
https://doi.org/10.1007/s10844-022-00762-0

Parameters tuning of multi-model database based
on deep reinforcement learning

Feng Ye1 ·Yang Li1 ·XiwenWang1 ·Nadia Nedjah2 ·Peng Zhang3 ·Hong Shi4

Received: 30 December 2021 / Revised: 29 October 2022 / Accepted: 31 October 2022 /

© The Author(s) 2022

Abstract
As we all know, the performance of database management system is directly linked to a vast
array of knobs, which control various aspects of system operation, ranging from memory
and thread counts settings to I/O optimization. Improper settings of configuration parame-
ters are shown to have detrimental effects on performance, reliability and availability of the
overall database management system. This is also true for multi-model databases, which
use a single platform to support multiple data models. Existing approaches for automatic
DBMS knobs tuning are not directly applicable to multi-model databases due to the diver-
sity of multi-model database instances and workloads. Firstly, in cloud environment, they
have difficulty adapting to changing environments and diverse workloads. Secondly, they
rely on large-scale high-quality training samples that are difficult to obtain. Finally, they
focus primarily on throughput metrics, ignoring tuning requirements for resource utilization.
Therefore, in this paper, we propose a multi-model database configuration parameters tun-
ing solution named MMDTune. It selects influential parameters, recommends the optimal
configurations in a high-dimensional continuous space. For different workloads, the TD3
algorithm is improved to generate reasonable parameter adjustment plans according to the
internal state of the multi-model databases. We conduct extensive experiments under 5 dif-
ferent workloads on real cloud databases to evaluate MMDTune. Experimental results show
that MMDTune adapts well to a new hardware environment or workloads, and significantly
outperforms the representative tuning tools, such as OtterTune, CDBTune.

Keywords Multi-model database · Tuning · Deep reinforcement learning · TD3

� Feng Ye
yefeng1022@hhu.edu.cn

1 School of Computer and Information, Hohai University, Nanjing, 211100, China
2 State University of Rio de Janeiro, Rio de Janeiro, Brazil
3 Jiangsu Provincial Department of Water Resources, Nanjing, 210029, China
4 Nanjing GuangSha Software LTD, Nanjing, 210000, China

Published online: 30 November 2022

Journal of Intelligent Information Systems (2023) 61:167–190

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-022-00762-0&domain=pdf
http://orcid.org/0000-0003-0005-2073
mailto: yefeng1022@hhu.edu.cn


1 Introduction

In practice, as the world becomes more interconnected, we are witnessing a torrent of digital
data with different structures produced by various hardware or software. How to store and
manage data of multiple models (Sawadogo & Darmont, 2021) and how to facilitate data
interoperation (Braun et al., 2022) become key issues. Multi-model databases (Płuciennik
& Zgorzałek, 2017) become a feasible and burgeoning solution, which can be understood
as a database that can store data in different formats (relational, document, graph, object,
etc) under one management system.

The performance of a multi-model database depends mainly on hundreds of tunable
knobs that control many aspects, such as memory allocation, I/O optimization, query plan-
ning overhead, and other behaviors (Gordon-Ross & Vahid, 2007). Due to the diversity of
workloads and the flexibility of the environment, multi-model databases are often not in the
best state, and even deteriorate. So it is not possible to rely on a few experienced database
administrators (DBAs) to set appropriate knob configurations. Most existing database auto-
matic tuning studies rely on search-based algorithms and learning-based algorithms to
recommend knobs. However, they are less able to adapt to the changing environment and
more diverse workloads in the cloud or rely on large-scale high-quality training samples
that are difficult to obtain. Moreover, as multi-model database is capable of managing mul-
tiple data models at the same time, it can implement CRUD operations on various data
models and complex cross-model transactions. However, existing benchmarking platforms
focus on relational databases and single data schema NoSQL stores (Davoudian et al., 2018;
Huang et al., 2017), which make tuning significantly limited. This is also a challenge, with
two main aspects: the complexity of the parameters and the heterogeneity of multi-model
database workloads. For example, workloads of multi-model database are more diversified
than traditional databases, and workloads may contain retrieval of documents, as well as
operations on graph data. Meanwhile, some of the existing database benchmarks do not
support long-term stress testing, and they only consider using execution time to evaluate
performance and lack other metrics, such as latency.

To solve the above problems, enrich the research on knob tuning of multi-model
database, and explore the feasibility and effectiveness of tuning methods on multi-model
database, we propose a performance tuning solution of multi-model database based on deep
reinforcement learning called MMDTune. It consists of three parts, which are the multi-
round sensitivity analysis method (Borgonovo & Plischke, 2016; Sobol, 2001; Zadeh et al.,
2017), the knob tuning algorithm based on improved TD3 (Fujimoto et al., 2018; Dankwa
& Zheng, 2019) and the benchmarking platform oriented to the multi-model databases.
Among them, multi-round sensitivity method is used to select the configuration parameters
that have a significant impact on the metrics. The tuning algorithm based on improved TD3
is used to recommend knob parameters for multi-model databases. It interacts with the real
environment of the multi-model database so that it can be tuned without prior preparation
of training samples. Moreover, using the trial-and-error strategy can make the interaction
samples more diverse and increase the possibility to find the optimal configuration. The
benchmarking platform includes various workloads and can collect performance metrics.
In addition, the benchmarking platform introduces Prometheus (Prometheus Team, 2022)
to collect the performance metrics of the multi-model database, so that it not only accu-
rately evaluates the throughput of the multi-model database, but also monitors the resource
utilization rate of the system in real time.

168 Journal of Intelligent Information Systems (2023) 61:167–190



The contributions of our work are summarized as below: (1) Extended Sobol method is
used to carry out multi-round sensitivity analysis on the tunable knobs to extract the key
parameters, so as to reduce the size of the network search space and effectively avoid over
fitting. (2) An improved TD3 algorithm is proposed, and the effectiveness of the algorithm
is verified on the benchmarking platform proposed for different tuning tasks, operating
environments and tuning objects. The experimental results show that MMDTune can recom-
mend optimal configuration schemes under different scenarios. At the same time, compared
with the existing database tuning methods OtterTune (Van Aken et al., 2017) and CDB-
Tune (Zhang et al., 2019), MMDTune is able to further improve performance, namely gives
a higher throughput and lower resource utilization.

The rest of this paper is organized as follows. Section 2 introduces the related work.
Section 3 introduces the overall framework and components of MMDTune. In Section 4,
the details and results of the experiments are described. At last, the conclusion is made and
the prospect is put forward.

2 Related work

There are two classes of representative studies in DBMS configuration tuning. As shown in
Table 1, they are the search-based approaches and the learning-based approaches.

2.1 Search-based approaches

IBM DB2 has released a self-tuning memory manager (Storm et al., 2006; Tian et al., 2003)
that combines runtime simulation modeling with cost-benefit analysis to efficiently allo-
cate memory to the DBMS’s internal components using a heuristic approach. BestConfig
(Zhu et al., 2017) divides the high-dimensional knob space into several subspaces, and uses
heuristic methods to search for the optimal configuration from the history records, so as
to realize recommending optimal configuration under the condition of limited resources.
Tran et al. (2008) uses linear and quadratic regression models to conduct buffer adjust-
ment, which can optimize buffer partitions, ensure fair buffer recovery, and dynamically
adjust allocation when workloads change. Wei et al., (2014) proposes a performance tun-
ing framework that can generate rules and use those rules for tuning. Similarly, D-Tunes
(PN et al., 2013) provides a tuning solution for distributed database storage that uses an
analysis model to capture the relationship between workloads and database performance
and introduces self-tuning algorithms to accommodate workload changes over a short time
horizon.

