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Abstract
The use of supervised Machine Learning (ML) to enhance Intrusion Detection Systems 
(IDS) has been the subject of significant research. Supervised ML is based upon learn-
ing by example, demanding significant volumes of representative instances for effective 
training and the need to retrain the model for every unseen cyber-attack class. However, 
retraining the models in-situ renders the network susceptible to attacks owing to the time-
window required to acquire a sufficient volume of data. Although anomaly detection sys-
tems provide a coarse-grained defence against unseen attacks, these approaches are sig-
nificantly less accurate and suffer from high false-positive rates. Here, a complementary 
approach referred to as “One-Shot Learning”, whereby a limited number of examples of 
a new attack-class is used to identify a new attack-class (out of many) is detailed. The 
model grants a new cyber-attack classification opportunity for classes that were not seen 
during training without retraining. A Siamese Network is trained to differentiate between 
classes based on pairs similarities, rather than features, allowing to identify new and pre-
viously unseen attacks. The performance of a pre-trained model to classify new attack-
classes based only on one example is evaluated using three mainstream IDS datasets; CIC-
IDS2017, NSL-KDD, and KDD Cup’99. The results confirm the adaptability of the model 
in classifying unseen attacks and the trade-off between performance and the need for dis-
tinctive class representations.
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1 Introduction

Intrusion Detection System (IDS) development has its roots in statistical models, and has 
recently evolved to the use of Machine Learning (ML) (Buczak & Guven, 2016) based on 
hybrid models and adaptive techniques (Hindy et al., 2020). Developments to date have 
highlighted two fundamental considerations in the design of effective supervised ML-
based IDS; (a) availability of a large and representative historian of cyber-attacks con-
sisting of many thousands of instances (Li et al., 2013) and (b) the time window result-
ing from the need to retrain models after the emergence of a new attack class has been 
recorded, renders the network open to damaging attacks. Supervised ML models are very 
accurate at identifying cyber-attacks previously been trained to recognise, but signifi-
cantly under-perform for new unseen and “zero-day” attacks that emerge. Anomaly detec-
tion approaches have been explored to address the issue and whilst these schemes provide 
better performance against unseen attacks, their efficacy is inferior against known attacks 
when compared to supervised ML approaches. Further, anomaly-based approaches are 
also limited under multiple new attacks scenarios as they are simply classified into the 
same anomalous group, in so doing restricting the range of attack-specific countermeas-
ures that can be employed.

Here, the development and evaluation of an ML-enabled approach that provides 
improved attack identification in the period between a range of previously unseen attacks 
at onset is reported and the deployment of a robust supervised ML model that informs on 
the most effective countermeasures. The methodology - referred to as One-Shot Learning 
- centres on the use of a Siamese Network, shown to be effective in identifying new classes 
based on one (or only a few) examples of a new class. An alternative approach is to create 
synthetic examples based on the domain knowledge of new attacks; however, this is chal-
lenging requiring a considerable amount of time to replicate a suitable representation of 
an environment with appropriate parameters, and is consequently subject to human error 
owing to cognitive biases.

One-Shot Learning was inspired by the generalisation learning ability of human beings. 
As discussed by Vinyals et al. (2016), “Humans learn new concepts with very little supervi-
sion, yet our best deep learning systems need hundreds or thousands of examples” (Vinyals 
et  al., 2016). Therefore, One-Shot learning models aim at classifying previously unseen 
classes using one instance. The idea is to rely on previously seen classes and learn patterns 
and similarities instead of fitting the ML model to fixed classes. Few-Shot (N-Shot) learn-
ing is similar to One-Shot learning with a flexibility of using a few (N) instances to classify 
a class instead of one (Sun et al., 2019).

A Siamese Network is a network composed of two “twin” networks that are trained 
simultaneously to learn the similarity of two instances, called a pair. Leveraging this sim-
ilarity-based learning, a previously unseen class could be added to the network without 
retraining. The initial stage of the development is the training phase. The Siamese Network 
is trained using similarities that discriminate between K classes; benign traffic and the K 
− 1 classes of known cyber-attacks. Any new traffic instance P is then compared against all 
known classes (used during training) plus an additional class (K + 1 classes) where only a 
limited number of examples of class “K + 1” are available, such as might be the case on the 
appearance of a new cyber-attack. This is achieved without any form of additional training.

The contributions of the paper are; (a) the use of a Siamese Network model to success-
fully classify new cyber attacks based on pair similarities solely, not reported for unknown 
attack classification usage to date. (b) evaluation of the proposed model performance to 
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detect a new cyber-attack class based on one labelled instance without retraining. (c) evalu-
ation of the proposed model performance to correctly classify two new cyber-attack classes 
without retraining. (d) comparison of the impact of a few labelled instances of the new 
attack class on detection performance. This paper paves the way researchers to start explor-
ing the utilisation of One-Shot learning for IDS development.

The remainder of this paper is organised as follows; Section 2 details the main features 
of Siamese Networks; Section 3 outlines the related work; Section 4 depicts the Siamese 
Network architecture. Section  5 presents the methodology governing the training of the 
Siamese Network and its evaluation is explained showing the potential of the network to 
identify a new attack class based on a few (previously collected and labelled) examples of 
that attack class without retraining. Section 6 presents the properties of the datasets and 
their corresponding attack classes used in model development and performance evaluation; 
The performance of the model is assessed in Section 7; conclusions are drawn in Section 8.

2  Background

In supervised machine learning, a relationship exists between model complexity and the 
volume of training data; too few training examples and the model will over-fit, resulting 
in an unnecessarily complex model that produces poor results. Therefore, securing suf-
ficient and representative data is a limiting factor in model development and performance 
(Jain, 2017). In practice, accessing and/or generating sufficiently large and representative 
training examples is a complex challenge and may involve significant manual effort and 
processing time (Roh et al., 2019). Nonetheless, there are publicly available datasets for 
training IDS systems, notably the KDD and CICIDS dataset families. These data are used 
to pre-train the Siamese Network, subsequently, in the evaluation of the performance of 
the model in identifying a new class of attack after a limited number of that class’ samples 
has been recorded.

An alternative approach is to utilise “Transfer Learning” to mitigate the need for 
large volumes of training data (Pan et al., 2010). The premise of Transfer Learning to 
solve the target problem T (where data are limited), is to create a model M for a similar 
problem T ′ where large amounts of data are readily available. The initial model M is 
then “transferred” to the target problem T and partially re-trained on the small data-
set. The rationale is that the initial training on T ′ , yields training weights which dis-
cover features useful for the problem domain and hence applicable to the target problem 
T; hence after retraining, the model learns and generalises faster on the small dataset 
(Wang et al., 2017). Despite the potential of Transfer Learning as a viable solution, it 
does not eliminate the need for retraining.

