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Abstract
Knowledge Graph Embedding (KGE) translates entities and relations of knowledge graphs
(KGs) into a low-dimensional vector space, enabling an efficient way of predicting missing
facts. Generally, KGE models are trained with positive and negative examples, discriminat-
ing positives against negatives. Nevertheless, KGs contain only positive facts; KGE training
requires generating negatives from non-observed ones in KGs, referred to as negative sam-
pling. Since KGE models are sensitive to inputs, negative sampling becomes crucial, and
the quality of the negatives becomes critical in KGE training. Generative adversarial net-
works (GAN) and self-adversarial methods have recently been utilized in negative sampling
to address the vanishing gradients observed with early negative sampling methods. However,
they introduce the problem of false negatives with high probability. In this paper, we extend
the idea of reducing false negatives by adopting a Tucker decomposition representation, i.e.,
TuckerDNCaching, to enhance the semantic soundness of latent relations among entities
by introducing a relation feature space. TuckerDNCaching ensures the quality of generated
negative samples, and the experimental results reflect that our proposed negative sampling
method outperforms the existing state-of-the-art negative sampling methods.

Keywords Negative sampling · Knowledge graph embedding · Tucker decomposition

1 Introduction

Knowledge Graphs (KGs), such as Freebase, DBpedia, WordNet, and YAGO, provide
structured representations of facts(knowledge). These textual data are in the form of
(head, relation, tail), known as triplets, e.g., (DaVinci, painted, MonaLisa). KGs have
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been utilized in many real-world applications, such as question-answering, recommender
systems, and information retrieval systems. Although KGs contain an extensive volume of
information, they are often incomplete and sparse as the knowledge is constructed on the
basis of available facts or ground truth, which are subject to often changes. Therefore, it is
essential to havemethods to complete KGs automatically by addingmissing/modified knowl-
edge or facts that are changed with time. Recent research has shown the potential of utilizing
machine learning (ML) methods such as Knowledge graph embedding (KGE) effectively for
knowledge graph completion.

KGE approaches provide an efficient solution to find and completemissing facts in incom-
plete knowledge graphs. In fact, KGE methods provide better inference capability. KGE
maps enti ties and relations in KGs into a low-dimensional vector space while preserving
their semantic meaning. Recent KGE techniques have shown promising results in knowl-
edge acquisition tasks such as link prediction and triplet classification. In conventional KGE
approaches, observed instances (positives) rank higher than unobserved instances (nega-
tives) and hence, accelerate the training process of ML algorithms. However, KGs contain
only positive examples, so negative examplesmust be generated artificially. Hence, exploring
strategies to generate quality negatives that support learning better knowledge representations
is critical in KGE. For instance, considering the positive fact (DaVinci, painted, MonaLisa),
the negative fact (DaVinci, painted, CreationOfAdam) is considered as a quality negative as
it enables the KGE model to optimize the knowledge representation unlike a typical neg-
ative fact (DaVinci, painted, France). Therefore, negative sampling becomes indispensable
in knowledge representation learning as the KGE model’s performance relies on negative
selection.

Most negative sampling methods involve randomly corrupting positives on the basis of
a closed world assumption (Bordes et al., 2013; Wang et al., 2014) or exploiting the KG
structure when generating negatives (Zhang et al., 2019; Ahrabian et al., 2020). Regardless,
methods that randomly corrupt positives suffer from vanishing gradients as they generate
triplets with zero gradients during training. As a solution to the vanishing gradient problem, a
new direction for negative sampling has been introduced, adopting the changes in the negative
sampling distribution and generating negatives with large gradients dynamically (Cai et al.,
2018). However, to the best of our knowledge, most of the state-of-the-art negative sampling
methods suffer from false negatives as they do not guarantee that the generated ones are
always relevant negatives, i.e., in the case of generating true or latent positives as negatives.
As KGE models are sensitive to inputs, false negatives usually fool the models, losing the
semantics of enti ties and relations. Therefore, generating quality negatives that enhance
KGE representation learning is still an open and challenging task in negative sampling.

In this paper, we propose a negative sampling method by extending the previous work,
MDNCaching (Madushanka et al., 2022) by introducing a relation feature space instead of
a relationship matrix between the head and tail. The proposed method models latent rela-
tions using available positive KG elements and utilizes relation predictions to remove latent
positives (false negatives) from the negative candidate space. We use the Tucker decomposi-
tion technique (Tucker, 1966) with our latent relation model representation to update entity
and relation feature spaces effectively. The introduction of the relation feature space further
extends the ability to represent multiple relations between entity pairs. First, we train a latent
relationmodel from positive facts utilizing Tucker decomposition. Then, we predict the latent
relations and eliminate false negatives from the candidate negative sample space. We use the
caching technique to effectively manage negative triplets with large gradients and update the
cache considering the changes to the embedding space to overcome the vanishing gradient
problem.
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In summary, the major contributions of this paper are three-fold. (1) A negative sam-
pling method is introduced that eliminates the false negatives suffered in previous dynamic
distribution-based negative sampling methods. (2) The Tucker decomposition technique is
used with our novel latent relation model representation for modeling latent relations (3)
Experiments on benchmark datasets reflect the effectiveness of TuckerDNCaching using
standard metrics. The remainder of this paper is organized as follows. Section 2 discusses
existing research on knowledge graph embedding and negative sampling. Section 3 presents
the new negative sampling method for generating quality negatives with large gradients con-
sidering the dynamic distribution of the embedding space while eliminating false negatives
referring to a latent relationmodel trainedwith theTucker decomposition technique. Section 4
presents an experimental study in whichwe compare our proposed negative samplingmethod
with baseline results of benchmark datasets and analyze results with the state-of-the-art. In
Section 5, we conclude this paper.