Table 1 Representative research on database parameter tuning technology

Type Literature Methodology

Search-based approaches 13, 14, 15, 16, 17, 18 Using rules or heuristics to search
for the best database parameter con-
figuration.

Learning-based approaches 11, 12, 19, 20, 21, 31, 32 Learning the mappings between
parameter combinations and target
data to recommend the configura-
tion for optimal database perfor-
mance.

169Journal of Intelligent Information Systems (2023) 61:167–190



The rule-based approach above has some limitations: in the case of many parameters and
large state space, the tuning process needs to test a very large number of samples, which is
very inefficient, and the end result may fall into a local optimal situation.

2.2 Learning-based approaches

Duan et al. (2009) introduces iTuned, the first tool for database knobs tuning using pre-
defined experiments. iTuned uses statistical methods to find the most influential knobs,
and establishes the Gaussian process response surface model for automatic configuration
adjustment. Researchers from Carnegie Mellon University develop an automatic parame-
ter adjustment tool OtterTune (Van Aken et al., 2017). It builds a ML (Machine Learning)
model by maintaining a knowledge base accumulated in a previous tuning process, and
by capturing the response of the database system to different parameter settings, it recom-
mends the setting of the knobs. Basu et al. (2016) proposes a learning method to adjust
database performance. It learns the cost model through reinforcement learning, and models
the execution of query and updates as a Markov decision process. Its state is database con-
figuration, action is configuration change, and return is a function of configuration change
cost and query and updates evaluation. However, this method is only proved to be feasible
in index tuning, and whether it is suitable for other aspects of database configuration needs
further study. In Van Aken et al. (2017), researchers design an end-to-end cloud database
automatic adjustment system CDBTune using deep reinforcement learning. It uses DDPG
(Wu et al., 2018; Fekry et al., 2020) algorithm to find the optimal configuration for cloud
database in high-dimensional continuous space. Then, Li et al. (2019) proposes a database
tuning system QTune in query dimension. Similarly, the system combines reinforcement
learning with neural network, and adds a predictor on the basis of DDPG to predict the
changes of external metrics before and after query processing, which finally proves the
effectiveness of the model. In Zhang et al. (2021), an improved version of CDBTune + has
been released. Compared with the original one, a big improvement in this paper is the use
of Prioritized Experience replay (Schaul et al., 2015) in the tuning process, which speeds up
the convergence of model training and greatly improves the efficiency of tuning. However,
DDPG algorithm has the problem of over estimation in the process of training. Van Aken
et al. (2021) conducts a comprehensive evaluation of ML-based DBMS knob tuning meth-
ods in an enterprise database application, and it is verified that GPR, DNN and DDPG can be
effectively applied to the knob tuning work and their differences in this scenario. The valid-
ity of the learning-based algorithms for the database are tested. However, the applicability
and effectiveness of the above methods in multi-model databases have not been verified.

The automatic tuning of database has achieved some research results, and the quality of
tuning is gradually improving. However, due to the complexity and diversity of multi-model
databases, the related research is not abundant. In addition, the methods based on ML do
not perform well in high dimension continuous space. Although the methods based on deep
learning has certain ability to understand and recommend configurations, it is one-sided and
inefficient to some extent.

3 Framework of MMDTune

To realize the automatic operation after the tuning target is determined, we propose a knob
tuning solution named MMDTune for multi-model databases. Figure 1 shows the overall
framework, which consists of three parts: the multi-round sensitivity analysis method, the

170 Journal of Intelligent Information Systems (2023) 61:167–190



Multi-Model 

Database

sample

TPS CPU

Memory

Metrics CollectorWorkload Generator

Insert Query

Join

Benchmarking Platform

Sensitivity 

Analysis

Agent

Cluster
Reward 

Function

Parameter Tuning 

Algorithm

Im
p
o
rtan

ce

Parameter
Tuning Task

Workload

Target

state

reconfigure

metrics

reward

metrics

benchmark

benchmark

sensitivity

index

Resampleinput

Multi-Model 

Database

Fig. 1 The framework of MMDTune

parameter tuning algorithm and the benchmarking platform. Among them, the multi-round
sensitivity analysis method is to explore important parameters related to the tuning task
through the iterative Sobol method. The tuning algorithm based on improved TD3 is used
to recommend optimal configuration. The benchmarking platform is used to generate work-
loads and collect performance metrics from the multi-model database system. During the
whole tuning steps, the benchmarking platform provides metrics data for the multi-round
sensitivity analysis and knob tuning algorithm simultaneously.

The first step of program execution is to receive the specified tuning tasks, including the
workload and the performance metrics to be optimized. Next, a corresponding file repos-
itory is generated to store the metrics collected by the benchmarking platform and the
network parameters in the tuning algorithm. In the initial stage of automatic tuning, the
multi-round sensitivity analysis will calculate the sensitivity of each parameter for a spe-
cific tuning task to reduce the size of the search space. Once these parameters are identified,
the tuning algorithm begins to build a strategy and value network based on deep reinforce-
ment learning to explore the optimal configuration. Benchmarking again plays an important
role at this stage. It will serve as the middleware, connecting to the running environment
at one end. The other end is connected to the agent in the algorithm, which is used to pro-
vide external state data for the agent. For different multi-model databases, we can extend
the interfaces in the benchmark to guide experiments and recommend the best parameters.

171Journal of Intelligent Information Systems (2023) 61:167–190



3.1 Identifying important parameters

Parameters have a significant impact on overall performance (Lu & Holubová, 2019). Try-
ing to adjust parameters that have no effect is not only a waste of resources, but can lead to
over-fitting results. Therefore, in the initial stage of tuning, parameters that are positively
or negatively correlated with performance should firstly be found, and these parameters
should be tuned and trained to achieve better learning effects and more efficiency. MMD-
Tune combines sensitivity analysis method to investigate how the variation in execution
cost (for example, execution time) of a multi-model database is attributable to different
configuration parameters. The relationship between them is not simply linear. There are
dependencies between some of the multi-model database’s knobs, so changing one param-
eter may affect the other. For example, in OrientDB (Lu et al., 2018), the maximum heap
space and disk cache are tunable parameters. In theory, increasing the heap cache and disk
cache will improve the performance of running the multi-model database, but if their sum
is too high, it will cause a huge slowdown. Based on the above two points, MMDTune uses
a global sensitivity analysis method to select important parameters.

Traditional sensitivity analysis method typically involves running intensive off-line
benchmarks with many different configuration values and constructing a set of influencing
parameters by analyzing the performance differences caused by each configuration param-
eter. Not only is it expensive to apply this approach directly, but it also takes hundreds of
executions, which can be quite time consuming. Therefore, MMDTune uses an iterative
Sobol method to find key parameters that have a significant impact on performance metrics.
In each iteration, the approach at first uses Monte Carlo method to sample in the parameter
space of the multi-model database. It then combines the large amount of sampled data and
configures them separately into a multi-model database. The benchmarking platform is then
used to execute specific workloads and the resulting measurements are used to calculate
the corresponding sensitivity metrics. The principle of the Sobol method is to assume that
the variance of the model output is the sum of the variances of a single parameter and the
combination of each parameter. Therefore, for a configuration parameter pi in multi-model
database, its first-order sensitivity is expressed as the ratio of the variance of the feature to
the total variance,the calculation is shown in (1).