Although transfer learning reduces training time, additional challenges are introduced; 
(a) identification of a suitable pre-trained model “What to transfer?” (Pan et  al., 2010), 
(b) selection of the most appropriate tuning of the pre-trained model aligned to the new 
application domain “How and When to transfer?” (Pan et al., 2010) and (c) a reduction of 
the learning performance of the target domain known as “Negative Transfer” (Pan et al., 
2010; Torrey and Shavlik, 2010). Transfer learning is a common approach in image pro-
cessing where for example, models are trained on the ImageNet dataset (Nguyen et  al., 
2018). Unlike image processing, datasets are not, as yet, standardised in the cyber security 
domain which presents a significant additional challenge. Recent research on IDS proposed 
approaches in this respect (Singla et al., 2019).
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One-Shot learning, first reported by Fei-Fei et  al. (2006), is inspired by human gen-
eralisation learning and has been applied in multiple domains with the most prominent 
being image and video processing (Wang et  al., 2018). One-shot learning has also been 
used in other domains, such as robotics (Bruce et al., 2017), language processing (Zhang 
and Zhao, 2018) and drug discovery (Altae-Tran et al., 2017). Considering the particular 
needs of the cybersecurity domain and the needs for IDS, the One-shot learning models 
that have been developed for other application domains are not directly applicable. In addi-
tion, the domain-specific data, features and requirements render the application of models 
from other domains directly invalid and thus adaptation of models is a necessity.

Based on the literature, the Siamese Network is the most frequently used. Various archi-
tectures have been proposed and assessed as the building block for the twin network (i.e., 
CNN (Chung et al., 2017; Chung & Weng, 2017), RNN (Tolosana et al., 2018) and GNN 
(Garcia & Bruna, 2017)). Matching Networks (Vinyals et al., 2016), Prototypical Networks 
(Snell et al., 2017) and Imitation Learning (Duan et al., 2017), particularly in the image 
processing domain, but amenable to be generalised to other domains.

3  Related work

Siamese Networks and Deep Metric Learning approaches have been proposed in the lit-
erature for IDS usage, however, they have not been proposed for One-Shot learning or for 
detecting attacks that are not included during the training phase. Moustakidis and Karlsson 
(Moustakidis & Karlsson, 2020) applied Siamese Networks for reducing dimensionality for 
a better preforming IDS. Andresini et al. (2021) proposed the use of Triplet Networks to 
learn the network feature embedding for better IDS performance. While Bedi et al. (2021, 
2020) improves the IDS classification performance by using Siamese Networks to handle 
imbalanced classes problem by automatically detecting and handling majority and minority 
classes.

To the best of the authors’ knowledge, the development reported here is the first propos-
ing a One-Shot IDS model implementation. Although there are various manuscripts using 
ML and DL for IDS, comparing the proposed model in this paper with recent IDS mod-
els is not applicable. This is because the proposed model leverages One-Shot learning and 
aims to classify a class that was not used in the training phase. Therefore, it cannot be in 
comparison with classical classification models. However, an understanding of the clas-
sification performance is important to aid in the interpretation of the results discussed in 
Section 7.

Table 1 summarises the classification results of recent IDS studies that address multi-
class attack classification and report explicit class metrics, not only the overall accuracy. 
Although a direct performance comparison is impractical, nevertheless these results assists 
in the appreciation of the performance of the different classes, captured when all classes 
are used during training. The results provide a reference with which to evaluate results 
reported when classes are excluded from training.

As shown in Table 1, the overall classification accuracy is higher than each class per-
formance owing to class imbalance. For example, the TPR for the SSH and FTP attack 
classes in the CICIDS2017 dataset are 0% and 3.1% respectively, while the accuracy is 
96% (Vinayakumar et  al., 2019). Similarly, the TPR for the R2L and U2R in the KDD 
Cup’99 dataset are 24.3% and 15.5% respectively with an overall accuracy of 92.6%. Class 
imbalance is a common problem and is considered relative to the degree of imbalance, the 
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Table 1  Recent IDS studies for multi-class classification performance

Year/ Reference ML Technique Metric Result

CICIDS2017
 2020/(Hossain et al., 2020) Multi-layer Perceptron Recall SSH: 98%

FTP: 77%
Accuracy Overall: 96%

 2019/(Vinayakumar et al., 
2019)

Deep Neural Network with 
1 Layer

True Positive Rate Normal: 64.6%
SSH: 0%
FTP:3.1%
DDoS: 9.5%

KDD Cup’99
Accuracy Overall: 92.6%

 2019/(Vinayakumar et al., 
2019)

Deep Neural Network with 
1 Layer

True Positive Rate Normal: 99.4%
DoS: 93.9%
Probe: 73.2%
R2L: 24.3%
U2R: 15.5%

NSL-KDD
 2021/(Bedi et al., 2021) XGBoost & Siamese-NN Recall Normal:89.1%

DoS:86.8%
Probe:77.7%
R2L:32.8%
U2R:50.8%

 2020/(Bedi et al., 2020) Siamese-NN Recall Normal:91.22%
DoS:85.37%
Probe:48.66%
R2L:33.25%
U2R:56.72%

 2020/(Li et al., 2020) Multi-Convolutional Neural 
Network

Recall KDDTest:+

Normal: 91.19%
DoS: 86.63%
Probe: 83.73%
R2L: 35.15%
U2R: 23.50%
KDDTest:-21

Normal: 62.08%
DoS: 77.04%
Probe: 82.60%
R2L: 35.15%
U2R: 23.50%

Accuracy Overall: 77.8%
 2019/(Vinayakumar et al., 

2019)
Deep Neural Network with 

1 Layer
True Positive Rate Normal: 97.3%

DoS: 77.7%
Probe: 61%
R2L: 43.3%
U2R: 24.1%

 2019/(Illy et al., 2019) Ensemble model Overall KDDTest+: 83.83%
KDDTest-21: 78.33%
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overall dataset size, and the complexity of the data. Upsizing and downsizing are known 
techniques to handle class imbalance problem (Japkowicz and Stephen, 2002; Johnson & 
Khoshgoftaar, 2019). It is important to note that the class imbalance problem did not pose 
a problem for the method presented in this paper. This is due to the fact that equal number 
of pairs are randomly selected from a pool of instances, which ensures a balance in training 
and testing.

4  Siamese network architecture

Siamese Networks were first introduced by Bromley et al. (1994) in the 90s to solve the 
problem of matching hand-written signatures, subsequently adapted to other domains. Pop-
ular implementations of Siamese Networks for image and video processing are presented 
by Koch et al. (2015), Yao et al. (2018), and Varior et al. (2016). Moreover, it has been 
implemented for Natural Language Processing (NLP) tasks (Benajiba et al., 2019) and for 
the retrieval of similar questions (Das et al., 2016).

Figure 1 depicts the Siamese Network architecture composed of two identical subnet-
work that share weights. The two networks are referred to as “Twin networks” and share 
a common architecture, i.e., two identical networks. The weights of the twin networks are 
initialised with random weights and pass their outputs to a similarity module, which in 
turn is responsible for calculating the distance defining “how alike” the two inputs are. The 
output of the latter is a comparison based on the similarity i.e., whether or not the pair are 
similar, the loss is then calculated and the weights are updated based on gradients.

