
Vol.:(0123456789)

https://doi.org/10.1007/s10844-022-00742-4

1 3

OVI‑3: A NoSQL visual query system supporting efficient
anti‑joins

Sami El‑Mahgary1 · Eljas Soisalon‑Soininen2 · Pekka Orponen2 · Petri Rönnholm1 ·
Hannu Hyyppä1

Abstract
The aim of this work was to develop a technique to speed up complex joins in an incremen-
tal visual query system. When designing a visual, highly interactive interface for ad-hoc
(read-only) queries, fast response times are of paramount importance. While a column-
oriented DBMS reduces the inherent latency found in relational DBMS, there is still the
question of how to index the data, especially so as to support complex joins. Equi-joins that
involve a many-to-many relationship are an example of complex joins that arise frequently
and whose efficient processing is essential for fast query processing. We present OVI-3, a
NoSQL visual query system based on incremental querying that uses a simple directory-
based indexing scheme for faster processing of such complex joins. The system has been
piloted using real data from a student database at Aalto University. The results demon-
strated that for certain complex joins the presented indexing scheme outperforms SQL que-
ries from a data server, especially for queries involving anti-joins (negation), where OVI-3
provided an orders of magnitude speed improvement.

Keywords  Visual querying · Joins · Incremental query · NoSQL

 *	 Sami El‑Mahgary
	 sami.mahgary@aalto.fi

	 Eljas Soisalon‑Soininen
	 eljas.soisalon-soininen@aalto.fi

	 Pekka Orponen
	 pekka.orponen@aalto.fi

	 Petri Rönnholm
	 petri.ronnholm@aalto.fi

	 Hannu Hyyppä
	 hannu.hyyppa@aalto.fi

1	 Department of Built Environment, School of Engineering, Aalto University, P.O. Box 11000,
FI‑00076 Aalto, Finland

2	 Department of Computer Science, School of Science, Aalto University, P.O.Box 15400,
FI‑00076 Aalto, Finland

Journal of Intelligent Information Systems (2023) 60:777–801

Received: 23 June 2022 / Revised: 3 August 2022 / Accepted: 30 August 2022

© The Author(s) 2022, corrected publication 2022
Published online: 21 September 2022

/

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-022-00742-4&domain=pdf

1 3

1  Introduction

Besides being intuitive and easy to use, a VQS must also provide fast response times. This
is especially true when using incremental query formulation, a paradigm made popular
back in the 1990’s (Ahlberg & Shneiderman, 1994; Tanin et al., 1996). Incremental query-
ing is based on interactively browsing the contents of a database (Larson, 1986) through
filters. Interactive browsing is a user-friendly approach whereby the user simply modifies
any of the existing query constraints by further restricting or relaxing them, thereby imme-
diately producing a new answer set. In Tanin et al. (1996), the authors proposed that the
term ‘immediately’ should refer to a delay of no more than one second, the time period that
a user can afford to wait at each step for the new data (corresponding to the modified con-
straints) to appear. Later studies (Liu and Heer, 2014; Eichmann et al., 2020) have halved
this threshold latency to 0.5s.

Incremental querying assumes a continuous display (Ahlberg & Shneiderman, 1994),
whereby the user starts with a subset of the data considered to be relevant by the developer
and then, incrementally, zooms in/out by placing further restrictions or relaxing some of
the existing ones. Users thus explore, through visual elements, a subset of the database,
the active subset (Derthick et al., 1999), and keep refining the query step-by-step until the
active subset holds all the data the user is looking for and nothing else. When that is the
case, the active subset becomes the final result set and the query can be considered to have
successfully completed.

A key factor that can dramatically enhance response times for read-only queries is
the data layout or the data arrangement architecture. This architecture can either be
the traditional row-based arrangement found in relational databases or it can be col-
umn-based, as typically used in NoSQL approaches (Gessert et al., 2017). A column-
based architecture stores each column separately on disk to speed up queries that only
retrieve a few attributes from each relation. Even if the data layout is column-based,
the result set must still be returned to the user in a row-based format, at which point
the columns need to be assembled into a set of rows, known as tuple reconstruction
(Abadi et al., 2008; Idreos et al., 2009).

Joins occur frequently in queries and remain a costly operation both in row-based
(Mishra & Eich, 1992; Li & Ross, 1999) and column-based architectures (Idreos et al.,
2009). Joins are a known bottleneck for query times, especially when the query involves
a many-to-many, or M:N relationship. An M:N relationship arises when the relationship
between two entities R and S is such that a tuple or row from one relation R can be joined to
several tuples from another relation S and vice versa (Blasgen & Eswaran, 1977). Semanti-
cally, for instance, the relationship between students and courses at a university is M:N
because a student can take several courses, and any given course in turn is taken by several
students. For brevity, when there is an M:N relationship between two entities R and S, we
refer to the join (assumed to be an equi-join) between the involved relations as an M:N join.

This article is about developing a VQS based on incremental querying that provides
efficient support for complex joins that arise in M:N relationships. We use a technique of
directory-based indexing or briefly DBI, presented in detail in Section 3.7. Based on this
DBI approach, we have developed a prototype VQS that supports incremental querying,
named OVI-3 (for “Offline Visual Incremental querying”). OVI-3 has been used in a pilot
project to monitor students’ academic progress at Aalto University.