2 Related work

Knowledge graph completion remains a challenging research field, and many different
approaches have been introduced to make KGs machine-readable, utilizing reasoning tech-
niques.Knowledge graph embedding, also called knowledge representation learning, projects
KG elements, i.e., entities and relations, into a low-dimensional continuous vector space and
utilizes the numerical representation of embeddings to perform knowledge acquisition tasks.
Typically, using a scoring function, the KGE model captures the similarities between two
entities on the basis of a relation. Depending on the properties of the scoring function,
two main KGE approaches are found: translational distance-based models and semantic
matching-based models. Translational distance-based models interpret relations as geomet-
ric transformations in the latent space, where models evaluate the distance of projected KG
elements using a scoring function (Bordes et al., 2013; Ji et al., 2015; Wang et al., 2014).
Recent studies have demonstrated improvements in translational distance-basedmodels, such
as TorusE (Ebisu et al., 2018), by addressing the regularization problem of TransE and incor-
porating techniques such as adaptive margins based on density distribution (Chenchen et al.,
2019) and the use of self-attention and position-aware embeddings (Siheng et al., 2020). In
contrast, the semantic matching-based approaches model the latent semantics represented in
vectorized entities and relations throughmatrix decomposition (Nickel et al., 2011; Trouillon
et al., 2016; Yang et al., 2015). The embeddings of both approaches are learned by solving
an optimization problem that maximizes the scoring function for observed triplets (positives)
while minimizing it for unobserved triplets (negatives). Thus, negative sampling is necessary
for training a KGE model because negative and positive triplets must be provided during the
training.

2.1 Negative sampling in KGE

KGE models learn knowledge representations by discriminating positives from negatives.
Thus, the quality of the negatives affects the training of the models, and the performance of
knowledge representation downstream tasks. The existing negative sampling approaches
in KGE can be divided into two main categories: fixed distribution-based and dynamic
distribution-based sampling.
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2.1.1 Fixed distribution-based sampling

Fixed distribution-based sampling is typically utilized with knowledge representation learn-
ing due to its simplicity and efficiency. For example, Uniform negative sampling (Bordes
et al., 2013) which constructs negative triplets by replacing (corrupting) either the head or
tail entity of a positive triplet from a randomly sampled entity from an entity set. However,
randomly corrupted negatives can be easily distinguished because they are low-quality neg-
atives. In addition, Uniform sampling generates false negatives due to its random selection,
such as replacing head entity DaV inci with Michelangelo. It generates a false negative
fact (Michelangelo,Gender , Male).

Bernoulli negative sampling (Wang et al., 2014) is introduced with the idea of corrupt-
ing either the head entity or tail entity by considering the statistical information of entities
and relations that enhance the chance of replacing the head entity in one-to-many relations
and tail entity in many-to-one relations. In addition, other novel approaches (Kanojia et al.,
2017; Krompaß et al., 2015; Xie et al., 2017) have analyzed statistical features of knowl-
edge graphs to generate negatives rather than randomly corrupting positives. However, fixed
distribution-based methods are sampled from fixed distributions. This approach does not
consider the dynamics of the distributions and hence, this approach suffers from vanishing
gradient problems (Zhang et al., 2019).

2.1.2 Dynamic distribution-based sampling

To address the problem of vanishing gradient existing in fixed distribution-based sampling
methods, dynamic distribution-based sampling methods were introduced. With a success-
ful adaptation of the Generative Adversarial Network (GAN) (Goodfellow et al., 2014) for
modeling dynamic distributions, IGAN (Wang et al., 2018) and KBGAN (Cai et al., 2018)
were introduced as negative sampling methods to generate negatives with large gradients.
The GAN-based approach generates negatives by dynamically approximating a negative
sampling distribution (generator). At the same time, training continues between the gener-
ator and the discriminator to optimize the knowledge representation. KBGAN is the first
attempt to adapt GAN to negative sampling in KGE. In KBGAN, the generator produces
a probability distribution over a candidate set of negatives, selects the one with the highest
probability from candidates, and then feeds to the discriminator that minimizes the marginal
loss between positive and negative samples to improve the final embedding. The generator
is selected from one of two semantic matching-based KGE models (DistMult (Yang et al.,
2015), ComplEx (Trouillon et al., 2016)). The discriminator is selected from two transla-
tional distance-based KGE models (TransE (Bordes et al., 2013), TransD (Ji et al., 2015)).
By replacing the probability-based log-loss KGE generator in KBGAN, IGAN utilizes a
two-layer fully connected neural network as the generator while keeping the embedding
model as the discriminator. KSGAN (Hu et al., 2019) is an extension of KBGAN, which
is an adversarial learning approach with a new component for knowledge selection. The
knowledge selection filters false triplets and selects a semantic negative triplet for a given
positive triplet. However, GAN-based methods require pre-training which has an impact on
efficiency. Later, RotatE (Sun et al., 2019) introduced a self-adversarial Self-Adv sampling
approach based on a self-scoring function. However, Self-Adv does not perform consistently
on otherKGEmodels. By selecting negatives using a randomwalk approach that ignores non-
semantic similar neighbors, Structure Aware Negative Sampling (SANS) (Ahrabian et al.,
2020) shows better performance over the Self-Adv.With the aim of generating hard negatives,
NSCaching (Zhang et al., 2019) introduces an approach to maintain a cache of high-quality
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negatives. After evaluating the gradients, NSCaching stores negative triplets with large gra-
dients in head/tail caches. Entity Similarity-based Negative Sampling (ESNS) (Yao et al.,
2022) considers semantic similarities among entities when selecting negatives and utilizes
a shift-based logistic loss function. Despite addressing the problem of vanishing gradients,
dynamic distribution-based samplingmethods produce false negativeswith a high probability
whereas the latent positives reflect large gradients.

3 TuckerDNCaching

This section describes the proposed negative sampling method in detail. First, we experimen-
tally analyze the challenges in generating quality negatives in KGE. Then, we introduce the
proposed negative sampling method to address the existing challenges in negative sampling,
generating quality negatives.

3.1 Problem definition

A negative sample (h̄, r , t) is difficult to discriminate against a positive sample (h, r , t)when
a corrupted entity h̄ is semantically equivalent to the original entity h according to the seman-
tics in a knowledge graph. For instance, given the positive (DaV inci, painted, MonaLisa),
(DaV inci, painted,CreationO f Adam) is a quality negative candidate as it is semanti-
cally correct but factually incorrect. For knowledge representation learning, a such negative
is harder to discriminate than discriminating facts (DaV inci, painted, France) and
(DaV inci, painted, Louvre) when learning the important semantics of the KG. Next, we
define the concept of quality negative based on the above explanation and the explanation
provided by Liu et al. (2020).