Formally (Koch et al., 2015; Shaham and Lederman, 2018), given a pair of inputs (x1,x2) 
and a twin network (X,Y ), such that x1 is the input of X and x2 is the input of Y, the similar-
ity can be computed using Euclidean distance (1):

such that f1 and f2 are the outputs of Networks X and Y respectively f1 ≡ f2 since X and Y are 
twin networks. Ultimately, the training goal is to minimise the overall loss l as defined in 
(2); for each given batch i of input pairs (x1,x2)i and label vector yi, such that yi(x1,x2)i = 1 if 
x1 and x2 belong to the same class and 0 otherwise.

such that λ is a l2 regularisation parameter.
However, this loss function is sensitive to outliers (i.e. dissimilar pairs with large 

distances) which disproportionately affect the gradient estimation. An alternative loss 
function is the contrastive loss shown in (3) proposed by Chopra et al. (2005) and Had-
sell et  al. (2006). The contrastive loss caps the contribution of dissimilar pairs if the 
distance is within a specified margin m (Hadsell et al., 2006), hence limiting the effect 
of large distances.

such that m > 0 is a margin. In this study, the margin was set to m = 1 (Hadsell et al., 2006).
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After training, given any two pairs, the network is capable of calculating their degree 
of similarity, di ∈ [0,1], di mirror the degree of similarity for the pair; the lower the di, 
the closer the pair. Batches of pairs are used to train the network. Note, however, that an 
equal number of similar and dissimilar pairs are used in the batch.

The choice of the twin networks architecture is domain specific and based on the 
application context. Artificial Neural Network (ANN), Convolutional Neural Network 
(CNN) and Long Short-Term Memory (LSTM) are commonly used architectures for 
establishing twin networks. CNNs are well-suited for image processing whilst LSTMs 
are routinely used with temporal data. In this context, ANNs are used as the building 
block of the twin network as their structure is aligned to the structure and format of 
the data used. Similar to a single ANN, the Siamese Network is trained in a back-prop-
agation fashion. The twin networks are initialised with the same weights and during 
training, batches of similar and dissimilar pairs are used to calculate the loss, using the 
function given in (3). The weights are then updated based on the learning rate, gradient 
descent and optimisation function as shown in (4). Hyperparameter optimisation is per-
formed to determine the model’s set of optimal parameters.

such that η is the learning rate, and E is the error function.

(4)Wt+1 = Wt − �
dE

dWt

Fig. 1  Siamese Network Archi-
tecture

Network

X

x1

Pair (x1, x2) 

Similar (0, 1)

x2

Similar and

Dissimilar Pairs

Network

Y
Share Weights

Output

Similar / Not Similar

Similarity Check/

Euclidean Distance 

* X and Y are Twin Networks

Calculate Constructive Loss

Update Weights
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The details of the optimised architecture (i.e., the number of layers, neurons, learning 
rate, etc.) are provided in Section 7.

5  Siamese network model

In this section, the proposed Siamese Network model is used as the One-Shot learning 
architecture. The performance of the network on classifying a new cyber-attack class with-
out the need to retrain is evaluated with the new attack class represented by a limited num-
ber of labelled samples. This assess the capability of the Siamese Network to find similar-
ity between pairs of classes that were not a part of the training.

Figure 2 shows the overall process of establishing the intrusion detection model based 
on one-shot learning and illustrates the methodology of assessing performance for new 
attack classes without retraining the model.

Given a dataset with N classes, first, an attack class e is chosen to act as the new cyber-
attack; this class is excluded from the training process (Fig. 2-(1)). Second, for the remain-
ing K classes after excluding e (N − 1 classes), each class instances are split into two pools, 
as shown in Fig. 2-(2). Collectively, the first “half” is used as a pool of instances to gener-
ate the training set pairs both similar and dissimilar, as shown in Fig.  2-(4); the second 
“half” is used as the evaluation pool of instances.

Class e is used to mimic a real-life situation in which a new attack is detected with 
only a few labelled samples available. Therefore, the instances of e are split in two halves 
(Fig. 2-(3)), the first half representing a pool of labelled and the second half a pool of unla-
belled (new) instances.

Since the model relies on random pair generation, pairs are drawn out randomly from 
the pools of instances. The rational for having pools of instances and to draw out pairs 
randomly is to hinder any selection bias either during training (i.e. selecting similar and 
dissimilar pairs) or during evaluation of the new class (i.e. selecting the labelled instances 
that best represent this class). Furthermore, the uniqueness of the pairs - no duplicates - is 
ensured. A “set” data structure is used. it is added to the batch of pairs unless that pair is 
already contained within the set. This is demonstrated in Algorithm 1. It is important to 
note that the choice of Siamese network training pairs is an open research question in the 
literature (Martin et al., 2018).

During evaluation, an instance i is paired with one random instance from each class. 
The instances are drawn out of the pool of testing instances only, resulting in N pairs. The 
similarity is then calculated for the N pairs. Instance i is classified (labelled) based on the 
pair with the highest similarity (i.e. least distance).

As discussed in Section 7, to determine the trade-off between the number of labelled 
instances of the new attack class and accuracy, the process is repeated j times for each 
instance i. Majority voting is then applied to deduce the instance label; the class with the 
highest votes is used as instance i label (Fig. 2-(7)).

Algorithm 2 summarises the overall process of training and testing the model. Ini-
tially, a network architecture is determined, the number of input neurons being a func-
tion of the number of features with one neuron as the output layer. The number of hid-
den layers and number of neurons in each layer is then determined; each hidden layer 
has a number of neurons that are reduced by a fraction from the previous layer. The 
tuning of the architecture is performed using ANN parameter optimisation. During the 
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training phase, both training and validation loss curves are monitored to ensure that the 
network converges, while avoiding overfitting. The parameters (the number of hidden 
layers, number of neurons in each layer, η - learning rate -, number of epochs, etc) are 
chosen based on the optimised state of the model.

Furthermore, it is important to note that regularisation of the network is carried out on 
the onset of unstable behaviour during training. Figure 3 shows an unstable network perfor-
mance state.

As a result, the regularisation parameters of the network are reconsidered and drop-
out layers and kernel regularisation were added to obviate over-fitting and ensure network 

Algorithm 1  Generate training batch
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convergence. This is distinctly observed in Figs. 4 and 5. The models’ architectures pre-
sented in Section 7 follow convergence validation.

Initially, the dataset is split as shown in Fig. 2. The model is trained for the optimal 
number of epochs with the generated batch of pairs as described in Algorithm 1. The 
batch_size = 30,000 is based on the literature recommendation for the advisable Sia-
mese Network training batch size (Pang et al., 2019; Koch et al., 2015). It is important 
to note that the classes are equally represented in both the training and testing batches. 
Note that the dataset should have at least 3 classes, otherwise, the model converges to a 
50% similarity output and fails to train adequately. Algorithm 1 shows the training batch 
generation process.