Si = varpi
(Y )

var(Y )
(1)

In order to obtain the relationship between the database parameters, it can also be
obtained by calculating the higher-order sensitivity. The calculation method is as (2).
Among them, Sp1,p2,...,pk

is the k-order sensitivity. In multi-model database, in addition to
a single configuration parameter that affects performance, the relationship between other
parameters is mostly expressed as two parameters working together to bring changes to
database performance.

Sp1,p2,...,pk
= varp1,p2,...,pk

(Y )

var(Y )
(2)

Therefore, MMDTune focuses on the first-order and second-order sensitivity indicators
of each parameter. In each round, the first-order sensitivity corresponding to each param-
eter is sorted from high to low. When the variance from top-k to top-(k + 1) decreases
significantly (i.e., Stop−k − Stop−(k+1) > Stop−(k+1)), we choose the parameter with high

172 Journal of Intelligent Information Systems (2023) 61:167–190



sensitivity as the key parameter. In addition, when the second-order sensitivity between the
two parameters is greater than 0.5, they are also included in the selection range.

3.2 Multi-model database parameter tuning algorithm based on deep
reinforcement learning

To simulate the try-and-error method that the DBAs adopt and overcome the shortcom-
ing caused by regression, we introduce reinforcement learning which originates from the
method of try-and-error in animal learning psychology and is a key technology to solve NP-
hard problems of database tuning in continuous space (Zhang et al., 2019). Therefore, it is a
reasonable choice to combine deep reinforcement learning to find the reasonable knobs for
multi-model database.

After determining the parameters to be adjusted, MMDTune will adjust the value of each
parameter based on the idea of TD3 algorithm. As shown in Fig. 2, the algorithm is mainly
composed of environment and agent. The detailed Actor-Critic network and parameters of
TD3 are shown in the Table 2.

Among them, the environment is a multi-model database cluster, which constantly inter-
acts with the agent to provide quantifiable internal state and network training data. The agent
is composed of Actor and Critic, which are two independent deep neural networks. The task
of the Actor network is to map the observed internal state of the multi-model database to a
set of parameters to maximize the cumulative reward, that is, it takes the internal state of the
multi-model database as an input and can output a vector composed of parameter values.
The Critic network takes the internal state and configuration parameters of the multi-model
database as input and outputs a Q value that reflect whether or not the action output by
Actor is valid. The agent in the initial stage is a model without knowledge, it learns through
a series of fine-tuning actions. As it becomes more experienced in configuration parameters

Fig. 2 The framework of the neural network

173Journal of Intelligent Information Systems (2023) 61:167–190



Table 2 Detailed Actor-Critic network and parameters of TD3

Step Actor Critic

Layer Param Layer Param

1 Input #States Input #Knobs + #States

2 Full Connection 128 Parallel Full Connection 128 + 128

3 LeakyReLU 0.2 Full Connection 256

4 BatchNorm 128 LeakyReLu 0.2

5 Full Connection 128 BatchNorm 256

6 Tanh − Full Connection 256

7 Dropout 0.3 Full Connection 64

8 Full Connection 128 Tanh −
9 Tanh − Dropout 0.3

10 Full Connection 64 BatchNorm 64

11 Output #Knobs Output 1

and performance, it will recommend the optimal configuration parameters for a multi-model
database. The detailed description of each part is as follows:

1) State space S: The internal state obtained when the multi-model database cluster
finishes executing the workload is s, that is, counter information. For example, in Ori-
entDB, counter information includes global information at the server level and count
information at the session level.

2) Action space A: Suppose, after multi-round sensitivity analysis, the selected set of
parameters is P = {p1, p2, . . . , pm}, where m is the number of key parameters. So,
action a is a set of these parameter values, expressed as {c1, c2, . . . , cm}, where ci is
the value of parameter pi .

3) Reward function R: For parameter tuning problems in a multi-model database, the
reward is used to reflect the performance changes before and after the new knobs con-
figuration recommended by MMDTune. So the reward needs to consider three aspects:
a) it can provide valuable feedback on the performance of systems; b) it can provide
accurate evaluation of knobs tuning with the maximum probability for the RL net-
work; c) multiple metrics of the system performance can dynamically assign different
weighting matrix to indicate different importance. Formally, the performance index of
the database is expressed as M = {m1, m2,m3}, where mi corresponds to throughput,
CPU and memory utilization respectively. It is assumed that the measured index val-
ues at time t are Yt = {yt,1, yt,2, yt,3}. Here, yt,i corresponds to the value of mi . In
particular, y0,i is the index value in the default configuration. Since in a multi-model
database environment, for a given workload, the system must pay some cost to execute
it, yt,i is always positive. In order to make the difference between positive and negative
rewards to distinguish good or bad actions, the specific calculation process of rewards
is as follows.

The essence of the optimization problem is to find the configuration parameters that
make the throughput of the multi-model database as high as possible and the resource
utilization as low as possible. Firstly, we calculate the changes in the initial and last time

174 Journal of Intelligent Information Systems (2023) 61:167–190



based on performance metric. The external metrics of the initial time are y0,i , and the exter-
nal metrics of the last time are yt−1,i , so the performance difference between the current
moment and the initial time, and between the current moment and the previous moment is
calculated according to (3) and (4) respectively.

�t,0 =
⎧
⎨

⎩

yt,i−y0,i

y0,i
, mi is throughput

y0,i−yt,i

y0,i
, mi is resource utilization

(3)

�t−1,t =
⎧
⎨

⎩

yt,i−yt−1,i

yt−1,i
, mi is throughput

yt−1,i−yt,i

yt−1,i
, mi is resource utilization

(4)

We combine these two index differences into (5) to get the reward of mi .

rewardmi
=

⎧
⎪⎨

⎪⎩

((1 + �t−1,t )
2 − 1)(1 + �t,0), �t−1,t ≥ 0,�t,0 ≥ 0

0, �t−1,t < 0,�t,0 ≥ 0

((1 − �t−1,t )
2 − 1)(�t,0 − 1), �t,0 < 0

(5)

There are three cases. Firstly, the reward will be negative if the current tuning system
recommends knobs to the system with worse performance than the default knobs. Secondly,
the reward will be positive if the current tuning system recommends knobs to the system
with better performance than all the knobs previously recommended. Finally, if the knobs
recommended by the current tuning system is better than the default, but not as good as the
historically optimal knobs, the reward is 0.

Let us note that different tuning tasks may choose different tuning metrics (type or quan-
tity), for example, throughput and latency can be tuned at the same time. Therefore, the
tuning system in this paper assigns a weight coefficient wi to the tuning indicator to indi-
cate the direction of tuning preference, so that the tuning system can simultaneously tune
multiple indicators. Then, the final total reward can be expressed as (6) below:

r =
∑

i

rewardmi
∗ ωi (6)

If the goal of the optimization is throughput, our reward function does not need to change,
because the reward function is independent of changes in the hardware environment and
workload and depends only on the optimization goal. Therefore, the reward function needs
to be redesigned only when the optimization goal changes.