Definition 1 (Quality Negative. ) A quality negative is a semantically meaningful but factu-
ally incorrect triplet that is hard to distinguish without referring to the ground truth.

When capturing semantically meaningful negatives, it is necessary to eliminate fre-
quently appearing false negatives. For instance, when evaluating the importance probability
of candidate negatives (DaV inci, painted, CreationO f Adam), (DaV inci, painted,

LadyWithAnErmine), and (DaV inci, painted, TheLast Supper), it is important
to eliminate true facts such as TheLast Supper and LadyWithAnErmine resulting
a semantically meaningful but factually incorrect negative, i.e., (DaV inci, painted ,
CreationO f Adam), for the positive triplet (DaV inci, painted, MonaLisa).

3.2 Notation

We denote the sets of entities and relations as E and R, respectively. A fact (edge) in a
knowledge graph is represented by a triplet (h, r , t), where h is a head entity in E , t is a
tail entity in E , and r is a relationship in R. The set of observed facts in KG is denoted by
G, which is equivalent to {(h, r , t)}. The corrupted head triplet is denoted by (h̄, r , t), and
the corrupted tail triplet is denoted by (h, r , t̄). Furthermore, we use boldface characters to
represent the embedding vectors of h, r , and t , i.e., h, r, and t, respectively.
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3.3 Analysis of challenges with generating quality negatives

Negatives generated by a fixed distribution-based negative sampling method are effective at
the beginning of stochastic training of KGE. However, randomly generated negative triplets
are likely to be out of the margin with a high probability after training a few epochs and do
not further contribute to KGE learning. This is termed as the vanishing gradient problem
or zero loss problem. We analyzed the zero loss problem by selecting Bernoulli negative
sampling as the candidate.

Figure 1(a) shows that the ratio of zero loss cases increases dramatically as the training
continueswith TransE for the FB15K237 dataset. This result shows that the fixed distribution-
based negative sampling methods quickly lead to a vanishing gradient problem. The negative
samples effectively contribute only at the first epochs. Therefore, these methods yield a slow
convergence andmay deviate from optimal embedding learning. Hence, generating negatives
with large gradients is important to provide continuous learning of the semantics in KGs.

Even though the dynamic distribution of negatives attempts to solve the problem of van-
ishing gradients, it introduces the problem of false negatives with high probability compared
to the fixed distribution-based negative sampling methods. We analyzed this problem by dis-
abling the false negative filtration step in our proposed TuckerDNCaching negative sampling
method.We called it “ExtremeSelectCaching" as it evaluates the importance of all candidates
for selecting negatives with large gradients and then caching negatives with large gradients.
We evaluated the ratio of false negatives in the negative samples during the training of the
“ExtremeSelectCaching" negative sampling method. Figure 1(b) illustrates that dynamic
selection introduces the problem of false negatives with high probability as the ratio of false
negative samples increases dramatically within a few training epochs. Typically, dynamic
distribution-based negative sampling methods evaluate the gradient of a negative using an
underlying KGE scoring function.When the distribution of embeddings changes while learn-
ing the knowledge representation, the appearance of false negatives increases since they have
large gradients. The state-of-the-art dynamic distribution-based negative sampling methods
attempt to manage the ratio of false negatives by selecting candidates from a small pool
sampled from all the candidates (Zhang et al., 2019; Cai et al., 2018), introducing a trade-off
between the false negatives ratio and the quality of the negative candidates. However, as
the knowledge graph embedding models learn to discriminate positive triplets against nega-
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Fig. 1 Experimental analysis: zero loss problem and false negative problem. (a) The ratio of zero loss cases in
training FB15K237 by TransE with Bernoulli negative sampling. (b) The ratio of false negatives in Extreme-
SelectCaching for FB15K237
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tive triplets, false negatives fool the models into losing the actual semantics of entities and
relations.

The analysis further suggests that the proposed negative samplingmethod should generate
a negative triplet with a large gradient that is not an apparent false negative when producing
a quality negative candidate.

3.4 TuckerDNCaching

Recall the stated challenges in negative sampling, (a) adopting a dynamic distribution of
negatives to avoid vanishing gradients, and (b) avoiding false negatives that lead to losing the
semantics of the KG. A negative sampling method must be carefully designed to overcome
these challenges.

The proposed TuckerDNCaching adopts a dynamic distribution of negative samples when
selecting candidate negatives as it is required to avoid the problem of vanishing gradients
and enable the underlying KGE model to learn the semantics of the KG continuously. Since
quality negative samples are less, we need to ensure that all possible quality negative samples
are explored. Hence, TuckerDNCaching models the distribution of all candidates and selects
quality negatives. When selecting candidates with large gradients, we refer to the underlying
scoring function of the KGE model. However, modeling the distribution for all candidates
introduces complexity in executing the steps in TuckerDNCaching. Tomanage this, we utilize
a caching technique that maintains negatives with large gradients for each positive fact and
introduce a lazy update procedure for revamping caches that refresh after N number of
epochs later rather than immediately. We aim to maintain two separate caches, i.e., head-
cache H(t, r) that maintains candidates for head corruption and tail-cache T (h, r) that
maintains candidates for tail corruption. We uniformly sample negatives from the cache
efficiently without introducing any bias.

The proposed negative sampling method introduces a Tucker decomposition-based latent
relation model to predict and eliminate false negatives from the negative sample space.
Modeling the distribution of all candidates and eliminating false negatives ensures that the
proposed method explores all quality negatives. The projections of latent relations between
entities decrease the possible discrimination for latent positives when the KGE model is
learning the KG semantics.

Next, we describe how Tucker decomposition is used to model the KG’s latent relation.
Then, we provide details on our negative sampling method, TuckerDNCaching.