OVI-3 is the culmination of some new ideas to improve on a previous VQS, OVI-2,
short for Oodi’s Visual Interface (El-Mahgary & Soisalon-Soininen, 2015) that was

778 Journal of Intelligent Information Systems (2023) 60:777–801

1 3

successfully used for several years by academic counsellors to perform ad-hoc queries on
Aalto University’s student database, known as Oodi. The ‘2’ in the name OVI-2 is not a
version number (there never was an OVI-1) but rather denotes the fact that OVI-2 used a
two-stage querying. The first stage would return the user a superset of the required data, the
result set of which was re-arranged into a more user-friendly temporary database created
from scratch. The second stage then allowed the user to perform fast in-depth querying on
the just created smaller dataset that was stored locally.

As to the ‘3’ in the name OVI-3, it signifies the additional step required to regularly
transfer data from the university database server to OVI-3 and build a new dataset using
the DBI technique. The data transfer is handled through a separate batch application as
described in Section 3.7.2. OVI-3 users thus never connect to the university database
server. As we shall see in Section 4.6, the DBI approach can dramatically improve the
performance of M:N joins, and is especially useful in queries that involve anti-joins, com-
monly known as negations. The present article is not a comprehensive treatment on the
OVI-3 system, but rather focuses on techniques that support the implementation of fast
joins and anti-joins in M:N relationships.

Regarding the arrangement of this article, Section 2 presents a minimal student database
together with a review of Datalog and a look at the concept of negation. Datalog is a con-
venient tool for discussing joins and negations in queries, especially since the queries in
our VQS are not handled through SQL. Section 3 briefly discusses some of the main con-
cepts behind modern VQS together with their fundamental characteristics. Implementation
issues are briefly dealt with in Section 3.7. Section 4 presents the visual querying aspects
of OVI-3 through an example query and then contrasts the query results when using OVI-3
with an equivalent query that is run on the actual university’s relational database server.
Finally, conclusions are drawn in Section 5.

2 � Concepts and terminology related to M:N joins

This section presents some important terminology and concepts related to M:N joins.

2.1 � A simple toy database schema

Consider a basic toy database for managing courses taken by university students. For now
we focus on just two tables, namely Students (Table 1), Courses (not shown) and Courses-
Taken (Table 2). There is an M:N (many-to-many) relationship between tables Students and
Courses, because a student can take several courses, and any given course can be taken by
several students. In this case the table CoursesTaken, which contains column StudentID as
a foreign key, is known as the join table or the bridge table (Ahmed et al., 2013).

Table 1   Three students in the toy
table Students along with their
four attributes. Note the lack of
any capitals in the table entries,
which are reserved for Datalog
variables

StudID FirstName LastName Major

22 taneli huiskanen mech_eng
34 ghislaine millereux mech_eng
35 delia surhamsson civ_eng

779Journal of Intelligent Information Systems (2023) 60:777–801

1 3

The OVI-3 approach essentially re-organizes the data into a column-based format where
the keys that take part in an M:N join are stored separately using the DBI technique. As
this article is about the efficient implementation of such joins (i.e., M:N joins and M:N
anti-joins), we refer to the join between tables Students and CoursesTaken as a primal join.

A primal join thus always derives from an M:N relationship. Analogously, we refer to
the anti-join between tables Students and CoursesTaken as a primal anti-join. Both of these
join concepts are defined with the help of an example in Section 2.3.

2.2 � The concept of viewpoints and the value store

We postulate that one of the tables in a primal join is crucial with respect to the query, as
it identifies the semantic entity or (principal) concept (Soylu et al., 2016) in which the user
is interested. This principal concept is similar to what Benzi et al. (1996) refer to as a view-
point, to which we will return shortly. We call the table in the primal join that represents
the principal concept the primal tableTprim,1 while the other table is called the M:N foreign
key table, denoted Tfrgn.

Now consider a query that finds students who took course ‘MECH-1001’ and that dis-
plays, for such students, the courses they took. In such a case the query’s principal con-
cept, or viewpoint, is students, Tprim refers to the table Students and Tfrgn refers to the table
CoursesTaken. Information on courses will be treated as nested results (Bakke and Karger,
2016), that is, the courses taken by a student are considered an extended property of each
individual student in the result set.

Our notion of a viewpoint is similar to the ‘anchor table’ in Stonebraker et al. (2005), and
in our case determines the choice of Tprim. The use of viewpoints is what brings intelligence to
OVI-3, for given a viewpoint, Tprim is immediately known, and from this Tfrgn is deduced. This
lays the foundation for efficiently performing certain types of joins and anti-joins, as will be
shown in Section 2.4. For a given VQS, the programmer only needs to create a limited number
of viewpoints depending on the users’ needs. A user normally selects a viewpoint just after
starting the VQS, thereby determining the set of restrictions available and thus also changing
the look of the VQS. With OVI-3, only two viewpoints are needed in our toy example: (i) a
‘Students’ viewpoint to retrieve students along with the courses they have taken and (ii) an
‘Instructors’ viewpoint for retrieving instructors along with the courses they have taught.

Because OVI-3 is geared towards a column-based data layout, a relation or table is actu-
ally implemented as a value store and hence we consider the three terms relation, table,

Table 2   Table CoursesTaken contains five course instances taken by the students

TakenID CourseID StudentID DateTaken InstructorID Grade

t101 mech_1001 22 10_MAY_2022 i58 4
t102 mech_1001 22 24_MAY_2022 i77 4
t103 mech_1001 34 10_MAY_2022 i58 5
t104 mech_1002 34 24_MAY_2022 i77 4
t105 mech_1002 35 24_MAY_2022 i77 5

1  For simplicity, we assume that the primal join is made up of a single pair of columns joined via an equi-
join as in Hamdi et al. (2017).