An equal number of instances are used from each class for evaluation (Algorithm 3). 
For each new instance, a pair is selected with each class using the new instance and a 
random instance from each class. The similarity is calculated for each pair. The pair with 
the closest similarity contributes to the classification result. The process is performed j 
times and majority voting is used to collate the results (j ∈{1,5,10, 15,20,25,30}). For 
class e (the attack class that is excluded from training), the first half acts as the pool of 
labelled and the second half act as the pool of new unlabelled instances.

6  Dataset

Three datasets are used to evaluate the proposed models. These datasets cover two 
benchmark IDS datasets, specifically, CICIDS2017 and NSL-KDD. Moreover, KDD 
Cup’99 is used in comparison to the NSL-KDD to demonstrate the effectiveness of hav-
ing clean data when generating training pairs and also, when introducing new attacks to 
the trained model.

Each dataset contains N classes. K classes are used to train the network, such that K 
= N − 1. The K classes include normal/benign and K − 1 attack classes. The instances 
of each of the K class act as a pool used to generate similar and dissimilar pairs. Fur-
thermore, one class is used to simulate a new attack, mimicking the situations in which 

Algorithm 2  Train and test siamese network
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little/limited data is available for a new attack. An overview of each dataset is presented 
in the following subsections.

6.1  CICIDSS2017

CICIDS2017 (Sharafaldin et al., 2018) is a recent dataset generated by the Canadian Insti-
tute for Cyber security (CIC) comprising up-to-date benign, insider, and outsider attacks. 
Bidirectional flow features are extracted from the raw “.pcap” files provided by the dataset. 
Then, the flows are labelled according to the published timestamps of the CICIDS2017 
dataset. Table 2 lists the attacks used and the number of instances/flows for each.

Yes No

Correct Class has

Highest Vote?

Correct

Classification
False 

For each testing instance ti

7- Evaluation

Calculate similarity with class pairs

Voting (pair with highest similarity)

Dataset

N classes

2- Split each class (except e) into

50% training

50% testing

6- Train Siamese Network using B

4- Generate Training Batch B with 

      * M Similar Pairs 
             equal number of pairs for each class  

      * M Dissimilar Pairs
             equal number of pairs for all classes combinations

5- Generate Testing Batch T with t instances for each

class

     ti contains N*j pairs (j pairs with each class)

1- Choose class e to be

excluded from training

3- Split e into

50% testing (labelled)

50% testing (unknown)

 Mock new
attack with
few labelled
instances

Fig. 2  Siamese Network for Intrusion Detection System (One-Shot)
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Fig. 3  Siamese Network Loss 
Curve (Non-converging case)

Fig. 4  Siamese Network Loss 
Curve (Converging case) - 1

Fig. 5  Siamese Network Loss 
Curve (Converging case) - 2
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6.2  KDD Cup’99

The KDD Cup’99 (Hettich and Bay, 1999a), although old, is still considered as the 
classic benchmark data set used in the evaluation of IDS performance. More than 
60% of the research in the past decade (2008 - 2018) has been evaluated using 
KDD’99 (Hindy et al., 2020). KDD Cup’99 covers 4 attack classes alongside normal 
activity. The attacks contained in the data set are; Denial of Service (DoS), Remote 
to Local (R2L), User to Root (U2R) and probing.

The KDD Cup’99 data set is relatively large, however, the provider has made avail-
able a reduced subset of ˜10% (Hettich & Bay, 1999b). For the purposes of evaluation 
here, only the smaller subset is used. Table 3 shows the number of instances per class 
for the KDD Cup’99 data set.

Algorithm 3  Evaluate model

Table 2  CICIDS2017 Classes 
and Corresponding Number of 
Occurrences

Class # of Occurrences

1 Normal 248607 (90.50%)
2 DoS (Hulk) 14427 (5.25%)
3 DoS (Slowloris) 2840 (1.03%)
4 FTP Brute Force 5228 (1.9%)
5 SSH Brute Force 3627 (1.32%)
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6.3  NSL‑KDD

The NSL-KDD (for Cybersecurity, 2022) data set was proposed by the CIC to over-
come the problems of the KDD Cup’99 set discussed by Tavallaee et al. (2009). Simi-
lar to KDD Cup’99, NSL-KDD covers 4 attack classes alongside normal activity. 
NSL-KDD is used for evaluating the effect of enhancing and filtering a data set on the 
similarity learning and performance. Table 4 shows the number of instances per class 
for the NSL-KDD data set.

NSL-KDD and KDD Cup’99 data sets have already been pre-processed and 42 fea-
tures are available, a total of 118 features after encoding the categorical features. For 
the CICIDS2017, 31 bidirectional flow features are extracted. It is worth noting that 
no feature engineering or selection is performed to ensure that the excluded class from 
training does not indirectly influence the feature set.

7  One‑shot evaluation

7.1  Evaluation metrics

This section discusses the metrics used to evaluate the model. The model evaluation (Algo-
rithm 3) yields a Confusion Matrix (CM) that outlines the performance. A sample CM is pre-
sented in Table 5. Each row of the CM represents a class; True Positive (TP) is the number 
of attack instances correctly classified as attack; True Negative (TN) is the number of normal 
instances correctly classified as normal; False Positive (FP) is the number of normal instances 
wrongly classified as attack; False Negative (FN) is the number of attack instances wrongly 
classified as normal.

The overall accuracy is calculated as shown in (5). True Positive Rate (TPR) and False 
Negative Rate (FPR) for each class are shown in (6) and (7) respectively; finally, True Nega-
tive Rate (TNR) and False Positive Rate (FPR) are calculated using (8) and (9) respectively.

Table 3  KDD Cup’99 Classes 
and Corresponding Number of 
Occurrences

Class # of Occurrences

1 Normal 97278 (19.70%)
2 DoS 391458 (79.24%)
3 Probe 4107 (0.82%)
4 U2R 1128 (0.23%)
5 R2L 52 (0.01%)

Table 4  NSL-KDD Classes 
and Corresponding Number of 
Occurrences

Class # of Occurrences

1 Normal 67343 (53.46%)
2 DoS 45927 (36.47%)
3 Probe 11656 (9.25%)
4 U2R 995 (0.78%)
5 R2L 52 (0.04%)
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7.2  Results

7.2.1  One excluded class

The number of hidden layers and neurons for the ANNs used as the building block for 
the twin networks and their optimised architecture are as follows (bold is used for the 
input layer, italic is used for the output layer of the Siamese Network before similarity 
calculation and Dr is a Dropout layer).