3.4.1 Tucker decomposition for latent relation modeling

A tensor is a multidimensional array. An N th-order tensor is an element of the tensor product
of N vector spaces, each of which has its own coordinate system. A first-order tensor is a
vector, a second-order tensor is a matrix, and tensors of order three or higher are considered
higher-order tensors. Interestingly, tensors can be represented compactly in decomposed
forms. Several decomposition techniques are available; among them, CP (Hitchcock, 1927)
and Tucker (Tucker, 1966) are popular. CP expresses the tensor as a sum of rank one tensors,
i.e., a sum of the outer product of vectors. Tucker decomposition is a generalization of
CP decomposition. It decomposes the tensor into a small core tensor and factor matrices.
For example, the Tucker decomposition of a third-order data tensor X ∈ R

I×J×K can be
represented as X ≈ G ×1 A ×2 B ×3 C , where G ∈ R

X×Y×Z is a third-order core tensor,
A ∈ R

I×X , B ∈ R
J×Y , and C ∈ R

K×Z are factor matrices, and ×n is an n-mode tensor
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product with a matrix. Knowledge graph data can be represented as a {0, 1} valued third
order tensor Y ∈ {0, 1}E×R×E , where E is the total number of entities and R is the number
of relations, with Yi, j,k = 1 if the relation (i, j, k) is available.

The previous study, i.e., MDNCaching (Madushanka et al., 2022), introduced the idea
of eliminating false negatives from the candidate negatives while sampling the candidates
from a dynamic distribution of negatives. MDNCaching utilizes the matrix decomposition
technique to model a relationship between head and tail entities, i.e., let h be a set of heads,
t be a set of tails, and R be a relation matrix between h and t as R = R|h|×|t |. MDNCaching
represents latent relations such that R ≈ H ×T�, where H represents the head features, and
T represents the tail features. However, the latent relation model lacks semantic soundness as
it utilizes a relation matrix that reflects the most probable relationship between an entity pair
concerning two feature spaces for head and tail entities. In addition, matrix representation is
weak in representingmany-to-many relations asKG facts are interpreted in a two-dimensional
tensor.

To improve the semantic soundness of the relation representations, we introduce a relation
feature space in the latent relation model apart from the entity feature space, modeling
KG facts in a three-dimensional tensor with the proposed method. We utilized the Tucker
decomposition tensor representation, which is more general and flexible. Given the KG facts
X ∈ R

I ,J ,K , Tucker decomposition outputs a weight tensor W ∈ R
X ,Y ,Z and three matrices

Eh ∈ R
I ,X , R ∈ R

J ,Y , Et ∈ R
K ,Z such that it interprets X ≈ W ×1 Eh ×2 R ×3 Et (×n

indicates the tensor product along the nth mode).

3.4.2 Proposed framework

Our framework for the proposed negative sampling method is illustrated in Fig. 2 including
critical steps for a tail corruption scenario.

The proposed TuckerDNCaching negative sampling method follows six critical steps in
generating a quality negative for a given positive triplet and ensures the exploration of all

Fig. 2 Critical steps of proposed TuckerDNCaching negative sampling method
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possible important and effective negatives to the best. In step 1, the negative samplingmethod,
performs latent relation model training, referring to positives. The significant contribution of
the proposed method is eradicating false negatives from the negative sample space modeling
latent relations in a three-dimensional tensor. Since the idea of TuckerDNCaching is to model
the dynamic distribution of all candidate negatives, the candidate space for a negative sample
is initiated with all entities except for the given positive elements. For example, given the
positive (DaVinci, painted, MonaLisa), the proposed method initializes the candidate nega-
tives as (TheCreationOfAdam, TheLastSupper, Louvre, LadyWithAnErmine, Paris), where E
= (DaVinci, MonaLisa, TheCreationOfAdam, TheLastSupper, Louvre, LadyWithAnErmine,
Paris). In step 2, TuckerDNCaching drops true positives to eliminate all the observed positive
facts from the candidate sample space. Since KG consists of one-to-many, many-to-many,
and many-to-one relations, it is essential to drop true positives from the candidate negatives.
For instance, given the positive (DaVinci, painted, TheLastSupper), candidate negative The-
LastSupper is removed from the negative sample space. In step 3, TuckerDNCaching drops
false negatives, i.e., latent positives, from the candidate negatives predicting possible latent
relations from the latent relation model which is trained in step 1. Eliminating false nega-
tives before the importance evaluation for selecting negatives with large gradients is essential
since latent positives comprise large gradients. For instance, given the tail corrupted triplet
(DaVinci, painted, ∗ ), the latent relation model predicts (DaVinci, painted, LadyWithAnEr-
mine) as a latent fact and removes that from the candidate negatives. To avoid vanishing
gradients while exploring quality negatives, TuckerDNCaching introduces an importance
probability pimp(x):

pimp(x) =

⎧
⎪⎨

⎪⎩

head corruption; pimp(h̄) = p(h̄ | (t, r)) = exp( f (h̄,r ,t))
∑

hi εH(t,r)
exp( f (h̄i ,r ,t))

tail corruption; pimp(t̄) = p(t̄ | (h, r)) = exp( f (h,r ,t̄))∑
ti εT(h,r)

exp( f (h,r ,t̄i ))

(1)

where H(t,r) is head candidate negatives, and T(h,r) is tail candidate negatives. The impor-
tance probability pimp(x) samples essential and effective negatives from candidate negatives
considering their gradients referring to the underlying scoring function f (h, r , t). A higher
pimp(x) reflects that the candidate negative is more effective and important with KGE
model learning. In step 4, following the probability pimp(x), the proposed method evalu-
ates the importance probability for all candidate negatives. In step 5, the quality negatives
are screened, considering the probability values, and the method then directs the screened
negatives, i.e., (DaVinci, painted, TheCreationOfAdam), to KGE model training. In step 6,
the typical KGE model training is performed, discriminating positive (DaVinci, painted,
MonaLisa) against the generated negative, i.e., (DaVinci, painted, TheCreationOfAdam).

However, modeling the distribution of all candidate negatives and selecting quality neg-
atives introduce complexity with execution. Therefore, a caching technique is adopted to
handle the execution efficiency. Also, a lazy update procedure is used to evaluate the impor-
tance of candidate negatives and update the caches. The integration of latent relation model
training, negative cache initialization, and cache update procedure with the existing KGE
model training framework is described in Section 3.4.3 while carefully referring to critical
steps in the proposed TuckerDNCaching.
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3.4.3 Implementation of TuckerDNCaching with KGE training framework

Referring to the typical KGE model training framework, the proposed TuckerDNCaching
introduces latent relationmodel training, negative cache initialization, and cache update steps,
which are described in Algorithm 1.