780 Journal of Intelligent Information Systems (2023) 60:777–801

1 3

and value store as synonyms. Since in our case a value store contains several attributes for
each key, it is not a key-value store, nor is it exactly a wide-column store as there is only
one level of indexing (keys) (Gessert et al., 2017). A value store can be considered a table,
since it is equipped with a primary key and may contain foreign keys that are part of its
compound primary key. However, unlike a table, a value store is normally accessed only
via its primary key and not via joins. Moreover, normalization rules for normal forms 2NF
and above are relaxed for a value store.

2.3 � A review of Datalog and its relation to present work

This section provides a brief review of the Datalog query language, which is attractive for
our purposes due to its lack of keywords and its close ties to relational databases. We also
discuss the relationship of Datalog to some key concepts of this article.

Like SQL, Datalog is a declarative language. Unlike SQL, however, Datalog is based
on logic programming and a program contains a set of one or more predicates. A predicate
is made up of its name, followed by a fixed number of arguments (variables or constants)
listed within parentheses, and evaluates to a Boolean value (Molina et al., 2009). The com-
bination of a predicate followed by its arguments is known as an atom (Greco and Molin-
aro, 2016) and is the equivalent of a functional call in traditional programming languages
(Molina et al., 2009).

Predicates are in Datalog the building blocks of rules. The common syntax for a rule is
the head part, followed by the symbol ‘:-’ (which can be read as ‘if’) and a body part that
follows. A rule may consist of a single atom, with an empty body part (and no preceding
‘:-’ symbol). In case its arguments are all constants, the rule is reduced to a grounded fact,
known simply as a fact (Ceri et al., 1989; Greco & Molinaro, 2016). Using the notation
from Sippu and Soisalon-Soininen (1996) and assuming arguments are represented as vec-
tors ( X̄ ), an example of a rule R with predicate p at its head and a body made up of predi-
cates p1...pn would be

All predicates in the body of a rule R must evaluate to true for the rule’s head predicate
p itself to evaluate to true, which is why the body is known as a conjunction (Greco &
Molinaro, 2016). A rule where the head predicate p evaluates to true in case just any
single predicate among p1,… , pn in the body evaluates to true would be a disjunction.
Datalog however does not have direct support for disjunctions, so representing a disjunc-
tion of n body atoms requires n rules, where each rule Ri, i = 1,… , n , consists of the head
atom p(X̄) and a single atom pi(X̄i) in its body.

Each row or tuple i in a relational table T can be viewed as a fact FTi
 in Datalog. For

instance, referring to the toy relation Students in Table 1, we could represent its first row as
the fact students(22,taneli,huiskanen,mech_eng). Because facts actually exist in the data-
base, a predicate associated directly with facts is considered an extensional database predi-
cate (Ceri et al., 1989), and such a predicate together with its arguments is known as an
extensional atom (Greco & Molinaro, 2016).

As we are not interested in recursive queries, we omit the possibility of recursion in
Datalog, and consider a Datalog program as a collection of rules that are grounded in
a dataset comprised of facts. A simple example of a Datalog program is presented in
Listing 1 below, where the dataset (not shown) is assumed to be derived directly from
Tables 1 and 2.

(1)R ∶ p(X̄):-p1(X̄1),… , pn(X̄n).

781Journal of Intelligent Information Systems (2023) 60:777–801

1 3

We continue with the relation Students and the predicate students, but instead of con-
stants, we now use variables for all the arguments in the predicate. We thus obtain the
atom students(StudentID, FirstName, LastName, Major), which represents the whole
Students relation, encompassing the full dataset comprising three rows and their four
attributes. Because this formula physically corresponds to a relation in the database
schema, it also is an example of an extensional atom.

Extensional predicates cannot by their nature appear in the head of rules, and pred-
icates serving in that role are called intensional predicates, or if their arguments are
included, derived atoms (Greco & Molinaro, 2016). A derived atom does not have a
direct correlate in the relational database and it is precisely derived atoms such as
p(X̄) in rule R in (1) that allow inference, or query rules consisting of a head and a
body to be constructed.

Before looking closer into the design of rules, a few notes on variables. In Datalog, vari-
able names start with a capital first letter, while predicate names and constants are written
fully in lowercase. In some cases the value for a variable is provided as a parameter by the
user at the start of a program and remains unchanged throughout the program’s execution.
To distinguish between such user-assigned (parameter) variables and other (free) variables,
we use the caret (ˆ) suffix notation to indicate the former condition. A user-assigned vari-
able with name VarName will thus be written as VarNameˆ.

In the execution of a Datalog program, new facts are derived from known ones through the
application of rules and the instantiation of variables. In instantiation, the variables in a predicate
are substituted by the values of corresponding constants from a matching fact i.e., a fact whose
name and arity match those of the predicate. (For details, see Greco and Molinaro (2016).)

Consider Listing 1 where the program consists of a single rule. At the head of the rule is
the derived atom studentstookcourse with its two arguments, free variable StudentID and user-
assigned variable CourseID. The value of variable CourseID remains constant for the duration
of the session that the program is running whereas variable StudentID gets its value through
evaluation of the two predicates in the body of the rule, coursestaken and students. These
extensional predicates coursestaken and students correspond to Tables 1 and 2 respectively.