Algorithm 1 describes the specific flow of the tuning algorithm. To find the optimal
strategy, we start with an arbitrary strategy μ. Before the iteration, the initial state of the
multi-model database is needed, which is the internal state and external metrics of the
multi-model database after the workload is executed in the default configuration. Unlike
reinforcement learning in general, the multi-model database is configured so that its transi-
tion from one state to another is deterministic. Therefore, there is no need to re-measure at
the beginning of each tuning cycle.

In addition, taking a random sample from the experience replay pool in a uni-
formly distributed manner leads to a low probability of obtaining useful data, leading
to some meaningless iterations. Therefore, the tuning algorithm combines the prioritized

175Journal of Intelligent Information Systems (2023) 61:167–190



Algorithm 1 Parameter tuning algorithm based on TD3.

experience replay to train Actor and Critic, where Actor updates the weight of its neural net-
work according to Q value, and uses deterministic strategy gradient iteration to calculate the
optimal strategy. Critic updates the weight of its neural network based on the reward value.

The traditional TD3 algorithm always targets the minimum between two estimates when
updating the Critic network. This update rule does not introduce any additional overesti-
mation risk as traditional Q-Learning does, but it can also lead to underestimation bias.
While underestimation does not spread during the learning process, it can have some neg-
ative performance effects. Therefore, in order to reduce overestimation while minimizing
the negative effects of underestimation, the tuning algorithm uses a positive parameter α

(α < 1) to mix the minimum and maximum output of the two Critic target networks to
update the target, rather than just using the minimum Q value.

Q(si+1, ai+1) = α min
m=1,2

Q′
m(si+1, ai+1) + (−α) min

m=1,2
Q′

m(si+1, ai+1) (7)

176 Journal of Intelligent Information Systems (2023) 61:167–190



Workloads
implementation

Join
Operations

Benchmarking Platform for Multi-model Databases

ArangoDB

Computer Cluster

Multi-model Databases

Metrics
Prometheus

CPU

Memory

……

TPS

Pushgeteway
Pull metrics

Short-lived

Jobs

Read
Operations

Insert
Operations

Other
Operations

OrientDB

Message Transport Mechanism Kafka

Fig. 3 The framework of the benchmarking platform

3.3 Benchmarking platform

To meet the requirements of performance monitoring in the process of multi-model database
tuning, we propose a benchmarking platform for multi-model database and integrate it in
MMDTune. As shown in Fig. 3, it adopts a multi-layers structure, which is mainly divided
into five parts: infrastructure layer, data storage layer, message transmission layer, workload
implementation layer and metrics collection layer.

For infrastructure layer, in essence, it is a computer cluster or cloud computing envi-
ronment, which provides hardware foundation or virtual machine running environment for
multi-model database.

Data storage layer consists of various NoSQL stores. Two well-known multi-model
databases, ArangoDB and OrientDB, have been integrated with MMDTune.

In order to benchmark the different databases fairly, the core is the messaging trans-
mission layer. To simulate the real situation of streaming data transmission, the messaging
mechanism used is Apache Kafka (Dunning & Friedman, 2016). MMDTune uses Kafka
to interact with a variety of multi-model databases for a variety of workload operations.
When a user needs to extend a new multi-model database in the platform, the approach is to
implement the corresponding services according to the standard interface approach.

In workload implementation layer, the most important aspect is to evaluate a multi-model
database as comprehensively as possible. More specifically, it provides four parameters for
generating workloads: multi-model database operations, how data requests are distributed,
number of threads, and operands, enabling dynamic generation of variable workloads. As
shown in Table 3, the platform implements the following multi-model database operations
for generating workloads:

1. Inserting operation. It writes data of different models to the database, including
documents, graphs, and key/values.

2. Joining query across models. The feature of multi-model database is that it can manage
multiple data models at the same time, so join query is the most important function of

177Journal of Intelligent Information Systems (2023) 61:167–190



Table 3 Multi-model database workloads

Label Operation

I1 ∼ I3 Insert operations for different data models: I1: insert a new JSON I2:

insert a new graph I3: insert a new key/value

Q1 (1) Document query

(2) Embedded array operation for JSON

Q2 Shortest path query

Q3 (1) Join data from JSON and graph

(2) Embedded array operation for JSON

Q4 (1) Join data from JSON and key/value

(2) Composited-key lookup for key/value

Q5 (1) Join data from graph and key/value

(2) Fuzzy query

Q6 Join data from JSON, graph, and key/value

Q7 (1) Group the graph data

(2) Find the maximum value in the result set by combining the

aggregation function

(3) Join data from JSON and sub-graph

multi-model database. Querying in a single statement by joining different data models
realizes its cross-model characteristics.

3. Shortest path query. Both ArangoDB and OrientDB provide a shortest path query
statement that can directly retrieve all shortest paths between two nodes.

4. Aggregating query. This operation aggregates information from multiple records using
the aggregation functions unique to the multi-model database.

5. Updating/deleting records. The platform implements more workloads, such as updating
documents, deleting records, and so on.

In different application scenarios, data access always meets a certain distribution mode.
For example, on news sites, the most recently published news are more likely to be searched
and visited. On platforms like MicroBlog, the higher the traffic to an item, the easier it is
to retrieve it, regardless of freshness. Therefore, in order to achieve the fidelity of simulated
workloads, different data request distributions are introduced in the design of workloads,
including Zipfian, Poisson, Uniform, and Latest. Each distribution pattern determines which
records to retrieve or which data to insert into the database. In particular, Zipfian and Poisson
attributed data are selected according to Zipfian’s law and Poisson distribution respectively.
Uniform means to read data with equal probability. Finally, in the Latest distribution, the
probability of data being accessed is closely related to the order in which it is inserted, that
is, the most recently inserted record becomes the most popular, while previously popular
data becomes less popular.

In the indicator collection layer, Prometheus is selected as the fine-grained performance
indicator mechanism. It allows us to obtain the resource consumption of the machine over
a specific period of time through a simple expression. It uses carefully designed data struc-
tures and algorithms to achieve very low per-node overhead and high concurrency, so that it
has little impact on the machine. Therefore, this study used a series of functions provided by

178 Journal of Intelligent Information Systems (2023) 61:167–190



Table 4 Monitoring metrics

Metric Function

CPU 100 − (avg by (instance) (irate (node cpu {instance = “xxx”, mode =
“idle”} [5s])) ∗ 100)

Memory ((node memory MemTotal bytes − node memory Buffers bytes −
node memory Cached bytes − node memory MemFree bytes −
node memory Slab bytes) / node memory MemTotal bytes) ∗ 100

Throughput n/t (the number of operations executed by the database is n and the

execution time is t)

Prometheus to obtain the desired measurements indirectly. Table 4 lists the corresponding
calculations for CPU and memory.

Existing benchmarking tools, such as YCSB (Cooper et al., 2010; Matallah et al., 2017),
provide throughput and other metrics. Throughput reflects the number of operations pro-
cessed by the database system in a fixed amount of time. This performance metric is also
added to the platform. Table 4 also lists the calculation methods of throughput.