Algorithm 1: TuckerDNCaching-based KG embedding.
Input: Knowledge graph G = {(h, r , t)}, and latent relation model fr (h, t) of dr dimension with

parameters θR , and score function f (h, r , t) of embedding dimension d with parameters θE
Output: Embedding model with parameters θE

1 Initialize latent relation model fr (h, t) with parameters θR , embedding model with parameters θE
randomly, and initialize caches, i.e., head-cache H and tail-cache T .

2 Train latent relation model for Niterations number of epochs.
3 Loop
4 foreach (h, r , t) ∈ G do
5 IndexH by (t, r), i.e.,H(t,r) and T by (h, r), i.e.,T(h,r).
6 Uniformly sample negative candidates from h̄ ∈ H(t,r) and t̄ ∈ T(h,r).
7 Select negatives (h̄, r , t̄) either as (h̄, r , t) or (h, r , t̄) considering the relation cardinality of

r .
8 Update knowledge graph embeddings discriminating (h, r , t) against (h̄, r , t̄).
9 end foreach

10 Update cache H and T using Algorithm 2;
11 end

The parameters of latent relationmodel (θR) andKGEmodel, (θE ) are initialized in line-1.
Reflecting the steps in Section 3.4.2, the latent relation model training is performed in line-2
following step 1 in Fig. 2. KGE model trains iteratively for a certain number of epochs.
Typically, we forge a triplet as a candidate for negatives by replacing either head or tail.
Generated negatives are stored in two separate caches, i.e., head-cacheH (indexed by (t, r))
and tail-cache T (indexed by (h, r)). When a positive triplet is considered, the corresponding
caches that contain candidate negatives, i.e., H(r , t) and T (h, r), are indexed in line-5.
To carefully select negatives from caches without introducing bias, candidate negatives are
uniformly selected from the head-cache H(t,r) and the tail-cache T(h,r) in line-6. The final
selection of negatives for a respective positive is selected from the negative head candidates
or tail candidates considering the relation cardinality in line-7. Referring to the generated
negatives, typical KGE model training is performed (step 6) using the underlying scoring
function f in line-8. To model the dynamic distribution of candidate negatives and adopt the
changes in embeddings, caches are updated using Algorithm 2 in line-10.

The critical steps from 2 to 5 in the proposed framework are implemented in Algorithm 2
as it describes steps in generating quality candidate negatives and storing them in respective
caches. When caches are updating, TuckerDNCaching initializes candidates for the head-
cacheH(t,r) and the tail-cache T(h,r) with all entities E except for the given positive elements
in line-2 in Algorithm 2. Reflecting on step 2 in the proposed framework, true positive
filtration from candidate negatives is performed in line-3. Latent positive filtration from
candidate negatives refers to the predicted latent relations (step 3) is performed in line-4. The
importance and the effectiveness of the candidate negatives of true negatives are evaluated
on the basis of their gradients using the importance probability pimp(x) (step 4) in line-5.
On the basis of the probability values of pimp(x), Nc candidates are selected and stored in
respective caches (step 5) in line-6.
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Algorithm 2: Cache update.
Input: Knowledge graph G = {(h, r , t)}, and latent relation model fr (h, t) of dr dimension with

parameters θR , score function f (h, r , t) of embedding dimension d with parameters θE , and
cache size Nc

Output: head-cacheH and tail-cache T
1 foreach (h,r,t) ∈ G do
2 Initialize negative candidates forH(t,r) and T(h,r).
3 Remove true positives fromH(t,r) and T(h,r) referring to G.
4 Predict latent relations from fr (h, t), ∀h̄ ∈ H(t,r), ∀t̄ ∈ T(h,r) and drop false negatives from

H(t,r) and T(h,r).
5 Evaluate importance probability pimp(x) considering (1) ∀h̄ ∈ H(t,r) and ∀t̄ ∈ T(h,r).
6 Select Nc number of candidates with high pimp(x) fromH(t,r) and T(h,r).
7 end foreach

TuckerDNCaching differentiates itself from the state-of-the-art negative sampling meth-
ods from three perspectives. First, by modeling the distribution of all possible candidates, it
effectively discovers rare and quality negatives. Second, the latent relation predictions and
false negative filtering avoid false negatives in the candidate space. Third, the probability
pimp(x) evaluates the importance and the effectiveness of candidate negatives on the basis
of a scoring function to avoid vanishing gradients. Since TuckerDNCaching eliminates false
negatives, final candidate negatives comprise only quality negatives. In contrast to the pre-
vious MDNCaching, the proposed TuckerDNCaching improves the semantic soundness of
the latent relations utilizing Tucker decomposition representation introducing an additional
relation feature space with a three-dimensional tensor. The proposed method extends the
caching technique originally proposed for NSCaching to manage generated negative candi-
dates effectively but addresses the problem of false negatives successfully eradicating the
false negatives in negative sample space using a latent relation model. As the proposed
method does not depend on the selection of the scoring function, it improves robustness in
training models from scratch with fewer parameters than previous dynamic negative sam-
pling methods IGAN, KBGAN, and KSGAN. Even though some negative sample methods
introduce loss functions to achieve the best performance, e.g., ESNS introduces a shift-based
point-wise logistic loss function, TuckerDNCaching is not biased toward any loss function
and provides flexibility.