It is no coincidence that the free variable StudentID that appears in the head of the rule
also appears in the body of the rule; this is due to a safety condition that stipulates that any
variable in the head of a rule must also appear in the body of the rule (Ceri et al., 1989) so
as to be instantiated with a proper value. The rule or query is evaluated by starting from
predicate coursestaken, whose CourseID variable has been instantiated with a user-pro-
vided constant value. This in turn allows the instantiation of variable StudentID in the same
predicate and also in predicate students to each student who took the course CourseID.
These instantiated values for StudentID will then be passed on to the corresponding first
argument of the derived atom in the head of the rule and returned to the user.

The latter instantiation with respect to relation Students is in fact an example of a primal
join. A primal join arises when the following two conditions are met: (i) the two relations
(here CoursesTaken and Students) are related via an M:N join and (ii) one of the tables in
the join is the primal table associated with the principal concept or viewpoint. The query in

Listing 1   A Datalog program consisting of a single rule or query to retrieve the student IDs of students who
have taken a given course as specified by the user-assigned variable CourseID 

782 Journal of Intelligent Information Systems (2023) 60:777–801

1 3

Listing 1 always returns information on students, which is its principal concept. Formally
speaking, the query in Listing 1 has as its viewpoint the students, denoted VSTUDENTS, as
its primal table Tprim the relation Students, and as its foreign key table Tfrgn the relation
CoursesTaken.

2.3.1 � Datalog and negation

Although pure Datalog does not contain negation as such (Ceri et al., 1989), we can easily aug-
ment the formalism with a form of weak negation that derives from a closed world assump-
tion (CWA). With a CWA, a given fact is false unless it is listed in the database as true.
An example of weak negation is safe negation, which requires that each variable appearing in a
negated predicate must also appear in some unnegated predicate (Gutiérrez-Basulto et al., 2015).

Let us now design a Datalog query that finds those students (student IDs, first and last
names) in our toy database who have not taken a course with a given course ID. The query
in Listing 2 satisfies the conditions of a safe negation, since the variable StudentID con-
tained in the negated predicate not studentstookcourse also appears in another unnegated
predicate, students. The safety conditions do not concern the parameter variable CourseID,
because its value remains constant during the time the program is run.

When all the variables that appear in a negated predicate also all appear together in
some unnegated single predicate, the negation is known as a guarded negation (Bárány
et al., 2012; Gutiérrez-Basulto et al., 2015). This requirement is also clearly met in the
query of Listing 2.

Finally, the negation induces a primal anti-join between the relations CoursesTaken and Stu-
dents. A primal anti-join is admissible in Datalog when the following three conditions are met:
(i) there is an M:N relationship between the entities, (ii) one of the tables involved is the primal
table (here Students) and (iii) the negation is a guarded negation. Because guarded negation
ensures that the query in Listing 2 returns only students who appear in relation Students, it can
be efficiently implemented via the familiar set difference operation (Bárány et al., 2012).

Let us denote the foreign key in table Tfrgn that is semantically equivalent to the primary
key αprim using 𝜙̂frgn . For the query in Listing 2, this implies that 𝜙̂frgn refers to attribute Stu-
dentID in relation CoursesTaken, clearly distinct from ϕfrgn (attribute CourseID in the same
table). Assuming user-given ϕfrgn (attribute CourseID) is ‘mech_1001’, then the values for
𝜙̂frgn would consist of the set {22,34} (i.e., the student IDs of students who took course
‘mech_1001’). Subtracting from the set of all values for primary key αprim (table Tprim which
is Students) the set of values for 𝜙̂frgn , we obtain: {22,34,35}−{22,34} = {35}. This singleton
is the student ID of the one student (‘delia’) who did not take course ‘mech_1001’.

Listing 2   A Datalog query that finds students (their student IDs and names) who have not taken any course
with the ID as specified in the user-assigned variable CourseID^ 

2.4 � Problem definition

In the simple query in Listing 1, the user provides one or more values for a foreign key
(column CourseID) in table Tfrgn (CoursesTaken) that is semantically distinct from the

783Journal of Intelligent Information Systems (2023) 60:777–801

1 3

primary key (column StudentID) of table Tprim (Students). Let ϕfrgn denote the set of these
user-provided foreign key values and let αprim denote the set of primal key values in Tprim.
The problem can then be stated as follows:

Assuming the values for ϕfrgn (foreign key in table Tfrgn that is semantically distinct from the
primary key αprim in table Tprim) are given by the user, how do we efficiently retrieve the corre-
sponding values for αprim (the primary key for table Tprim) that are needed for the primal join?

Since finding the set αprim is equivalent to evaluating the primal join, the corresponding
anti-join2 can then also be solved. Such queries are quite common in the real world, and
assuming an appropriate database schema with an M:N join, examples would be ‘What stu-
dents have taken the following courses?’, ‘What instructors have not taught the following
courses?’ and ‘What authors have published in the following journals?’. As pointed out
in Goodman (1980), multi-table queries often contain an additional restriction besides the
join. We take this observation further by assuming that this additional restriction specifies
a set of user-provided values, ϕfrgn, which refer to table Tfrgn.

2.5 � The mapping relation for fast joins and negation

A solution to the problem just described, that is, how to efficiently determine the set αprim
when given the foreign key set ϕfrgn, can actually be found in Listing 1. In that listing on
line no 1, predicate studentstookcourse is in the role of a mapping relation where each
user-provided value of the attribute CourseIDˆ (the foreign key) gets mapped to one or
more corresponding value(s) of the attribute StudentID (the primary key αprim of table
Tprim). Variables other than StudentID (such as TakenID, DateTaken, InstructorID) do not
appear in the head of the rule and do not thus affect the final outcome.