• CICIDS2017: 31:25:Dr(0.1):20:Dr(0.05):15
• NSL-KDD and KDD Cup’99: 118:98:Dr(0.1):79:Dr(0.1):59:Dr(0.1):39:Dr(0.1):20

The following lists the optimised hyper-parameters:

• Activation function: Relu
• L2: 0.001
• Optimiser: Adam

(5)OverallAccuracy =
TN +

∑4

i=1
TPii

TN +
∑4

i=1

∑4

j=1
TPij +

∑4

i=1
FPi +

∑4

i=1
FNi

(6)TPRi =
TPii

FNi +
∑4

j=1
TPij

(7)FNRi =
FNi

FNi +
∑4

j=1
TPij

(8)TNR =
TN

TN +
∑4

i=1
FPi

(9)FPR =

∑4

i=1
FPi

TN +
∑4

i=1
FPi

Table 5  Sample Confusion 
Matrix

Predicted Class

Correct Normal Attack1 Attack2 Attack3 Attack4

Normal TN FP1 FP2 FP3 FP4 
Attack1 FN1 TP11 TP12 TP13 TP14 
Attack2 FN2 TP21 TP22 TP23 TP24 
Attack3 FN3 TP31 TP32 TP33 TP34 
Attack4 FN4 TP41 TP42 TP43 TP44 
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• Number of Epochs: 2000

The evaluation specifies how accurately the proposed network can classify both 
classes used in training and new attack classes without the need for retraining. The 
model leverages similarity-based learning. The new attack class is represented using 
one sample to mimic the labelling process of new attacks.

For each dataset evaluation, multiple experiments are conducted. Specifically, K (N − 1) 
experiments are evaluated, where N is the number of classes and K is the number of attack classes 
in order to evaluate the performance of the Siamese Network when using a different set of attack 
classes for training and evaluation. In each experiment, a separate attack class (e) is excluded, one 
at a time. The CM is presented alongside the overall model accuracy for each experiment.

The results of the evaluation of the performance impact of the number of labelled 
samples (j) of the new attack class e are presented in terms of overall accuracy, new 
attack True Positive Rate (TPR) and False Negative Rates (FNR), Normal True Nega-
tive Rate (TNR) and False Positive Rate (FPR), listed using j instances for majority vot-
ing, where j ∈{1,5, 10,15,20,25,30}. The CMs use j = 5.

The CMs of the CICIDS2017 One-Shot, excluding SSH class is presented in Tables 6 
and excluding FTP in Table 7. The overall accuracy is 81.28% and 82.5% respectively. 
The results demonstrate the network capability to adapt to the emergence of a new 
cyber-attack after training. It is important to note that the new attack class performance 
is 73.03% and 70.03% for SSH and FTP respectively. Moreover, the added class demon-
strates low FNRs, specifically 8% and 15% for FTP and SSH respectively.

Additionally, compared to the TPR of recent research, it is shown that when performing 
a multi-class classification using ANNs with all classes included in both training and test-
ing, the SSH and FTP recall are 98% and 77% respectively (Hossain et al., 2020). In another 
study the TPRs are 0% and 3.1% respectively (Vinayakumar et al., 2019). One-to-one com-
parison is not practical, since in the proposed model, classes are excluded from training, but 
the multi-class classification results provide context and show that the proposed model results 

Table 6  CICIDS2017 One-Shot Confusion Matrix (SSH not in Training)

Bold represents the detection accuracy for both normal and attach classes
Blue represents the detection accuracy of the excluded class(es)

Predicted Class

Correct Normal DoS (Hulk) DoS (Slow-
loris)

FTP SSH Overall

Normal 4711 9 103 148 1029 81.28%
(78.52%) (0.15%) (1.72%) (2.47%) (17.15%)

DoS (Hulk) 93 5745 33 43 86
(1.55%) (95.75%) (0.55%) (0.72%) (1.43%)

DoS (Slowlo-
ris)

507 0 4668 143 682
(8.45%) (0%) (77.8%) (2.38%) (11.37%)

FTP 643 1 127 4879 350
(10.72%) (0.02%) (2.12%) (81.32%) (5.83%)

SSH 924 34 310 350
(15.4%) (0.57%) (5.17%) (5.83%)

4382

(73.03%)
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fall in line with the literature. Furthermore, the evaluation of the model is not subject to the 
class-imbalance issue. Classes are equally represented in both training and testing batches.

Furthermore, on inspection of Tables  8  and  9, it is evident that using five labelled 
instances of the new attack class results in an increase in both the overall accuracy and the 
TPR together with a drop in the FNR. Using only 1 labelled instance demonstrates a com-
parably poorer performance owing to the instance selection randomness, which could result 
in either a good or a bad class representative. However, using 5 random labelled instances 
boosts performance, reinforcing the importance of having distinctive class representatives.

The remainder of the CICIDS2017 results are characterised by similar behaviour. The 
full evaluation tables are listed in Appendix A  for transparency and reproducibility. The 
results are listed as follows. DoS (Hulk) results are presented in Tables 16 and 17. The TPR 
rises from 50.97% when using one pair to 72.82% when using 30 pairs. DoS (Slowloris) 
results are presented in Tables 18 and 19, where the TPR rises from 91.07% when using 
one pair to 95.18% when using 30 pairs.

The CMs of the KDD Cup’99 and NSL-KDD data sets One-Shot, excluding the DoS attack 
from training are presented in Tables 10 and 11, respectively; the overall accuracies are 76.67% 
and 77.99%. It is important to note however, that the False Negative rates for the new class 
(i.e. DoS) are 26.38% for the KDD Cup’99 and 9.87% for the NSL-KDD. Additional to the 

Table 7  CICIDS2017 One-Shot Confusion Matrix (FTP not in Training)

Bold represents the detection accuracy for both normal and attach classes
Blue represents the detection accuracy of the excluded class(es)

Predicted Class

Correct Normal DoS (Hulk) DoS (Slowloris) FTP SSH Overall

Normal 5231 3 152 189 425 82.5%
(87.18%) (0.05%) (2.53%) (3.15%) (7.08%)

DoS (Hulk) 70 5755 48 15 112
(1.17%) (95.92%) (0.8%) (0.25%) (1.87%)

DoS (Slowloris) 424 1 4433 485 657
(7.07%) (0.02%) (73.88%) (8.08%) (10.95%)

FTP 518 1 659 620
(8.63%) (0.02%) (10.98%) (10.33%)

SSH 546 3 198 124 5129
(9.1%) (0.05%) (3.3%) (2.07%) (85.48%)

Table 8  CICIDS2017 One-Shot 
Accuracy (SSH not in Training) 
Using Different j Votes

No Votes Overall New Class (SSH) Normal

(j) Accuracy TPR FNR TNR FPR

1 72.72% 64.10% 16.43% 63.35% 36.65%
5 81.28% 73.03% 15.40% 78.52% 21.48%
10 82.56% 77.82% 13.40% 79.95% 20.05%
15 82.58% 78.43% 13.03% 79.92% 20.08%
20 82.49% 78.33% 13.18% 79.97% 20.03%
25 82.43% 78.30% 13.25% 79.78% 20.22%
30 82.49% 78.45% 13.13% 79.97% 20.03%

4202
(70.03%)
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Table 9  CICIDS2017 One-Shot 
Accuracy (FTP not in Training) 
Using Different j Votes

No Votes Overall New Class (FTP) Normal

(j) Accuracy TPR FNR TNR FPR

1 72.91% 59.65% 8.03% 72.83% 27.17%
5 82.5% 70.03% 8.63% 87.18% 12.82%
10 84.57% 72.8% 8.32% 87.70% 12.30%
15 85.47% 76.72% 8.12% 87.40% 12.60%
20 85.78% 77.58% 8.10% 87.23% 12.77%
25 85.86% 78.27% 8.10% 86.92% 13.08%
30 85.94% 78.48% 8.00% 86.73% 13.27%

