671 0.680
95'h perc. 0.734 0.703 0.374 0.488
max 90" perc. 0.788 0.692 0.675 0.683
95'h perc. 0.728 0.707 0.336 0.455
avg 90" perc. 0.801 0.702 0.717 0.710
95'h perc. 0.732 0.723 0.338 0.461

The best results are reported in bold
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can observe that the performances dramatically decrease when the threshold value increases
(e.g., 95" percentile).

5.2.2 Comparing different base models

Another relevant part of the analysis focuses on demonstrating the quality of our Sparse
U-Net architecture over other unsupervised neural models and the benefits of the ensemble
model over a single one. We then compared our solution against the base models described
in Section 5.1. Specifically, Table 4 reports the results of our experimentation by comparing
the performances of the baseline architectures w.r.t. the ensemble model. To not burden
the discussion, we only report the results for an ensemble model with a size equal to 3,
as it achieves the best performances. The performance metrics are computed by ranging
different sensitivity thresholds. First, we can observe that the adoption of the ensemble
strategy improves the performances of the base model (i.e., the Sparse U-Net) for each
threshold value. Moreover, the Sparse U-Net outperforms the other AE-Based architectures
in terms of both Accuracy and F-Measures, for each considered threshold.

5.2.3 Sensitiveness to the scarcity of training data

Unlike supervised methods, unsupervised ones do not require a costly labeling process per-
formed by the expert to yield labeled data for the training phase. To work as expected,
unsupervised models still need to approximate the normality distribution as closely as possi-
ble since every behavior that sensibly differs from normality is considered malicious. Thus,

Table4 Comparison between our deep ensemble-based model and baseline architectures against Testset Case
1

Model Type Detection Threshold Accuracy Precision Recall F-Measure
Sparse U-Net 90" perc. 0.882 0.743 0.993 0.850
95" perc. 0.921 0.822 0.976 0.893
99" perc. 0.936 0.942 0.865 0.902
DAE 90" perc. 0.869 0.724 0.993 0.837
95'h perc. 0.910 0.801 0.975 0.880
99'h perc. 0.905 0.962 0.750 0.843
Sparse AE 901" perc. 0.875 0.737 0.979 0.841
95'" perc. 0.901 0.795 0.951 0.866
99'h perc. 0.902 0.922 0.778 0.844
U-Net 90" perc. 0.875 0.736 0.982 0.841
95!h perc. 0.907 0.799 0.968 0.876
99'" perc. 0.819 0.853 0.563 0.678
Ensemble (k=3) 90" perc. 0.894 0.771 0.979 0.863
95" perc. 0.947 0.902 0.948 0.924
99'" perc. 0.955 0.950 0.915 0.932

The best results between Sparse U-Net and Ensemble are reported in bold, while the best results among the
base models are underlined
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Fig.6 The evaluation metrics computed for each combination strategy by varying different training sizes

the models must rely on a verified subset of legitimate traffic flows (even if limited) during
the training to provide reliable results.

In this respect, we assess the robustness of our approach by ranging different amounts of
available training data (namely, 25%, 50%, and 100%). Table 5 reports the experiments with
different thresholds, ensemble strategies, and training percentage sizes against Testset Case
1. We can observe that also when reducing the training size to 25% the approach continues
to achieve good performances for each metric.

For only the best threshold value (i.e., 99" percentile), we depicted the obtained results
in Fig. 6. For each evaluation measure, the lack of data does not dramatically affect the
detection capability of the approach; by contrast, the ensemble model (especially for the
median strategy) continues to provide reliable predictions.

5.3 Convergence analysis and deployment assessment

We now analyze the model behavior at learning time to investigate whether our architecture
allows a fast training by reducing the number of epochs required to learn an effective detection
model. Figure 7 depicts the loss behavior over the number of epochs. In particular, for each
epoch we computed the loss value by averaging the losses obtained by each model for each
chunk in the same epoch. The shading area indicates the standard deviation. As shown, the
model requires a limited number of training epochs to converge. This is mainly due to the
adoption of the skip connections, which enables a fast convergence of the training algorithm,
as expected.