4 Experiments and result analysis

To verify the effectiveness and adaptability of MMDTune, we take OrientDB as the spe-
cific research object and apply it to different experimental scenarios to carry out tuning
experiments. MMDTune is similarly and easily applied to other multi-model databases. The
performance changes of OrientDB are tested by setting different workloads, tunable param-
eters, optimization objectives and operating environments. Then, it is compared with the
existing works, and the tuning effect of MMDTune is investigated through various exper-
iments. Finally, the method is extended to ArangoDB for experiments to verify that the
method can be effectively applied to other multi-model database tuning objects.

4.1 Experimental environment

The experimental environment consists of four Ali cloud servers, one of which is the client
node, and the other three servers are used to build OrientDB cluster. Their hardware and
software versions and configurations are completely consistent, as shown in Table 5.

Table 5 The experimental environment

Attribute Information

CPU Intel Xeon Platinum 8269@2.6GHz, 4 core

Memory 16GB

OS CentOS 7.6

OrientDB version 3.1.3

ArangoDB version 3.7.3

Prometheus version 2.21.0

179Journal of Intelligent Information Systems (2023) 61:167–190



{

id 4145

firstName : Brigitte ,

lastName : Lin ,

}

{

id :960,

asin : B00U6M ,

price :8.26,

} B00U6M_4145 -->5.0

B00R4U_4149 -->5.0

id:4345

SocialNetwork Customers

{

customerId 4145

totalPrice :1036.43,

orderLine :[

{ productId ,960},

],

}

Orders

id:4149

id:4145

Products

productId

asin

customerId

customerId

Feedback

{

id 12369

Content About ,

}

Comments

comment

Id:34514

Customer_Comment

comment

Id:12369

customer

Id:4145

customerId
commentId

customerId
asin

productName

Fig. 4 An example of a multi-model dataset

4.2 Experimental dataset

To evaluate the performance of multi-model databases, we need to generate and use large-
scale multi-model data.

MMDTune uses seed datasets from Unibench (Zhang et al., 2018), and generates large-
scale multi-model data. It simulates a scenario combining social network with e-commerce,
and contains four data models (key-value, document, graph, relationship) that can be sup-
ported by OrientDB and ArangoDB. Figure 4 shows an example of each entity and the
relationships between them. The customer is the core of this dataset, and most other entities
are related to it. For example, the relationships between customers form a social network,
and the publishing relationships between customers and posts form another network. Orders
are document-type data that contains an embedded array of the order row records within an
order data. The product information in the order record together with the customer informa-
tion forms the key to the feedback data and is used to indicate the customer’s rating of the
product purchased.

4.3 Important parameter identification experiment

This section starts with different tuning goals and uses multiple rounds of sensitivity analy-
sis to identify critical parameters. Here, without loss of generality, we take the multi-model
database operation Q1 as example (See Table 3). According to OrientDB’s actual situation,
there are some knobs that don’t need to be considered, including those that are obviously not
directly related to performance (such as pathnames) or those that are not allowed to be tuned
(which can cause serious problems), so the experiment ended up with 187 adjustable sorted
knobs. For each tuning target, 3 rounds of sensitivity analysis are performed separately.

180 Journal of Intelligent Information Systems (2023) 61:167–190



Fig. 5 Multi-round sensitivity related to throughput

4.3.1 Identification of important parameters related to throughput

Throughput means the number of operations the database can handle per second. For the
throughput task, the parameters shown below are finally filtered, and Fig. 5 lists the first-
order sensitivities of these parameters.

As shown in Fig. 5, the first-order sensitivities of “query.parallelMinimumRecords” and
“query.parallelResultQueueSize” are not high, but the second-order sensitivities formed
by them and query.parallelAuto are 0.726354 and 0.702862 respectively, so they are also
included in the optional range. In addition, among these parameters, the database connec-
tion pool and the number of concurrent sessions have a greater impact on the throughput.
This is because OrientDB needs to establish a communication session between the client
and the server through a remote connection when executing the workload. At the same time,
the workload in the experiment consists of the order of 100000 operations multi-model
database operations and multi-threads. Increasing the number of concurrent sessions and the
size of the connection pool causes establishing multiple database connections at the same
time, thereby reducing the execution time. Creating too many sessions can also stress the
system and slow down operations.

4.3.2 Identification of important parameters related to memory

Memory tuning is the process of determining optimal cache parameter values for the multi-
model database OrientDB. For example, OrientDB with a large working set benefits from
a large cache; a small cache incurs excess cost as data is swapped in and out. Conversely,
OrientDB with a small working set benefits from a small cache; a large cache is a waste of
resources due to the high cost of each fetch and unnecessary static power. Therefore, in this
experiment, with memory as the tuning task, the important parameters shown in Fig. 6 are
selected.

181Journal of Intelligent Information Systems (2023) 61:167–190



Fig. 6 Multi-round sensitivity related to memory

As can be seen from Fig. 6, there are some settings in OrientDB that can make it run on
systems with limited resources, and they are mainly concentrated in the two areas of cache
and log. Among them, “storage.diskCache.bufferSize” has the highest first-order sensitivity
among all parameters, which means that it plays an important role in OrientDB’s memory
tuning.

4.3.3 Identification of important parameters related to the CPU

When the number of threads set in the workload is too high, OrientDB may take up to 100%
of the CPU, which puts a serious burden on the system. If there are other running programs,
it will cause multiple applications to compete for the CPU, resulting in extremely slow oper-
ation or even crash. Therefore, it is very important to try to reduce the CPU utilization of the
storage system for applications with limited operating environment. The user cannot really
reduce the CPU usage of OrientDB by modifying the configuration parameters, but one
can reduce the number of threads running in parallel. This is also verified by the execution
results of multiple rounds of sensitivity analysis. Table 6 lists the configuration parameters
related to the CPU.

In the experiment, due to the small variance of the measured CPU utilization, the impor-
tance of each parameter is high. In theory, when “environment.concurrent” is set to false,
the database will turn off its internal lock management, so that the multi-model database
OrientDB executes in a single-threaded environment, which can reduce the CPU utiliza-
tion of the system. The parameter “distributed.dbWorkerThreads” has an important impact
on both throughput and CPU utilization of OrientDB. Analysing it, one can find that this
parameter is mutually exclusive for different tuning goals. Increasing the number of parallel
worker threads will inevitably increase the CPU utilization of the database and thus shorten
the execution time. On the contrary, it will reduce the CPU used by the system and prolong

182 Journal of Intelligent Information Systems (2023) 61:167–190



Table 6 Parameters related to CPU

Knob Describe Sensitivity

environment.concurrent Specifies whether to run in a multithreaded
environment

0.951842

distributed.localQueueSize Size of the thread queue for distributed mes-
sages

0.739933

distributed.dbWorkerThreads Number of parallel worker threads process-
ing distributed messages per database

0.837039

the running time. Therefore, one cannot meet the demands of increasing throughput and
reducing resource cost at the same time.

4.4 Tuning experiment and analysis

To verify that MMDTune can adapt to different tuning tasks, we use the workloads shown in
Table 7. Five workloads involve typical multi-model database operations, including single-
model read-only, cross-model join queries, and a combination of read-write operation,
which can fully test the tuning effect under different workloads to avoid the contingency of
tuning results.