Table 10  KDD One-Shot Confusion Matrix (DoS Not in Training)

Bold represents the detection accuracy for both normal and attach classes
Blue represents the detection accuracy of the excluded class(es)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal 4562 243 522 579 94 76.67%
(76.03%) (4.05%) (8.7%) (9.65%) (1.57%)

DoS 1583 1831 168 1
(26.38%) (30.52%) (2.8%) (0.02%)

Probe 159 214 5367 242 18
(2.65%) (3.57%) (89.45%) (4.03%) (0.3%)

R2L 56 275 10 5571 88
(0.93%) (4.58%) (0.17%) (92.85%) (1.47%)

U2R 17 205 655 40 5083
(0.28%) (3.42%) (10.92%) (0.67%) (84.72%)

Table 11  NSL-KDD One-Shot Confusion Matrix (DoS Not in Training)

Bold represents the detection accuracy for both normal and attach classes
Blue represents the detection accuracy of the excluded class(es)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal 5593 61 136 122 88 77.99%
(93.22%) (1.02%) (2.27%) (2.03%) (1.47%)

DoS 592 653 12  11
(9.87%) (10.88%) (0.2%) (0.18%)

Probe 67 3305 2595 19 14
(1.12%) (55.08%) (43.25%) (0.32%) (0.23%)

R2L 212 7 27 5692 62
(3.53%) (0.12%) (0.45%) (94.87%) (1.03%)

U2R 486 6 31 693  4784
(8.1%) (0.1%) (0.52%) (11.55%) (79.73%)

2417
(40.28%)

4732

(78.87%)
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observations arising from the CICIDS2017 evaluation, these results highlight two further ele-
ments; (a) the Siamese Network did not find a high similarity between the new attack and the 
normal instances; (b) the new attack class TPR in the NSL-KDD results is significantly higher 
than KDD Cup’99 (78.87% compared to 40.28%), because the NSL-KDD is an enhanced ver-
sion of the KDD Cup’99 (filtered and duplicate instances removed). Knowing that the new 
class is not used in the training phase and the similarity is only calculated from a few instances, 
a better representation of instances improves performance (i.e. NSL-KDD instances). Results 
confirm that new labelled instances need to be appropriate representatives (Tables 12 and 13).

Likewise, In consideration of completeness, the remaining NSL-KDD and the KDD 
Cup’99 results - which demonstrate similar performance - are listed as follows; exclud-
ing Probe results are listed in Tables 20, 21, 26 and 27; 24, 25, 30 and 31 present the 
results when excluding R2L; Finally, excluding U2R are in Tables 22, 23, 28 and 29.

7.2.2  Two excluded classes

A second experiment is conducted to further assess the performance of the model. 
Unlike the results in Section 7.2.1, three classes are used to train the network and two 
classes excluded from the training. The experiment is aimed at evaluating the robust-
ness of the trained network to discriminate more than one class without the need for 
re-training, in the scenario when a few instances of the new class are available and until 
sufficient instances are gathered. The goal is to correctly classify and label new attacks 
not just to discriminate from benign/normal behaviour. When attacks are correctly clas-
sified, effective attack-specific countermeasures can be deployed.

Table 12  KDD One-Shot 
Accuracy (DoS not in Training) 
Using Different j Votes

No Votes Overall New Class (DoS) Normal

(j) Accuracy TPR FNR TNR FPR

1 66.89% 41.67% 22.50% 66.35% 33.65%
5 76.67% 40.28% 26.38% 76.03% 23.97%
10 77.57% 40.07% 27.25% 76.10% 23.90%
15 77.67% 39.9% 27.32% 76.02% 23.98%
20 77.68% 39.93% 27.38% 76.02% 23.98%
25 77.68% 39.87% 27.40% 76.07% 23.93%
30 77.68% 39.88% 27.40% 76.03% 23.97%

Table 13  NSL-KDD One-Shot 
Accuracy (DoS not in Training) 
Using Different j Votes

No Votes Overall New Class (DoS) Normal

(j) Accuracy TPR FNR TNR FPR

1 72.75% 67.35% 9.05% 84.87% 15.13%
5 77.99% 78.87% 9.87% 93.22% 6.78%
10 77.7% 84.62% 9.87% 93.35% 6.65%
15 79.05% 83.78% 9.87% 93.32% 6.68%
20 78.63% 85.25% 9.87% 93.37% 6.63%
25 79.49% 84.62% 9.87% 93.35% 6.65%
30 79.12% 85.37% 9.87% 93.35% 6.65%
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Table 14 presents the confusion matrix when DoS (Hulk) and FTP are excluded from the 
training. The detection accuracy is 69.13% and 86.42% for the Dos (Hulk) and FTP classes 
respectively; the FNR of the new classes is 11.93% and 8%. It is important to note that the 
TPR increases and the FNR decreases as more instances are used from each of class as evi-
dent in Table 15 reaching an FNR of 9.6% and 7.78% and a TPR of 72.85% and 83.58% for 
the DoS (Hulk) and FTP attacks respectively.

8  Conclusion and future work

The paper presents an Intrusion Detection Siamese Network framework capable of clas-
sifying new cyber-attacks based on a limited number of labelled instances (One-Shot). The 
evaluation of the model was performed on three different data sets; CICIDS2017, KDD 
Cup’99, and the NSL-KDD, an enhancement of the KDD Cup’99.

The results of the evaluation reconfirm that particular consideration must be given 
on creating the training set, ensuring an equal number of training pairs for every class 

Table 14  CICIDS2017 One-Shot Confusion Matrix (DoS (Hulk) & FTP Not in Training)

Bold represents the detection accuracy for both normal and attach classes
Blue represents the detection accuracy of the excluded class(es)

Predicted Class

Correct Normal DoS (Hulk) DoS (Slow-
loris)

FTP SSH Overall

Normal 4895 545 14  451 95  75.47%
 (81.58%) (9.08%) (0.23%)  (7.52%) (1.58%)

DoS (Hulk) 716  1012 87 37 
(11.93%) (16.87%)  (1.45%) (0.62%)

DoS (Slowloris) 424  1120  3869 405  182
(7.07%) (18.67%)  (64.48%) (6.75%)  (3.03%)

FTP 480  51 19 265
(8%) (0.85%) (0.32%) (4.42%)

SSH 520  26 19  890 4545
(8.67%) (0.43%) (0.32%) (14.83%) (75.75%)

Table 15  CICIDS2017 One-Shot Accuracy (DoS (Hulk) & FTP not in Training) Using Different j Votes

No Votes Overall New Class (DoS (Hulk)) New Class (FTP) Normal

(j) Accuracy TPR FNR TPR FNR TNR FPR

1 65.17% 59.95% 13.42% 76.88% 9.6% 64.05% 35.95%
5 75.47% 69.13% 11.93% 86.42% 8% 81.58% 18.42%
10 77.43% 73.25% 10.4% 87.55% 7.68% 83.6% 16.4%
15 77.78% 72.03% 10.13% 87.67% 7.72% 83.68% 16.32%
20 78.05% 73.4% 9.6% 87.73% 7.67% 83.48% 16.52%
25 78.04% 72.65% 9.53% 87.85% 7.77% 83.7% 16.3%
30 78.04% 72.85% 9.6% 87.83% 7.78% 83.58% 16.42%

(69.13%)

(86.42%)
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combination. The core requirement, in turn, presents a challenge of an exploding num-
ber of combinations between all instances. Thus, distinct pairs are chosen to create large 
batches in the region of 30,000 pairs to mitigate the growth. During evaluation, similarity 
comparison using a single point for each class resulted in noisy predictions due to random-
ness obviated through the selection of multiple (j) random instances from each class and 
aggregation using majority voting.