We note that the contents of the mapping relation are set and implemented when design-
ing the VQS and its viewpoints. The implementation of the mapping relation is deferred
until Section 3.7.1, but an example is in Listing 3, which shows that when given a set of
values for ϕfrgn, the whole set of corresponding values αprim immediately becomes known.

In passing, we point out the analogy between the mapping relation and the vertically
partitioned fact table found in data warehouses with the star schema (Bellatreche and
Boukhalfa, 2005). A mapping relation’s foreign key maps to the primary key of the Tprim in
much the same way as the fact table gets joined to a dimension table. Moreover, both the
mapping relation and the fact table are expected to grow at a rate faster than other tables
(not involved in M:N relationships) in the schema.

2.5.1 � Implementing negation

We implement anti-joins using guarded negation, which provides for the following guide-
lines, which are put to use in Section 3.7.1.

Listing 3   The contents of mapping relation studentstookcourse allows for finding the values of αprim given
ϕfrgn. If ϕfrgn = {‘MECH-1001’} then αprim = {22,34}

2  Anti-joins are often evaluated using a join augmented with a NOT EXISTS predicate in SQL.

784 Journal of Intelligent Information Systems (2023) 60:777–801

1 3

1.	 When querying for students who did not take a certain course, the VQS should check
that the given course indeed exists. Using an SQL query for students who did not take
course ‘MECH-1001’ would yield a very costly, useless query, should course ‘MECH-
001’ not exist in the database.

2.	 Guarded negation in a primal anti-join is implemented via the set difference operation
as shown in Section 2.3.1. In general, given a user-assigned value for ϕfrgn in table Tfrgn,
we find, from the same table, the corresponding values for the other foreign key 𝜙̂frgn
(that semantically matches the primary key αprim in table Tprim) and subtract these values
from the set of values for the primary key αprim.

3.	 The actual (primal) join is implemented separately via a mapping relation (Listing 3)
involving only the primary key αprim from Tprim and the foreign key ϕfrgn from Tfrgn.

4.	 Assuming that the primary keys αprim are kept in memory throughout the session, and
that the corresponding foreign keys ϕfrgn can be quickly retrieved from disk, the previ-
ously mentioned set difference can be implemented efficiently.

3 � OVI‑3 in the light of five fundamental aspects of modern VQSs

Despite its support for complex queries and its overall fast response, our previous VQS,
OVI-2, was deemed a bit sluggish when it came to querying anti-joins (i.e., finding stu-
dents who have not taken a given set courses) as it used a row-based data layout. In light of
this, when developing OVI-3, we avoided a row-based architecture in favor of better query
performance. We therefore developed a separate batch application to transfer the row-wise
data from the relational database server into an offline column-based data store.

The underlying ideas used in OVI-3 will now be described in the light of five proper-
ties that characterize many modern VQSs, namely: (1) visual appearance, (2) the data
layout, (3) the query paradigm used, (4) the expressive power of the VQS and (5) the
way joins are handled.

3.1 � The visual aspect

In their comprehensive work, Catarci et al. (1997) classify VQSs into four different
categories based on their visual appearance. We use a slightly modified VQS classifi-
cation with only three categories (El-Mahgary and Soisalon-Soininen, 2015), namely:
(1) tabular or form-based, (2) diagrammatic/schema-based and (3) custom-based.
When the VQS uses a traditional interface that takes the shape of a table or form,
it is part of the first category (1). A VQS that arranges its visual appearance mainly
according to its data schema belongs to category (2). Finally, approaches that imple-
ment a custom look that is beyond categories (1) and (2) are classified into a separate,
third category, known as custom-based. The OVI-3 look, as presented in Section 4.3, is
based on a visual form (complemented with checkboxes and radio-buttons) and there-
fore best classified into category (1).

3.2 � The data layout

The data layout, as previously mentioned, is generally either column or row-based, with
the latter usually implying that the VQS uses an SQL-server to query a relational database,

785Journal of Intelligent Information Systems (2023) 60:777–801

1 3

with the SQL-statement typically generated behind the scenes. A well-known VQS using
the column-based approach is Polaris (Stolte et al., 2002), better known under its commer-
cial name Tableau.

Since it is column-based, OVI-3 does not use SQL at all. Instead, to evaluate a query, it
uses the mapping relation to handle the primal join (by determining the primary key values
αprim from the M:N foreign key ϕfrgn provided via the user) and uses value stores to retrieve
the remaining required attributes. These implementation issues are postponed to Section 3.7.

3.3 � The query paradigm and the use of viewpoints

The query paradigm is about how the VQS assists the user in defining the query and can
be based either on the previously mentioned incremental query approach used by OVI-3
(similar to the progressive query model mentioned in Catarci et al. (1997)) or on the single
declarative query (Nandi and Jagadish, 2011) model.

With the more common single declarative query model, the user generally sees the
query results only after having fully built the query and requested that the VQS pro-
cess the query (for instance by clicking on a button that runs the query). If the query
results are not what the user had in mind, the user will need to determine what parts
of the query require modification, then modify the query appropriately, and finally re-
process the query.

OVI-3 uses viewpoints and the set of available viewpoints is decided before building the
VQS, as it depends on the query needs of the users. For many VQSs, a few viewpoints will
suffice. For OVI-3, only two viewpoints and thus two basic types of queries were deemed
enough: (I) queries that retrieve students along with the courses they took and (II) queries
to retrieve instructors along with the courses they taught.