3.5 Space and time complexity analysis

TuckerDNCaching introduces additional costs with the Tucker decomposition-based latent
relationmodel in Algorithm 1 and negative caches introduced in Algorithm 2 compared to the
typical KGE framework. In Algorithm 2, the time complexity of predicting latent relations
fr (h, t̄)) and fr (h̄, t)) at step 4 is O(| E | dr ). Besides, computing the score of candidate
entities at step 5 is O(| E | d). In step 6 Algorithm introduces a time complexity of O(| E |),
which is negligible compared to costs in steps 4 and 5. Thus total time complexity introduces
for one triplet is O(| E | (d+dr )).With the utilization of the lazy update approach in updating
cache that refreshes the cache after N number of epochs later rather than immediate, we can
optimize the time complexity to O((| E | (d + dr ))/(n + 1)). When considering the space
complexity,Algorithm2 requiresO(| E | dr ) space to predict latent relationswhileO(| E | d)

to evaluate scores of | E |. Since the algorithmmanages negative candidates in different head
and tail caches, Algorithm 2 requires an additional space of O(| G | Nc) where Nc is cache
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size, but practically it is smaller than the actual as facts contain many N-1, 1-N, and N-N in
G. Comparisons with state-of-the-art are summarized in Table 1.

4 Experiments

We evaluated TuckerDNCaching from three perspectives: (a) effectiveness in addressing
the stated challenges in negative sampling, (b) accuracy in latent relation modeling, and (c)
accuracy of the link prediction task.

4.1 Experimental setup

4.1.1 Experimental design

We evaluated the performance of our proposed negative sampling method on the link pre-
diction task. Link prediction aims to indicate the occurrence of links in graphs, i.e., predict
the missing head (h) or tail (t) entity for a positive triplet (h, r , t) and evaluate the rank
of the head and tail entities among all predicted entities. To experimentally evaluate the
effectiveness of the proposed method in addressing the stated challenges, i.e., (a) adopting
a dynamic distribution of negatives to avoid vanishing gradients and (b) avoiding false neg-
atives among the candidates, we conducted two experiments on each aspect. The proposed
TuckerDNCaching was compared with MDNCaching for different relation types to compare
the improvements in latent relation modeling. We measured the accuracy of latent relation
predictions, evaluating the percentage of correct relation predictions between head and tail
in the test dataset. To test the quality of selected negatives, we store candidate negatives for
a particular positive triplet and manually compare the negatives’ semantics. We compare the
link prediction results with the state-of-the-art negative samplingmethods to compare the link
prediction accuracy. We evaluate the performance of the link prediction task referring to two
translational distance-based models (TransE (Bordes et al., 2013), TransD (Ji et al., 2015))
and two semantic matching models (DistMult (Yang et al., 2015), ComplEx (Trouillon et al.,
2016)). Details on baseline KGE models are given in Table 2.

4.1.2 Datasets

The experiments were conducted on four standard benchmark datasets, i.e., WN18 (Miller,
1995), WN18RR (Wang et al., 2019), FB15K (Bollacker et al., 2008) and FB15K237
(Toutanova and Chen, 2015), which are widely tested with knowledge graph embedding

Table 2 Scoring functions for triplet (h, r , t) and parameters

Model Scoring Function Parameters

Translational TransE ‖h + r − t‖1/2 h, r , t ∈ R
n

distance-based TransD
∥
∥
∥h + wrw

�
h h + r − (t + wrw

�
t t)

∥
∥
∥
2

2
h, t, wh , wt , ∈ R

n , r , wr ∈ R
k

Semantic DistMult h� · diag(r) · t h, r , t ∈ R
n

matching-based ComplEx Re(h� · diag(r) · t) h, r , t ∈ C
n

diag(r) constructs diagonal matrix with r
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Table 3 Statistics of datasets
used in KGE experiments

Dataset #entity #relation #train #valid #test

WN18 40,943 18 141,442 5,000 5,000

WN18RR 40,943 11 86,835 3,034 3,134

FB15K 14,951 1,345 483,142 50,000 59,071

FB15K237 14,541 237 272,115 17,535 20,466

related work (Hu et al., 2019; Cai et al., 2018; Zhang et al., 2019; Madushanka et al.,
2022).The WN18RR and FB15K237 datasets are challenging and realistic, as they have
been constructed by removing inverse-duplicate relations from their origins, i.e., WN18 and
FB15K, respectively. The statistics of the datasets are shown in Table 3.

4.1.3 Performance measurement

We considered the “filtered scenario” for our performance evaluation on the link prediction
task. Hence, valid entities outscoring the target ones have not considered mistakes and were
thus skipped when computing the rank. Furthermore, we evaluated the results on the basis
of the following metrics.

• Mean Rank (MR) is the average of the obtained ranks, MR = 1
‖Q‖

∑
q∈Q q . A smaller

value of MR tends to infer better results. However, since MR is susceptible to outliers,
the Mean Reciprocal Rank is widely used.

• MeanReciprocal Rank (MRR) is the average of the inverse of the obtained ranks,MRR =
1

‖Q‖
∑

q∈Q 1
q . A higher value of MRR tends to infer better results.

• Hit@K is the ratio of predictions for which the rank is equal to or lesser than a threshold
k, Hits@K = ‖{q∈Q:q≤K }‖

‖Q‖ . A higher value of Hits@K tends to infer better results.

4.1.4 Optimization and implementation

A knowledge graph embedding model was tuned by minimizing the objective function
with the Adam optimizer. First, we adjusted hyper-parameters referring to the Bernoulli
sampling method on the basis of MRR. We executed each evaluation up to 1000 epochs
and present the best result for MRR. We started our experiments within the following
ranges for hyper-parameters: embedding dimension d ∈ {50, 100, 250, 1000}, learning rate
η ∈ {0.0005, 0.005, 0.05, 0.5}, and margin value γ ∈ {1, 2, 3, 4, 5}, which were opti-
mized for the best performance. In addition to the typical hyper-parameters related to KGE
model training, the proposed method introduces three new parameters: latent model train-
ing epochs (Niterations = 200 epochs), latent model dimension (dr = 50), and cache size
Nc. After every 20 epochs, caches were updated. We selected cache size Nc to be 250. We
implemented the proposed negative sampling method, i.e., TuckerDNCaching, on top of the
TorchKGE (Boschin, 2020) Python module with the PyTorch framework and executed it on
an NVIDIA RTX A6000 GPU.
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4.2 Results