The results demonstrate the ability of the proposed architecture to classify cyber-
attacks based on learning from similarity. Moreover, the results highlighted the 
need for representative instances for the new attack class. Furthermore, evidence 
is provided to confirm the ability of One-Shot learning methodologies to adapt to 
new cyber-attacks without retraining when only a few instances are available for a 
new attack. An overall accuracy of between 80% - 85% for the CICIDS2017 data-
set was evaluated, demonstrating acceptable accuracy in detecting previously unseen 
attacks. Further and also important to the application is that the overall accuracy 
was achieved at a low FNR for the new attack classes. The overall accuracy reached 
above 75% for the KDD Cup’99 and NSL-KDD data sets. Further and also important 
to the application is that the overall accuracy was achieved at a low FNR for the new 
attack classes.

Appendix A: Full results tables

As aforementioned, in the One-Shot evaluation multiple experiments are conducted. In 
each experiment, a different class of the dataset is excluded. For transparency and due to 
the page limit, the full confusion matrices are presented in this section.

Tables 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, and 31 list the CMs and 
the One-Shot accuracy of the remaining classes.

Table 16  CICIDS2017 One-Shot Confusion Matrix (DoS(Hulk) Not in Training)

Bold represents the detection accuracy for both normal and attach classes
Blue represents the detection accuracy of the excluded class(es)

Predicted Class

Correct Normal DoS (Hulk) DoS (Slowloris) FTP SSH Overall

Normal 4314 1095 174 113 304 80.81%
(71.9%) (18.25%) (2.9%) (1.88%) (5.07%)

DoS (Hulk) 78 60 58 96
(1.3%) (1%) (0.97%) (1.6%)

DoS (Slowloris) 451 51 4767 111 620
(7.52%) (0.85%) (79.45%) (1.85%) (10.33%)

FTP 624 171 138 4521 546
(10.4%) (2.85%) (2.3%) (75.35%) (9.1%)

SSH 597 26 245 198 4934
(9.95%) (0.43%) (4.08%) (3.3%) (82.23%)

5708

(95.13%)
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Table 17  CICIDS2017 One-Shot 
Accuracy (DoS (Hulk) not in 
Training) Using Different j Votes

No Votes Overall New Class (Hulk) Normal

(j) Accuracy TPR FNR TNR FPR

1 72.28% 91.07% 4.90% 58.05% 41.95%
5 80.81% 95.13% 1.30% 71.90% 28.10%
10 82.59% 95.22% 1.22% 75.58% 24.42%
15 82.54% 95.23% 1.20% 74.67% 25.33%
20 82.86% 95.2% 1.20% 76.02% 23.98%
25 82.76% 95.2% 1.15% 75.50% 24.50%
30 82.93% 95.18% 1.22% 76.15% 23.85%

Table 18  CICIDS2017 One-Shot Confusion Matrix (Dos(Slowloris) Not in Training)

Bold represents the detection accuracy for both normal and attach classes
Blue represents the detection accuracy of the excluded class(es)

Predicted Class

Correct Normal DoS (Hulk) DoS (Slowloris) FTP SSH Overall

Normal 5307 6 459 64 164 81.07%
(88.45%) (0.1%) (7.65%) (1.07%) (2.73%)

DoS (Hulk) 37 5794 65 53 51
(0.62%) (96.57%) (1.08%) (0.88%) (0.85%)

DoS (Slowloris) 574 26 582 794
(9.57%) (0.43%) (9.7%) (13.23%)

FTP 482 1 598 4639 280
(8.03%) (0.02%) (9.97%) (77.32%) (4.67%)

SSH 446 0 817 181 4556
(7.43%) (0%) (13.62%) (3.02%) (75.93%)

Table 19  CICIDS2017 One-Shot 
Accuracy (DoS (Slowloris) not in 
Training) Using Different j Votes

No Votes Overall New Class (Slowloris) Normal

(j) Accuracy TPR FNR TNR FPR

1 70.89% 50.97% 11.50% 72.65% 27.35%
5 81.07% 67.07% 9.57% 88.45% 11.55%
10 82.67% 71.38% 7.38% 89.48% 10.52%
15 82.85% 72.20% 7.18% 89.37% 10.63%
20 83.01% 72.77% 6.85% 89.67% 10.33%
25 82.98% 72.93% 6.58% 89.65% 10.35%
30 82.94% 72.82% 6.68% 89.70% 10.30%

4024

(67.07%)
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Table 20  NSL-KDD One-Shot Confusion Matrix (Probe Not in Training)

Bold represents the detection accuracy for both normal and attach classes
Blue represents the detection accuracy of the excluded class(es)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal 5389 89 195 245 82 75.31%
(89.82%) (1.48%) (3.25%) (4.08%) (1.37%)

DoS 37 5842 95 21 5
(0.62%) (97.37%) (1.58%) (0.35%) (0.08%)

Probe 1697 2571 948 219
(28.28%) (42.85%) (15.8%) (3.65%)

R2L 54 0 55 5800 91
(0.9%) (0%) (0.92%) (96.67%) (1.52%)

U2R 263 0 21 720 4996
(4.38%) (0%) (0.35%) (12%) (83.27%)

Table 21  NSL-KDD One-Shot 
Accuracy (Probe not in Training) 
Using Different j Votes

No Votes Overall New Class (Probe) Normal

(j) Accuracy TPR FNR TNR FPR

1 70.62% 18.80% 24.78% 77.53% 22.47%
5 75.31% 9.42% 28.28% 89.82% 10.18%
10 75.2% 4.83% 28.82% 91.08% 8.92%
15 75.12% 4.05% 29.08% 91.18% 8.82%
20 75.11% 3.47% 29.20% 91.45% 8.55%
25 75% 3.02% 29.55% 91.35% 8.65%
30 74.94% 2.68% 29.68% 91.33% 8.67%

Table 22  NSL- KDD One-Shot Confusion Matrix (R2L Not in Training)

Bold represents the detection accuracy for both normal and attach classes
Blue represents the detection accuracy of the excluded class(es)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal 5199 24 148 530 99 80.16%
(86.65%) (0.4%) (2.47%) (8.83%) (1.65%)