3.4 � The handling of joins

Although joins are an important part of a flexible query (Lo et al., 2010), the basic
techniques for processing joins date from the late 1970s (Blasgen & Eswaran, 1977);
these techniques also apply to the column-based model. As aptly put in Ilyas et al.
(2004), a join between two tables is challenging since the tables’ whole Cartesian
product space is a source of potential matching rows. Moreover, a join is the only
relational operation that may require several scans over the same relation (Good-
man, 1980). We can assume from Section 2.4 that when solving a primal join (and
hence an anti-join too), the user provides values for the foreign key in table Tfrgn.
Hence, the DBI approach uses those foreign key values to locate the file containing
all the values for the primary key in table Tprim. We recall that the use of viewpoints
contributes to determining Tprim (and hence Tfrgn) and that incremental query implies
that a primal anti-join can never be constructed without first defining the corre-
sponding (non-negated) primal join. Since we implement an anti-join through a set
difference,3 the set of foreign key values is most likely to be found in the cache, as it
is the immediately preceding operation before the anti-join. As for the set of primary
key values related to Tprim, that set is always kept in memory in our VQS.

3  As pointed out in Minock (2003), the set difference is a safe operation when applied to two relations
(sets) with an identical domain and cardinality, which is the case here.

786 Journal of Intelligent Information Systems (2023) 60:777–801

1 3

3.4.1 � Very late materialization

When tuple reconstruction with a column-based dataset is performed in query pro-
cessing as soon as the primary key is determined, the process is referred to as early
materialization; at any later stage, the reconstruction is considered as late materializa-
tion (Abadi et al., 2008). For late materialization, we make a slight distinction in that
whenever tuple reconstruction is delayed until the very last step where the results are
presented to the user, it is known as very late materialization or VLM. With VLM,
when the query is processed incrementally, the result set is made up of just the set of
values in the primary key of Tprim. This is possible since selecting a viewpoint deter-
mines table Tprim. Tuple reconstruction occurs therefore within the results grid, at the
answer set stage, whereby the missing attributes are retrieved in a separate call from
the primary value store as the user scrolls through the results grid. This is further illus-
trated using the example query in Section 4.4.

3.5 � The expressive power of a VQS

The expressive power of a VQS is intentionally less expressive than a formal language
(Soylu et al., 2016) and may be considered adequate when it meets the needs of its users.
Select-project-join queries, which possess the same expressive power as conjunctive que-
ries (Schweikardt et al., 2010), play an important role in most queries. Extending a con-
junctive query with union yields a select-project-join-union query or SPJU query, consid-
ered as the most widely used query type (Atserias et al., 2006). When SPJU queries are
further augmented with guarded negation, the expressive power is significantly increased,
and this is the expressive power of OVI-3.

3.6 � The OVI‑3 event‑response model

Table 3 depicts how OVI-3 responds to two basic types of user-placed restrictions follow-
ing the selection of the viewpoint VSTUDENTS, an event of type 0 generated by the user.
Events of type (1) are used to restrict various students’ properties (attendance status, year
admitted, major, etc.) and are handled by using the values of αprim of the active set (kept in
memory) as keys to the primal table, i.e., the primary value store Tprim. Actions of type (2)
involve restrictions on the courses taken and are implemented via the DBI. When display-
ing results on the grid, very late materialization means it is a set of values of αprim that are
written on the grid, and that the missing attributes are retrieved from the primary value
store as needed (when scrolling for instance).

3.7 � Some OVI‑3 implementation issues

The OVI-3 data layout is divided into two parts, the first part contains the DBI data used
for joins, while the second part contains the value stores that correspond to relations. The
primal joins (with an M:N join) are implemented via the mapping relation as described in
Section 3.7.1.

As for the value stores, we used an open source framework known as mORMot (Bouchez,
2018), which offers an efficient storage and retrieval mechanism through its ‘Big Table’
unit capable of interacting with various database servers, including Oracle. The mORMot

787Journal of Intelligent Information Systems (2023) 60:777–801

1 3

Ta
bl

e 
3  

A
n

ev
en

t-r
es

po
ns

e
ta

bl
e

to
 il

lu
str

at
e

ho
w

 O
V

I-
3

re
sp

on
ds

 to
 u

se
r-g

en
er

at
ed

 e
ve

nt
s

Ty
pe

 o
f E

ve
nt

U
se

r a
ct

io
n

O
V

I-
3

re
sp

on
se

O
V

I-
3

di
sp

la
y

0
V

ie
w

po
in

t s
el

ec
te

d
(V

ST
U

D
EN

TS
)

→
 →

T p
ri

m
 a

nd
 T

frg
n g

et
 se

t.
Pr

im
ar

y
ke

y
va

lu
es

 α
pr

im

lo
ad

ed
 fr

om
 v

al
ue

 st
or

e
T p

ri
m

 (S
tu

de
nt

s)
 a

nd
 k

ep
t i

n
m

em
or

y.

D
ef

au
lt

da
ta

se
t s

ho
w

n.

1
Re

str
ic

tio
n

pl
ac

ed
 o

n
co

lu
m

n
fro

m
 T

pr
im

.
→

 →
Fi

nd
 n

ew
 se

t o
f p

rim
ar

y
ke

y
va

lu
es

 fr
om

 T
pr

im
.

G
rid

 u
pd

at
ed

 u
si

ng
 V

LM
.

2
Re

str
ic

tio
n

pl
ac

ed
 o

n
fo

re
ig

n
ke

y
ϕ f

rg
n.