4.2.1 Impact of negatives with large gradients

We compared the distributions of negative triplets for TuckerDNCaching and the baseline
Bernoulli negative sampling method to evaluate the impact of negatives with large gradi-
ents. We measured the complementary cumulative distribution function (CCDF) FD(x) =
P(D ≥ x) to show the proportion of negative triplets that satisfy D ≥ x where D(h∗,r ,t∗) =
f (h∗, r , t∗) − f (h, r , t), and Fig. 3 shows the results.
When the minus distance between the scores of a positive sample and its negative sample,

i.e., D(h∗,r ,t∗), was smaller than a minus margin −γ (γ > 0), the distance between the
positive and negative samples was large enough. Hence, the negative sample contributed a
zero gradient to the loss function. Quality negative samples are those with D > −γ . Figure
3(a) shows that the distribution of negative triplets with large gradients for Bernoulli tended to
reduce as the learning continued, leading to a vanishing gradient problem. However, Fig. 3(b)
shows that the dynamic selection approach in TuckerDNCaching managed to overcome the
vanishing gradient problem as it generated negatives with large gradients to support the KGE
learning.Wecan see that TuckerDNCaching tended to reduce negatives that satisfied D > −γ

until epoch 50. After that, it kept producing negatives with large gradients, supporting the
KGE model in continuously learning the semantics of KG.

4.2.2 Impact of false negative elimination

Our primary research contribution in TuckerDNCaching is to model latent relations pre-
cisely, drop false negatives from the negative candidate space, and enhance the quality of
candidates. The analysis in Section 3.3 describes the challenge with the existence of false
negatives when a negative sampling method tends to model the dynamic distribution of all
possible negatives. Therefore, it is essential to filter false negatives from candidate nega-
tives. To compare the impacts of false negatives’ existence and nonexistence, we compared
the link prediction results of the proposed TuckerDNCaching, previous MDNCaching, and
ExtremeSelectCaching (introduced in Section 3.3).
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Figure 4 shows the results of the link prediction task describing the impact of false neg-
ative filtration. Results on FB15K237 data show that the false negative filtration effectively
enhanced link predictions for TransE and ComplEx. The enhancement to the latent relation
modeling by utilizing the Tucker decomposition is reflected in Fig. 4, as it substantially
enhanced the link prediction results for MRR and Hits@1 compared with MDNCaching. It
is important to note that dynamic selection does not continuously support learning as the
negative space contains positives, and the results reflect the importance of identifying false
negatives.

4.2.3 Visualization of complements for relation types

To evaluate the capability in modeling many-to-many relations in the proposed TuckerD-
NCaching, we compared the link prediction results for many-to-many relations on the
FB15K237 dataset. We compared the link prediction results for TuckerDNCaching with
MDNCaching, and the results are described in Fig. 5. The improvement in accuracy for
predicting many-to-many latent relations reflects that TuckerDNCaching overcomes the rep-
resentation problem with MDNCaching by introducing a relation feature space with the
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Fig. 6 MRR performance comparison on link prediction for TuckerDNCaching, MDNCaching, and Bernoulli
negative sampling methods with relation properties for FB15K237 with latent relation model accuracy
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Tucker decomposition representation technique. As TuckerDNCaching improves the latent
relation modeling for many-to-many relations, it performs better filtration of latent facts and
enhances the link prediction.

To further evaluate the improvements in latent relation modeling regardingMDNCaching,
we compared the link prediction performance for different relation types on FB15K237. We
separated test facts into pails on the basis of the properties of their relations. When a relation
retains multiple relation properties, the corresponding test facts are moved to all the related
pails. For reference, we consider complete test facts as “All relations" as they contain facts of
all relation types. We evaluated the accuracy of the latent relation model for the test dataset
of FB15K237 and analyzed the MRR performance. We considered the following relation
properties:

• Reflexivity: r ∈ R is reflexivity if ∀(h, r , t) ∈ Gtrain, (h, r , h) ∈ Gtrain too.
• Irreflexivity: r ∈ R is irreflexive if ∀e ∈ E (e, r , e) /∈ Gtrain .
• Symmetry: r ∈ R is symmetric if ∀(h, r , t) ∈ G, (t, r , h) ∈ G too.
• Anti-symmetry: r ∈ R is anti-symmetric if ∀(h, r , t) ∈ G, (t, r , h) /∈ G.
• Transitivity: r ∈ R is transitive if ∀ pair of facts (h, r , x) ∈ G and (x, r , t) ∈ G,

(h, r , t) ∈ G as well.

Figure 6 illustrates the comparison results on the link prediction task for ComplEx and
TransE with the FB15K237 dataset with latent relation model prediction accuracies. When
comparing the latent relation model accuracy for different relation types, one can see that
TuckerDNCaching performed better in modeling latent relations except for the reflective
relation type. The results evidence that the improvements in latent relation modeling lead to
better performance on the link prediction task. For instance, when considering the accuracy
of the latent relation model for irreflective and anti-symmetric relations, respective graphs
reflect noticeable enhancements to the corresponding link prediction performance, referring
to the baseline Bernoulli negative sampling method. Interestingly, irrespective of the nega-
tive sampling method, the underlying KGE models tended to successfully learn semantics
for reflective relation. For the symmetric relation, we observed slight improvements in link
predictions for ComplEx and TransE compared with the baseline Bernoulli negative sam-
pling method. On the other hand, the results reflect no evident performance improvement
compared with the baseline Bernoulli sampling method when the latent relation modeling
for the transitive relation was inadequate. When considering the representation of relations,
introducing the relation feature space with Tucker decomposition representation enhanced
the latent relation modeling compared with the matrix decomposition-based MDNCaching.
The results reflect that TuckerDNCaching enhances link predictions by eliminating possible
false negatives.