DoS 15 5799 36 26 124
(0.25%) (96.65%) (0.6%) (0.43%) (2.07%)

Probe 90 242 5416 236 16
(1.5%) (4.03%) (90.27%) (3.93%) (0.27%)

R2L 2526 1 142 572
(42.1%) (0.02%) (2.37%) (9.53%)

U2R 852 3 0 270 4875
(14.2%) (0.05%) (0%) (4.5%) (81.25%)

565
(9.42%)

2759

(45.98%)
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Table 23  NSL-KDD One-Shot 
Accuracy (R2L not in Training) 
Using Different j Votes

No Votes Overall New Class (R2L) Normal

(j) Accuracy TPR FNR TNR FPR

1 74.5% 46.05% 38.13% 74.73% 25.27%
5 80.16% 45.98% 42.10% 86.65% 13.35%
10 80.79% 46.82% 41.58% 88.07% 11.93%
15 81.09% 49.02% 39.88% 87.72% 12.28%
20 81% 48.62% 40.38% 87.90% 12.10%
25 80.95% 48.37% 40.63% 87.88% 12.12%
30 80.91% 48.2% 40.93% 87.93% 12.07%

Table 24  NSL-KDD One-Shot Confusion Matrix (U2R Not in Training)

Bold represents the detection accuracy for both normal and attach classes
Blue represents the detection accuracy of the excluded class(es)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal 4530 127 76 237 1030 77.04%
(75.5%) (2.12%) (1.27%) (3.95%) (17.17%)

DoS 120 5771 49 16 44
(2%) (96.18%) (0.82%) (0.27%) (0.73%)

Probe 43 304 5574 69 10
(0.72%) (5.07%) (92.9%) (1.15%) (0.17%)

R2L 403 1 27 5238 331
(6.72%) (0.02%) (0.45%) (87.3%) (5.52%)

U2R 2191 0 221 1589
(36.52%) (0%) (3.68%) (26.48%)

Table 25  NSL-KDD One-Shot 
Accuracy (U2R not in Training) 
Using Different j Votes

No Votes Overall New Class (U2R) Normal

(j) Accuracy TPR FNR TNR FPR

1 72.42% 34.37% 35.55% 66.58% 33.42%
5 77.04% 33.32% 36.52% 75.50% 24.50%
10 77.08% 30.42% 36.95% 77.85% 22.15%
15 77.19% 30.2% 36.70% 78.22% 21.78%
20 77.12% 29.37% 36.67% 78.52% 21.48%
25 77.14% 28.85% 36.72% 78.87% 21.13%
30 77.12% 28.3% 37.10% 79.25% 20.75%

1999
(33.32%)
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Table 26  KDD One-Shot Confusion Matrix (Probe Not in Training)

Bold represents the detection accuracy for both normal and attach classes
Blue represents the detection accuracy of the excluded class(es)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal 4515 16 383 1016 70 72.23%
(75.25%) (0.27%) (6.38%) (16.93%) (1.17%)

DoS 18 5896 81 4 1
(0.3%) (98.27%) (1.35%) (0.07%) (0.02%)

Probe 719 3707 941 21
(11.98%) (61.78%) (15.68%) (0.35%)

R2L 26 0 16 5946 12
(0.43%) (0%) (0.27%) (99.1%) (0.2%)

U2R 55 37 264 943 4701
(0.92%) (0.62%) (4.4%) (15.72%) (78.35%)

Table 27  KDD One-Shot 
Accuracy (Probe not in Training) 
Using Different j Votes

No Votes Overall New Class (Probe) Normal

(j) Accuracy TPR FNR TNR FPR

1 66.72% 15.72% 11.77% 65.72% 34.28%
5 72.23% 10.2% 11.98% 75.25% 24.75%
10 72.59% 5.9% 13.30% 78.65% 21.35%
15 72.35% 4.82% 13.08% 78.57% 21.43%
20 72.26% 3.58% 13.50% 79.20% 20.80%
25 72.17% 3.05% 13.55% 79.23% 20.77%
30 72.07% 2.17% 13.98% 79.62% 20.38%

Table 28  KDD One-Shot Confusion Matrix (R2L Not in Training)

Bold represents the detection accuracy for both normal and attach classes
Blue represents the detection accuracy of the excluded class(es)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal 4288 1 400 730 581 74.2%
(71.47%) (0.02%) (6.67%) (12.17%) (9.68%)

DoS 10 5909 72 9 0
(0.17%) (98.48%) (1.2%) (0.15%) (0%)

Probe 90 160 5338 165 247
(1.5%) (2.67%) (88.97%) (2.75%) (4.12%)

R2L 1702 2 1344 804
(28.37%) (0.03%) (22.4%) (13.4%)

U2R 527 1 682 213 4577
(8.78%) (0.02%) (11.37%) (3.55%) (76.28%)

612
(10.2%)

2148

(35.8%)
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Table 29  KDD One-Shot 
Accuracy (R2L not in Training) 
Using Different j Votes

No Votes Overall New Class (R2L) Normal

(j) Accuracy TPR FNR TNR FPR

1 67.75% 38.48% 25.95% 59.65% 40.35%
5 74.2% 35.8% 28.37% 71.47% 28.53%
10 77.27% 42.22% 23.85% 74.38% 25.62%
15 78.34% 46.65% 22.05% 74.50% 25.50%
20 78.94% 49.18% 21.45% 74.62% 25.38%
25 79.44% 51.32% 20.72% 74.65% 25.35%
30 79.87% 53.35% 20.65% 74.55% 25.45%

Table 30  KDD One-Shot Confusion Matrix (U2R Not in Training)

Bold represents the detection accuracy for both normal and attach classes
Blue represents the detection accuracy of the excluded class(es)

Predicted Class

Correct Normal DoS Probe R2L U2R Overall

Normal 4146 5 440 796 613 75.72%
(69.1%) (0.08%) (7.33%) (13.27%) (10.22%)

DoS 7 5921 59 6 7
(0.12%) (98.68%) (0.98%) (0.1%) (0.12%)

Probe 53 384 5449 59 55
(0.88%) (6.4%) (90.82%) (0.98%) (0.92%)

R2L 35 0 13 5849 103
(0.58%) (0%) (0.22%) (97.48%) (1.72%)

U2R 958 1 669 3022
(15.97%) (0.02%) (11.15%) (50.37%)

Table 31  KDD One-Shot 
Accuracy (U2R not in Training) 
Using Different j Votes

No Votes Overall New Class (U2R) Normal

(j) Accuracy TPR FNR TNR FPR

1 70.69% 21.40% 17.28% 59.27% 40.73%
5 75.72% 22.5% 15.97% 69.10% 30.90%
10 76.26% 21.82% 17.17% 72.18% 27.82%
15 76.33% 21.83% 17.15% 72.52% 27.48%
20 76.31% 21.48% 17.52% 72.72% 27.28%
25 76.34% 21.45% 17.55% 72.77% 27.23%
30 76.33% 21.27% 17.73% 72.90% 27.10%

1350

(22.5%)
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