To verify the effectiveness of the tuning algorithm and the multi-round sensitivity analy-
sis method, the experiment uses the random method and the multi-round sensitivity analysis
method to select the tunable parameters respectively, and performed tuning operations on
different workloads with throughput as the tuning objective. At the same time, as the rein-
forcement learning algorithm explores the parameter space, and in order to find the optimal
configuration more likely, random noise is added to the output of the model to enhance its
exploration ability. In order to obtain the correlation between the number of tuning steps
and tuning results, we observe the performance of the system in increments of five tuning
steps. The experimental results are shown in Fig. 7.

Figure 7(a)∼(e) respectively show the optimal performance of different workloads after
different number of tuned steps, where the horizontal coordinate represents the number of
tuned steps and the vertical coordinate represents the maximum throughput after tuning
with MMDTune. When the number of steps is 0, it indicates the performance of OrientDB
under the default configuration. Curve If means using the multi-round sensitivity analysis
method to select adjustable parameters, and Curve RC means adjusting the knobs of random
selection.

Firstly, for all workloads, OrientDB performs better than the default configuration after
five tuning steps, indicating that the tuning algorithm can learn from past experience and

Table 7 Workloads

Label Operation Distribution Thread Operand

W1 Q1 Uniform 10 100000

W2 Q4 Poisson 10 100000

W3 30%I1 + 70%Q6 Latest 10 100000

W4 60%Q1 + 40%I1 Uniform 20 100000

W5 50%I2 + 50%Q7 Uniform 20 100000

183Journal of Intelligent Information Systems (2023) 61:167–190



Fig. 7 Comparison of TPS with different tuning steps

achieve high efficiency. As the number of tuning times increases, the agent can fine-tune
action to gradually adapt to the current workload, thereby continuously improving the
system throughput. Secondly, if we accept longer tuning times, users will get better config-
uration to achieve higher performance. However, as the number of tuning steps continues
to increase, the throughput gain does not gradually increase, but tends to stabilize. This is
because the prioritized experience replay method is used in the algorithm, which leads to
the fast convergence speed of the algorithm. Thirdly, by comparing the two curves of If and
RC in Fig. 7, the two parameter selection strategies have the same performance trend and
can achieve better performance, but the multi-round sensitivity analysis method has much
higher performance gain than the random method. For example, by looking at the If curve
in Fig. 7(a), it can be found that the throughput of OrientDB increased by 30% when the
tunable parameter was selected using multi-round sensitivity analysis, while the through-
put of OrientDB increased by only 11.42% when the random knob was adjusted. This is
because the former needs to extract the parameters with high correlation, which can help the

184 Journal of Intelligent Information Systems (2023) 61:167–190



learning of the neural network very effectively. In contrast, randomly selected parameters
may have little effect on the performance of OrientDB, or combine with other parameters
to create complex relationships between database performance. As a result, it can lead to
longer study times and less noticeable improvement in grades. According to the above con-
clusions, the validity of multi-round sensitivity analysis is verified, and it can truly select
the parameters related to performance.

Assume that the running environment of the application system is a server with a small
amount of kernel and memory. Then, users will want to limit the resource utilization of
the database system. By default, OrientDB will try to use as much memory as possible,
which can easily cause the database to fail or even crash. Here, W3 is used as the workload
to perform tuning, which includes both the read-write operation of the database and the
connection query of the multi-model database, which can effectively avoid the particularity
of tuning.

Figure 8 describes the changes of resource utilization after different training steps. Sim-
ilar to the throughput task, the resource degradation of the system tends to be stable as the
number of tuning times increases. Compared to database performance in standard config-
uration, memory utilization of OrientDB decreased by 36.88%, while CPU utilization was
reduced by two-thirds. Thus it can be seen that MMDTune can effectively act on the com-
bination of metrics. This is due to the reward function in reinforcement learning, which
fully considers the importance of each metric and makes the tuning results meet the target
requirements as far as possible.

In a cloud environment, different users have their own database memory size and disk
capacity. As models migrate to different hardware environments, the knowledge about disk
size, memory size, and computing power needs to be updated. Therefore, it is a challenge
to adapt to the new hardware environment. To verify that MMDTune can greatly optimize
the performance of the multi-model database for different hardware configurations, this
experiment optimizes OrientDB under different hardware environments.

Table 8 shows the two operating environments used in the experiment. Table 9 lists the
tuning results of OrientDB running different workloads in both hardware environments.
Looking at both configurations, instance B is better than instance A in every respect. There-
fore, the performance of the database on instance B is better. As can be seen from Table 9,
MMDTune performs better when instance B is used as the running environment. For exam-
ple, for workload W3, in environment B, the database throughput increased by 71.22%.

Fig. 8 Comparison of resource utilization with different tuning steps

185Journal of Intelligent Information Systems (2023) 61:167–190



Table 8 Environment configurations

Instance SSD (G) Memory (G) CPU

A 50 32 8

B 50 48 12

In environment A, the increase was only 65.08%. This is because the policy network has
a lot of configuration space to explore in the running environment B, and there is more
room for performance improvement. In general, the experimental results have verified that
MMDTune can adapt to different hardware environments, and a better configuration is
recommended.

To verify the efficiency of MMDTune, the online tuning efficiency of OtterTune and
CDBTune are compared. Since CDBTune does not process database parameters, the
method of multi-round sensitivity analysis is adopted in the experiment to select adjustable
parameters. In addition, because the benchmark tools cannot generate workloads suit-
able for multi-model databases, our proposed multi-model database benchmark platform is
integrated into the system to support the tuning of OrientDB.

By blindly reducing the cache configuration and the number of working threads, we can
limit the memory consumption and reduce the CPU utilization, but this will sacrifice the
execution speed of the system. This is not reasonable in modern application system. Users
hope that the multi-model database can not only meet certain throughput requirements, but
also make use of system resources as little as possible. In most cases, only when the multi-
model database system makes full use of CPU, can it achieve faster execution speed, and
cannot meet the requirements of high throughput and low CPU utilization at the same time.
Therefore, the throughput and memory utilization are set as the tuning goals. When the
rewards stabilize, tuning stops. The final experimental results are shown in Fig. 9 below.
Among them, OtterTune uses 1000 pieces of tuning data stored in the MMDTune tuning
process as training data.

According to Fig. 9, all tuning methods achieve better performance than the default con-
figuration. MMDTune has the best tuning effect. For workload W1, the throughput obtained
using MMDTune is 7.35% higher than CDBTune, and the memory utilization is reduced by
11.54%. The reasons are as follows: firstly, CDBTune adapts DDPG algorithm to recom-
mend configuration, which has the problem of overestimation when updating the network,
resulting in cumulative error. On the basis of TD3 algorithm, it effectively alleviates the
above problems by mixing two Critic network estimates. Secondly, CDBTune relies on the
policy network every time it selects parameters. However, at the initial stage of training, the

Table 9 Comparison of TPS in different environments

Label Instance A Instance B

Before tuning After tuning Before tuning After tuning

W1 5018.03 6195.41 6077.64 7561.18

W2 4016.52 4916.53 5172.37 6182.51

W3 801.01 1322.37 955.36 1635.80

W4 1908.45 2956.89 2279.53 3548.37

W5 178.02 521.31 212.63 790.48

186 Journal of Intelligent Information Systems (2023) 61:167–190



Fig. 9 Experimental results of different tuning methods

policy network can only recommend parameter values according to the local optimal solu-
tion, thus limiting the exploration space of CDBTune. So the tuning effect of CDBTune
is worse than that of MMDTune. But because CDBTune can effectively learn from past
experience, it has better tuning capabilities than OtterTune.