→
 →

U
se

 D
B

I t
o

fin
d

ke
y

fr
ag

m
en

t fi
le

 n
am

ed
 ϕ

frg
n a

nd
 g

et

ne
w

 se
t o

f p
rim

ar
y

ke
y

va
lu

es
 α

pr
im

.
G

rid
 u

pd
at

ed
 u

si
ng

 V
LM

.

788 Journal of Intelligent Information Systems (2023) 60:777–801

1 3

framework is available for use with Delphi (Embarcadero Technologies, 2018), an enhanced
Object-Pascal language which rivals C++ performance-wise, or through the open source
version Free Pascal (Lazarus, 2018). We selected Delphi, as it was available to us.

The viewpoint VSTUDENTS was implemented using just two different value stores,
one for storing information on students (named ‘Students.bin’, about 23MB in size)
and another, about 460MB in size, for storing all the courses taken by all students.
The primary value store ‘Students.bin’ uses StudentID as its key to store various stu-
dent properties; it contains all the required basic information about a student (e.g.,
a student’s name, gender, date of admittance, major, degree status, GPA, total cred-
its completed, registration status, degree being pursued (or completed), email) along
with computed attributes such as SemLastTookCourse (the semester in which the stu-
dent passed her/his last course). This primary value store thus helps in narrowing
down the set of matching students after a user has placed a restriction relating to
the student’s aforementioned properties. The primary value store is also used when
implementing very late materialization (Section 3.4.1). Value stores (presented in
Section 2.2) are implemented as binary files (mORMot’s key-multiple value object)
that use a single artificial integer as their index, with support for up to 59 columns per
primary key and built-in support for secondary indexes. The Big Table allows for a
value store to hold up to 2GB of data in memory.4

3.7.1 � Implementation of the mapping relation

The mapping relation that is used with a DBI depends on the selected viewpoint, and
as pointed out earlier, is implemented at design time. The following steps describe how
DBI is implemented in general; in parenthesis we give the specific case for OVI-3 which
assumes a viewpoint of VSTUDENTS.

1.	 For each distinct value i of ϕfrgn (CourseID) in table Tfrgn (CoursesTaken), create a
unique directory Di.

2.	 Under each such Di, generate a file Fi, known as the key fragment file, for table Tprim
(Students).

3.	 For each Tprim key fragment Fi, store the set of those αprim primary key values (column
StudentID) from Tprim which are associated (joined) to the value i of the foreign key
(CourseID) in table Tfrgn.

3.7.2 � The batch application creates the DBI layout

New data for OVI-3 is obtained by regularly running a separate batch application nightly that
extracts the required information from the university’s relational database and arranges it into
a column format specifically tailored for rapid, read-only queries.

For brevity, throughout we only focus on the data structures needed when the user has
selected VSTUDENTS as the viewpoint, which implies that queries return answer sets based on
students. For the steps in Section 3.7.1 we assume a main folder named ‘Courses’, under
which the batch application implements the mapping relation by creating a folder Di for each
course C offered. Moreover, under each such folder Di, the batch application generates a file

4  In a Bouchez (2010) benchmark involving B+-trees and Berkeley DB among others, Big Table had the
fastest read and write times, faring twice as fast as a B+-tree.

789Journal of Intelligent Information Systems (2023) 60:777–801

1 3

Fi, the key fragment for Tprim that contains the set αprim, that is, the StudentID values for the
students who have completed course C.

4 � Results on querying with OVI‑3

4.1 � The hardware for the OVI‑3 DBI queries and the SQL queries

All the equivalent SQL queries were tested on an Oracle server that houses the university
database. Though our simplified SQL query (Listing 4) assumes that the data is contained
in just four tables, it nevertheless contains the table CoursesTaken, which is at the heart of
the real complex queries and M:N joins that were run on the Oracle server. Table Courses-
Taken was the largest of all tables in the SQL database, containing some 1.25 million rows,
while the table Students numbered at slightly less than 130000 rows. The Oracle database
server was made up of the very same set of students and courses that were used in the DBI
layout for running the OVI-3 queries. Both the OVI-3 queries and the equivalent SQL que-
ries were run from the same hardware, which was a 64-bit Windows Server 2012 running
as a virtual machine, consisting of two cores running at 2.5GHz each, with a rather modest
16GB of RAM memory and 250 GB of disk space. This virtual machine not only stored
the OVI-3 data DBI layout and the values stores but also acted as a client when running the
tested SQL queries by connecting to the Oracle server.

Listing 4   The OVI-3 example query that is run in five steps 1 − 5 (Table 4) is equivalent to the following
SQL query:

4.2 � Querying with OVI‑3

When OVI-3 is first launched, the viewpoint by default is VSTUDENTS, so at start-up, the user is
presented with a grid that displays a subset of the students together with their various attrib-
utes from the primary value store Students. This subset of student IDs is by default set to
include only students who belong to what is known as the home school. Aalto University is
divided into six different schools and the home school can be set via the user to one of six
schools. Currently, it is set to ‘ENG’, the School of Engineering. Figure 1a shows OVI-3 after

790 Journal of Intelligent Information Systems (2023) 60:777–801

1 3

startup, displaying those (13338) students who belong to the ‘ENG’ school, who were admit-
ted during or after Fall semester 1984, who have completed at least one unit of credit and who
are currently in attendance. These requirements are the result of default settings at startup.