4.2.4 Examples of negative triplets

To test the quality of the negative samples generated by the proposed TuckerDNCaching,
we visualized the changes to the entities in the cache. Following IGAN (Wang et al.,
2018), we analyzed the negative candidates sampled for FB13 as the triplets are more intu-
itive than WN18RR and FB15K237. We compared the negative candidates for the positive
(panorama, prof ession, actor) followingNSCaching (Zhang et al., 2019).We considered
tail corruption, i.e., (panorama, prof ession, ?), and Table 4 describes the first ten entries
in different epochs. The results show that the initial negative candidates were meaningless,
e.g., marc_mitscher and david_ f arrar . However, as the learning continued, TuckerD-
NCaching gradually changed negative candidate entities to human jobs, e.g., bookmaker ,
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Table 4 Example of negative entities in cache on FB13. Each line reflects first 10 sampled entities from
tail-cache of a positive fact (manorama, prof ession, actor) in different epochs

epoch First 10 candidates in cache

0 marc_mitscher, ivan_ii_of_russia, david_farrar, kim_philby, luigi_galleani,

laval_quebec, patriarch_photios_i_of_constantinople, josias_hoffman, cynthiana,

james_anthony_murphy

100 naval_officer, roman_emperor, cardinal, pastor, logician,

jean_joseph_vaudechamp, john_winthrop_the_younger, joseph_schrembs,

howard_culver, ken_barrington

250 bookmaker, talent_agent, lord_francis_douglas, war_correspondent,

archbishop, mechanic, sales_manager, jazz_composer, art_historian,

pitcher

500 nobleman, game_show_host, editor_in_chief, televangelist,

ballerina, prime_minister, hip_hop_production, saint, jazz_composer,

university_president

Bold entities are correct type matches for relation profession in FB13 in each epoch

talent_agent , that are semantically meaningful with (panorama, prof ession, ?). This
reflects the capability of our negative sampling method to generate negative triplets that are
semantically meaningful and effective in discriminating with positives.

4.2.5 Link prediction

To carefully compare TuckerDNCaching with MDNCaching, we evaluated the results on the
link prediction task considering MRR, Hits@1, Hits@3, and Hits@10 for the WN18RR and
FB15K237 datasets since they are more challenging, and the results are summarized in Table
5. The results on link prediction reflect that the TuckerDNCaching negative sampling method
overall enhanced the link prediction and, most interestingly, it enhanced Hits@1 and MRR
substantially, referring to the previous MDNCaching. When considering the MRR results
for the WN18RR dataset, TuckerDNCaching outperformed MDNCaching for all KGE mod-
els. TuckerDNCaching outperformed MDNCaching except for TransD with the FB15K237
dataset. InterestinglyTuckerDNCaching achieved a 19.72% improvement for TransE,while it
achieved an 18.08% improvement for ComplEx comparedwithMDNCaching. This improve-
ment follows with Hits@1 as it is intuitive with MRR. Hits@3 reflects the best results for
all baseline KGE models with WN18RR and FB15K237 except for TransD with WN18RR.
When considering the link prediction task requirement, improvements to Hits@1 and MRR
reflect how well the embedding model learns the semantics of the KG. The results evidence
that TuckerDNCaching enhances link prediction by enhancing the semantic soundness of the
latent relation model and improving the quality of the generated negatives compared with
the previous MDNCaching, overcoming the representation issues.

Following the approach in related work (Zhang et al., 2019; Hu et al., 2019; Madushanka
et al., 2022), we compared the link prediction results with the state-of-the-art negative
sampling methods and compared the results considering MR, MRR, and Hits@10. Table
6 summarizes the performance comparison for link prediction. We compared results with
state-of-the-art negative sampling methods regarding the reported performance comparison
in NSCaching (Zhang et al., 2019) for Bernoulli, KBGAN, and NSCaching concerning train-
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ing from scratch. KSGAN (Hu et al., 2019) was compared with the reported performances.
We evaluated the link prediction results for MDNCaching as it is the reference model for the
proposed TuckerDNCaching.

When considering the results for translational distance-based models, it is evident that
the proposed negative sampling method achieved a substantial improvement for all datasets;
achieving the best values for MRR or Hits@10 which provides meaningful insights into
the improvements. TransE reflects improvement for all the datasets and TransD reflects the
best results for WN18RR and FB15K while achieving competitive results with WN18 and
FB15K237.When evaluating results for semanticmatching-basedKGEmodels, we observed
that the proposedmethod outperformed the state-of-the-art negative samplingmethods except
with DistMult for FB15K dataset. Interestingly, comparing the link prediction results for the
datasets which do not have any inverse relation test leakage, i.e. WN18RR, and FB15K237,
the proposed TuckerDNCaching improves the link prediction results substantially. On the
other hand, even thoughTuckerDNCaching obtains the best results against the state-of-the-art
negative sampling strategy for FB15K and WN18 datasets, MRR results reflect that the data
leakage in these datasets impacts latent relation modeling and quality negative generation.

The link prediction results with the benchmark datasets show that the proposed nega-
tive sampling methods enhanced the KG embeddings by generating quality negatives. The
substantial improvements in MRR and Hits@10 reflect that TuckerDNCaching successfully
overcomes the stated challenges with negative generation and enhances latent relation mod-
eling with false negative filtration while modeling the dynamic distribution of all negative
candidates.

5 Conclusion

In this paper, we proposed TuckerDNCaching, an extension of MDNCaching, improving
latent relation modeling. The TuckerDNCaching negative sampling method addresses the
problemof false negatives by reducing latent positives predicted through theTucker decompo-
sition approach, replacing the previousmatrix decomposition approach inMDNCaching. The
proposed method effectively manages separate caches for head and tail candidates contain-
ing quality negatives, thus addressing the challenges in negative sampling.We experimentally
evaluated TuckerDNCaching on four widely used datasets and four scoring functions cover-
ing translational distance and semantic matching models. The results of the link prediction
task reflect a substantial enhancement with TransE, Dismult, and ComplEx KGE models.
Notably, the ComplEx and TransE KGE models with TuckerDNCaching improved the link
prediction for all four datasets. We extended our experiment by separately analyzing the
effect of dynamic sampling and false negative filtration. In addition, we experimented with
complements of the latent relation model for different relation properties and compared the
link prediction results for the properties. The empirical results reflect that TuckerDNCaching
effectively enhanced knowledge graph embedding generating quality negatives that support
the KGEmodels to learn important semantics of the KG. Also, experimental results evidence
that TuckerDNCaching gains faster and more effective model training which achieves bet-
ter performance with fewer epochs. Possible enhancements to latent relation modeling and
effective execution will continue as our future work1.

1 https://github.com/ichise-laboratory/tuckerdncaching
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