Of all the methods, OtterTune achieves the lowest performance gain. Similarly, for work-
load W1, the database throughput is increased by 16.21% with MMDTune compared to
OtterTune, and the memory utilization is reduced by 16.55%. This is because OtterTune
uses Gaussian processes to map configurations. Although it can learn from history, this
regression model is still too simple to explore new knowledge to refine itself compared with
neural network, so the performance gain is very limited. The deep reinforcement learning
method enables the neural network to simulate the human brain, learn in the direction of
optimization, and recommend reasonable parameter settings corresponding to the current
workload and hardware environment.

Different multi-model databases have different system parameters, including different
meanings, types, names and value ranges. To verify that MMDTune can be effectively
applied to different multi-model databases, ArangoDB is also used to verify the performance
of MMDTune. To avoid the contingency of tuning results, throughput, memory and CPU
utilization are taken as optimization objectives, and W3 is used as workload. The MMD-
Tune is compared with the tuning results of OtterTune and CDBTune, and the experimental
results are shown in Tables 10 and 11.

From Table 10, when workload W3 is executed, ArangoDB’s throughput increases by
126.15% with MMDTune compared to the default configuration, and from Table 11, mem-
ory utilization and CPU utilization decrease by 41.57% and 31.33%, respectively. Because
it is not limited by the throughput, the memory and CPU utilization of ArangoDB are sig-
nificantly reduced by the three tuning methods. This is because ArangoDB provides a large
number of parameters for modifying buffers and worker threads, so the algorithm has a
good chance to adjust resource utilization. By comparing the tuning effects of different
methods in the table, it can be seen that MMDTune always achieve better performance. In
summary, MMDTune can efficiently adapt to different multi-model database systems while
maintaining relatively good performance.

Table 10 Tuning results of different tuning methods with throughput as the target

Metrics Default MMDTune OtterTune CDBTune

TPS 302.389 683.879 487.785 632.892

187Journal of Intelligent Information Systems (2023) 61:167–190



Table 11 Tuning results of different tuning methods with resource utilization as the target

Metrics Default MMDTune OtterTune CDBTune

Memory utilization (%) 17.343 10.132 11.325 11.241

CPU utilization (%) 59.849 41.094 41.213 41.908

5 Conclusion

As more and more applications are proposed to deal with multi-model data, the task of man-
aging and tuning multi-model databases becomes very important. In practice, the research
of multi-model database tuning based on deep reinforcement learning is not only helpful
to adjust parameter values according to different tuning objectives and workloads, but also
helpful to set the best parameter configuration for the database under different hardware
environments to improve the stability and reliability of the system. To solve the problem of
parameter selection and adjustment in the process of tuning, we propose a parameter tuning
method MMDTune for multi-model database, which can recommend excellent configura-
tion scheme in complex environment. It uses multi-round sensitivity analysis and improved
TD3 algorithm to improve the tuning results of the database. At the same time, it uses the
benchmarking platform of the multi-model database to generate the workload and collect
the performance metrics to meet the performance monitoring requirement during the tun-
ing process. We modify workloads, optimizing targets, and running environments to carry
out the tuning experiment, and the results showed that MMDTune has a strong adaptability
regardless of how the tuning tasks change.

Acknowledgements This work was partly supported by National Key R&D Program of China
(2019YFE0109900); Fundamental Research Funds for the Central Universities, 2018 (B200202185);
Jiangsu Province Key Research and Development Program (Modern Agriculture) Project under Grant no.
BE2018301, 2017; Jiangsu Province Postdoctoral Research Funding Project under Grant no. 1701020C,
2017; and Six Talent Peaks Endorsement Project of Jiangsu under Grant no. XYDXX-078.

Declarations

Conflict of Interests The authors declare that they have no conflict of interest. Data sharing not applicable
to this article as no datasets were generated or analyzed during the current study.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Basu, D., Lin, Q., Chen, W., & et al. (2016). Regularized cost-model oblivious database tuning with reinforce-
ment learning. In Transactions on Large-Scale Data-and Knowledge-Centered Systems XXVIII. (pp. 96–
132). Berlin, Heidelberg.

Borgonovo, E., & Plischke, E. (2016). Sensitivity analysis: a review of recent advances. European Journal of
Operational Research, 248(3), 869–887. https://doi.org/10.1016/j.ejor.2015.06.032.

188 Journal of Intelligent Information Systems (2023) 61:167–190

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ejor.2015.06.032


Braun, G., Fillottrani, P. R., & Keet, C. M. (2022). A framework for interoperability between models with
hybrid tools. Journal of Intelligent Information Systems. https://doi.org/10.1007/s10844-022-00731-7.

Cooper, B. F., Silberstein, A., Tam, E., & et al. (2010). Benchmarking cloud serving systems with ycsb.
In Proceedings of the 1st ACM symposium on Cloud computing, ACM SIGMOD. (pp. 143–154).
https://doi.org/10.1145/1807128.1807152.

Dankwa, S., & Zheng, W. (2019). Twin-delayed ddpg: A deep reinforcement learning technique to model
a continuous movement of an intelligent robot agent. In Proceedings of the 3rd International Con-
ference on Vision, Image and Signal Processing, Association for Computing Machinery. (pp. 1–5).
https://doi.org/10.1145/3387168.3387199.

Davoudian, A., Chen, L., & Liu, M. (2018). A survey on nosql stores. ACM Computing Surveys, 51(2), 1–43.
https://doi.org/10.1145/3158661.

Duan, S., Thummala, V., & Babu, S. (2009). Tuning database configuration parameters with ituned.
Proceedings of the VLDB Endowment, 2(1), 1246–1257. https://doi.org/10.14778/1687627.1687767.

Dunning, T., & Friedman, E. (2016). Streaming architecture: new designs using apache kafka and mapr
streams. Sebastopol, CA: O’Reilly Media, Sebastopol.

Fekry, A., Carata, L., Pasquier, T., & et al. (2020). To tune or not to tune? in search of optimal configurations
for data analytics. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, ACM SIGKDD. (pp. 2494–2504). https://doi.org/10.1145/3394486.3403299.

Fujimoto, S., Hoof, H., & Meger, D. (2018). Addressing function approximation error in actor-critic methods.
In Proceedings of 35th International Conference on Machine Learning, ICML 2018, IMLS. (pp. 2587–
2601).

Gordon-Ross, A., & Vahid, F. (2007). A self-tuning configurable cache. In Proceedings of 44th ACM/IEEE
Design Automation Conference. (pp. 234–237). https://doi.org/10.1109/DAC.2007.375159.

Huang, X., Wang, J., Yu, P. S., & et al. (2017). An experimental study on tuning the consistency of
nosql systems. Concurrency and Computation: Practice and Experience, 29(12), e4129. https://doi.org/
10.1002/cpe.4129.

Li, G., Zhou, X., Li, S., & et al. (2019). Qtune: A query-aware database tuning system with deep
reinforcement learning. Proceedings of the VLDB Endowment, 12(12), 2118–2130. https://doi.org/
10.14778/3352063.3352129.

Lu, J., & Holubová, I. (2019). Multi-model databases: a new journey to handle the variety of data. ACM
Computing Surveys (CSUR), 52(3), 1–38. https://doi.org/10.1145/3323214.