Lastly, an important aspect concerns the feasibility of deploying our Al-based framework
in realistic IoT deployments. Even if performing the detection within simple sensors/devices
is seldom feasible, a possible solution is to locate the needed layers within the gateways often
used to connect and orchestrate the IoT nodes. However, many cost-effective middleboxes
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are endowed with limited hardware-storage capabilities, thus requiring a lightweight and
optimized approach. As regards operations needed to gather information, techniques based
on code layering or kernel augmentation are prime candidates (Vieira et al., 2021). In fact,
collecting the TTL values with a per-packet granularity usually accounts for an additional
transmission delay of ~ 100 ns when using the extended Berkeley Packet Filter and 1 ms
with a C implementation exploiting libpcap over commodity hardware (Caviglione et al.,
2021). The use of TTL is a good example of a real covert communication mechanism, which
directly stores data within a field/feature of network packets (Caviglione and Mazurczyk,
2022). Extending the gathering/detection phase is straightforward as it only requires to collect
data from a different portion of the header and compute statistics of a similar complexity.
Yet, if hidden communications exploit more advanced schemes, e.g., manipulation of textual
entries in DNS queries, the proposed idea needs some additional tweaks, i.e., a suitable
inspection mechanism and an effective set of metrics should be searched for. Luckily, real
attacks targeting simple IoT nodes rarely employ sophisticated data hiding mechanisms
(Mazurczyk and Caviglione, 2015; Neshenko et al., 2019; Noor and Hassan, 2019; Caviglione
and Mazurczyk, 2022). The availability of efficient traffic inspection tools and statistics
computed by security appliances can further ease the design of the required metrics. A
relevant network security advancement concerns the definition of “independent” metrics,
i.e., indicators not bounded to a specific field or data hiding mechanism. For instance, the
presence of a flow containing a covert communication could be spotted through anomalous
jitters or general behaviors of IoT nodes, such as aggressive battery drains. This is still an
open problem, which is also part of our future research.

As regards the ML phases of training and inference, the former can be performed offline,
while the prediction time is 0.5 ms for a single data batch and 2 seconds for the whole test set.
Such footprints open to many design choices. First, the approach can be used for real-time
processing of traffic flows within the edge entity in charge of managing the IoT ecosystem.
Other optimizations are possible, for instance by taking advantage of the “stateless” nature
of our approach. In fact, covert communications are spotted by using information on the
overall traffic (grouped in time slots), which prevents the need of storing information on a
per-flow basis. Second, part of the detection could be offloaded: the local middlebox could
send “local” information to as-a-Service platform, which could perform computing-intensive
detection strategies. Evaluating the use of softwarized and cloud-native blueprints to prevent
malware hiding data within future IoT deployments is part of our ongoing research.
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For the sake of completeness, we also compared the execution times of both the training
and the inferences phases of the models. Figure 8 depicts the results. As shown, our model
performs slightly worse compared to the other solutions. This is mainly because it relies
on data windows, worsening the overall performances. However, since our approach is able
to process a single window in 16 seconds, it is possible to deploy the model in a real-time
fashion, as well as on resource-constrained devices, especially in terms of storage capabilities.

6 Conclusions and future work

In this work, we showcased the use of an ensemble of autoencoders for detecting network
covert channels targeting IoT scenarios. Specifically, we leveraged an incremental learning
scheme for extracting a number of base detectors to build a robust ensemble model and
then mitigate typical “catastrophic forgetting” risks. Our approach has been designed to
be lightweight and requires a limited number of training examples at time to be effective.
Experiments demonstrated that i) with a reduced ensemble size, the model is able to improve
its detecting performances as the recent data could be more informative w.r.t. the past ones, if)
a deep ensemble-based model can improve the performances of the base model, especially
it can achieve a probability of detection (i.e., Recall) of ~ 91% while exhibiting a good
precision ~ 95%, iii) the proposed model is robust to the training data scarcity, and finally iv)
our approach achieves better performance when compared to different baseline architectures.

Future works aim at broadening our current experimentation. In fact, even if hidden
communications observed in real attacks primarily rely upon simple mechanisms, we only
investigated the use of the TTL field within the IPv4 header. Hence, part of our research
activity is aimed at considering hidden communications targeting other protocols (e.g., IPv6)
or implementing more advanced cloaking schemes, such as those based on HTTP cookies.
Another relevant part of our ongoing research focuses on setting a middlebox to test our
detection approach with “live” traffic. This will allow to understand additional processing
or energy consumption that could impair the real-time behavior desirable for many IoT
applications.

Further advancements concern refining the Al-based framework proposed in this work.
In more detail, the fast pace at which threats are evolving requires constantly “tweak” the
components used to spot malware hidden communication, i.e., the data and the model are
tightly-coupled with the abused protocol or field. Thus, a first advancement deals with the
design of suitable “intermediate” representations that can handle different threats in a coherent
manner, e.g., via protocol-agnostic or data-hiding-independent indicators of the covert data
exchange. We are also interested in exploring the feasibility of incorporating a lifelong change
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point detection approach to enhance the resilience of our method against the forgetting
problem.

Lastly, despite the fact that our approach does not process sensitive information, both
the learning and detection phases require gathering network traffic. We also considered the
AI/ML framework co-located with a gateway or a router placed at the border of the network.
Therefore, a future advancement explores the feasibility of using a more distributed approach
or a federated scheme. It would be possible to cope with privacy issues typical of the [oT world
(e.g., preventing that traffic information has to be remotely sent for processing) as well as
to guarantee scalability properties (e.g., traffic is collected by different resource-constrained
entities).
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