Lu, J., Liu, Z. H., Xu, P., & et al. (2018). Udbms: road to unification for multi-model data management.
In International Conference on Conceptual Modeling, Springer, (pp. 285–294). https://doi.org/10.1007/
978-3-030-01391-233.

Matallah, H., Belalem, G., & Bouamrane, K. (2017). Experimental comparative study of nosql databases:
Hbase versus mongodb by ycsb. Comput. Syst. Sci. Eng, 32(4), 307–317.

Płuciennik, E., & Zgorzałek, K. (2017). The multi-model databases–a review. In Proceedings of
13th International Conference on Beyond Databases, Architectures and Structures. (pp. 141–152).
https://doi.org/10.1007/978-3-319-58274-0 12.

PN, S., Sivakumar, A., Rao, S., & et al. (2013). D-tunes: self tuning datastores for geo-distributed
interactive applications. ACM SIGCOMM Computer Communication Review, 43(4), 483–484.
https://doi.org/10.1145/2534169.2491684.

Prometheus Team (2022). Prometheus. https://prometheus.io/, Accessed 22 July 2022.
Sawadogo, P., & Darmont, J. (2021). On data lake architectures and metadata management. Journal of

Intelligent Information Systems, 56(1), 97–120. https://doi.org/10.1007/s10844-020-00608-7.
Schaul, T., Quan, J., Antonoglou, I., & et al. (2015). Prioritized experience replay. arXiv:1511.05952.
Sobol, I. M. (2001). Global sensitivity indices for nonlinear mathematical models and their monte

carlo estimates. Mathematics and computers in simulation, 55(1-3), 271–280. https://doi.org/10.1016/
10.1016/S0378-4754(00)00270-6.

Storm, A. J., Garcia-Arellano, C., Lightstone, S. S., & et al. (2006). Adaptive self-tuning memory in db2.
In Proceedings of the 32nd international conference on Very large data bases, VLDB. (pp. 1081–1092).
https://doi.org/10.5555/1182635.1164220.

Tian, W., Martin, P., & Powley, W. (2003). Techniques for automatically sizing multiple buffer pools in db2.
In Proceedings of the 2003 conference of the Centre for Advanced Studies on Collaborative Research,
CASCON’03. (pp. 294–302). https://doi.org/10.5555/961322.961367.

Tran, D. N., Huynh, P. C., Tay, Y. C., & et al. (2008). A new approach to dynamic self-tuning of database
buffers. ACM Transactions on Storage (TOS), 4(1), 1–25. https://doi.org/10.1145/1353452.1353455.

Van Aken, D., Pavlo, A., Gordon, G. J., & et al. (2017). Automatic database management system tuning
through large-scale machine learning. In Proceedings of the 2017 ACM International Conference on
Management of Data, ACM SIGMOD. (pp. 1009–1024). https://doi.org/10.1145/3035918.3064029.

189Journal of Intelligent Information Systems (2023) 61:167–190

https://doi.org/10.1007/s10844-022-00731-7
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3387168.3387199
https://doi.org/10.1145/3158661
https://doi.org/10.14778/1687627.1687767
https://doi.org/10.1145/3394486.3403299
https://doi.org/10.1109/DAC.2007.375159
https://doi.org/10.1002/cpe.4129
https://doi.org/10.1002/cpe.4129
https://doi.org/10.14778/3352063.3352129
https://doi.org/10.14778/3352063.3352129
https://doi.org/10.1145/3323214
https://doi.org/10.1007/978-3-030-01391-233
https://doi.org/10.1007/978-3-030-01391-2 33
https://doi.org/10.1007/978-3-319-58274-0 12
https://doi.org/10.1145/2534169.2491684
https://prometheus.io/
https://doi.org/10.1007/s10844-020-00608-7
http://arxiv.org/abs/1511.05952
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.5555/1182635.1164220
https://doi.org/10.5555/961322.961367
https://doi.org/10.1145/1353452.1353455
https://doi.org/10.1145/3035918.3064029


Van Aken, D., Yang, D., Brillard, S., & et al. (2021). An inquiry into machine learning-based automatic
configuration tuning services on real-world database management systems. Proceedings of the VLDB
Endowment, 14(7), 1241–1253. https://doi.org/10.14778/3450980.3450992.

Wei, Z., Ding, Z., & Hu, J. (2014). Self-tuning performance of database systems based on fuzzy rules. In
2014 11th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). (pp. 194–198)
IEEE. https://doi.org/10. 1109/FSKD.2014.6980831.

Wu, J., Wang, R., Li, R., & et al. (2018). Multi-critic ddpg method and double experience replay. In
2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 165–171) IEEE.
https://doi.org/10.1109/SMC.2018. 00039.

Zadeh, F. K., Nossent, J., Sarrazin, F., & et al. (2017). Comparison of variance-based and moment-
independent global sensitivity analysis approaches by application to the swat model. Environmental
Modelling & Software, 91, 210–222. https://doi.org/10.1016/j.envsoft.2017.02.001.

Zhang, C., Lu, J., Xu, P., & et al. (2018). Unibench: A benchmark for multi-model database management
systems. In Technology Conference on Performance Evaluation and Benchmarking. (pp. 7–23) Springer
Verlag. https://doi.org/10.1007/978-3-030-11404-6 2.

Zhang, J., Liu, Y., Zhou, K., & et al. (2019). An end-to-end automatic cloud database tuning system using
deep reinforcement learning. In Proceedings of the 2019 International Conference on Management of
Data. (pp. 415–432). https://doi.org/10.1145/3299869.3300085.

Zhang, J., Zhou, K., Li, G., & et al. (2021). Cdbtune+: An efficient deep reinforcement learning-
based automatic cloud database tuning system. The VLDB Journal, 30, 1–29. https://doi.org/10.1007/
s00778-021-00670-9.

Zhu, Y., Liu, J., Guo, M., & et al. (2017). Bestconfig: tapping the performance potential of systems via
automatic configuration tuning. In Proceedings of the 2017 Symposium on Cloud Computing. (pp. 338–
350). https://doi.org/10.1145/3127479.3128605.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

190 Journal of Intelligent Information Systems (2023) 61:167–190

https://doi.org/10.14778/3450980.3450992
https://doi.org/10. 1109/FSKD.2014.6980831
https://doi.org/10.1109/SMC.2018. 00039
https://doi.org/10.1016/j.envsoft.2017.02.001
https://doi.org/10.1007/978-3-030-11404-6 2
https://doi.org/10.1145/3299869.3300085
https://doi.org/10.1007/s00778-021-00670-9
https://doi.org/10.1007/s00778-021-00670-9
https://doi.org/10.1145/3127479.3128605

	Parameters tuning of multi-model database based on deep reinforcement learning
	Abstract
	Introduction
	Related work
	Search-based approaches
	Learning-based approaches

	Framework of MMDTune
	Identifying important parameters
	Multi-model database parameter tuning algorithm based on deep reinforcement learning
	Benchmarking platform

	Experiments and result analysis
	Experimental environment
	Experimental dataset
	Important parameter identification experiment
	Identification of important parameters related to throughput
	Identification of important parameters related to memory
	Identification of important parameters related to the CPU

	Tuning experiment and analysis

	Conclusion
	Declarations
	References