The basic student information is made up of various student properties stored in the value
store ‘Students.bin’ (Section 3.7). In short, it includes all the data of interest related to a stu-
dent, except for the student transcript (the list of all courses taken by the student) which is
displayed separately. Depending on the screen size and resolution, the display grid might show
at a given time (without scrolling) from a few rows to over a hundred rows. As the user scrolls
down the grid and a different StudentID value is encountered, the application automatically
reads the missing basic student information from a separate primary value store. This is the
very late materialization as discussed in Section 3.4.1.

Besides being able to scroll the set of students displayed in the grid, the user can now
start incremental querying through four different types of query restrictions: (i) restricting/
relaxing the time frame (the semesters during which a student was admitted), (ii) placing

Fig. 1   The query defined in Section 4.3 is being run incrementally in OVI-3. (All names and dates are fic-
titious). a The query interface showing the result set in the grid just after the user has specified the first
restriction: only students who are currently in attendance. OVI-3 has automatically applied a default admis-
sion interval restriction and restricted the school to ‘ENG’. b The user has specified part of the course
requirements: either course ‘MECH 1001’ or ‘MECH-1002’ needs to have been taken. A second, empty
course requirement box (bottom right) has appeared automatically, should the user wish to enter further
course restrictions that will form a conjunction, i.e., be ‘ANDed’, with the leftmost course restriction box

791Journal of Intelligent Information Systems (2023) 60:777–801

1 3

a restriction on the student’s degree status, (iii) restricting the student’s attendance status
and (iv) placing a constraint on the courses that must be taken (events of type 2 in Table 3).
Due to the choice of the viewpoint, any query generated by the user will always return data
from the viewpoint of a student. The result set may of course also draw information from
other relations, but the primary key of each row in the result set will remain StudentId.

4.3 � An example OVI‑3 query involving conjunctions, disjunctions and negation

We ran several queries with OVI-3 and tested them against the underlying SQL database. We
examine these queries in more detail in Table 5 in Section 4.6. For now, we go through a full
step-by-step example showing how OVI-3 is used to build a complex query that involves both
a disjunction as well as negation. The query’s implementation will be examined through the
algorithm that is summarized in Algorithm 1.

The query is stated as follows:
Find out the set of students from the ‘ENG’ school who are currently in attendance, who

have taken either course ‘MECH-1001’ or ‘MECH-1002’ (or both) and who have taken
course ‘MECH-1004’ but who have not taken course ‘MECH-1003’.

Listing 4 displays a heavily simplified equivalent SQL query of our example query. The
simplification is due to the complexity of the university’s database schema; the actual SQL
queries that were ran referred to about ten tables. The SQL environment where the queries
were ran is discussed in Section 4.1.

4.4 � Steps 0‑3 of the query

In the following steps, the query is set up from scratch to the point of containing a simple
disjunction.

•	 Step 0 of the query: start-up routines When OVI-3 is first started and the user has
determined the viewpoint, a startup routine is fired up. This routine fetches some files,
the latest value stores, from a common directory and copies them to the user’s private

Algorithm 1   Basic algorithm corresponding to the query in Listing 4 with symbol σ denoting a restriction
and II denoting the projection of a column

792 Journal of Intelligent Information Systems (2023) 60:777–801

1 3

directory. As part of the startup-routine, the primary value store under the main folder
‘Students’ is also read into memory for speed. As this is an initialization step in the
startup routine, it is denoted as step 0 in Table 4.

•	 Step 1 of the query: initial result set Once the StudentID values of all students in the
‘ENG’ school (setup as the home school) have been identified, they are stored in mem-
ory as set S0 as shown in step 1 in Algorithm 1. All sets (S0, S1 and S2) in the algorithm
are implemented as indexed string collection classes. The set S0 remains a superset of
all the sets maintained during a session. Its value will change only in case the user
removes the default checkmark next to the home school (top left in Fig. 1a). Following
step 1, the user is presented with an initial dataset (step 2 in Algorithm 1).

	  OVI-3 completed this step in 0.603s (step1 in Table 4). We note again that with
very late materialization, when writing the result set to the display grid, only the pri-
mary key values get written, with the rest of the attributes retrieved from the primary
value store as needed.

•	 Step 2 of the query: students currently in attendance This step restricts students to
those currently in attendance, achieved by placing a checkmark in the section ‘Attend-
ance status’ next to the text ‘In attendance’, as shown in the top right of Fig. 1a. Imple-
mentation-wise, a new set of student IDs gets created, set S1, which is a subset of set S0
and obtained by taking the contents of set S0 and further restricting it to students who
are in attendance (step 3 in Algorithm 1).

	  The set S1 gets modified anytime the user changes query restrictions that are not
related to courses. The user is then presented with a restricted set of students (Step no 4
in Algorithm 1). OVI-3 required 0.354s (Table 4) in order to complete this step 2.

•	 Step 3 of the query: students who have taken course ‘MECH-1001’ or ‘MECH-
1002’ The user now adds the requirement that at least course ‘MECH-1001’ or
course ‘MECH-1002’ needs to have been taken by typing part of the course code
in the empty input course box (lower left in Fig. 1a) and selecting the appropri-
ate courses. The two courses then appear in the course restriction box as shown in
Fig. 1b. Course restrictions placed in the same box therefore have an implicit dis-
junction among them.

	  As this new restriction is course related, a third set, S2, independent of the set S1, gets
generated. S2 will contain the student IDs of all students who meet the current course
restrictions as explained next.

	  Whenever the user enters a restriction for CourseID denoted C, OVI-3 examines the
folder dir(C) under it, from which it reads a single file, the key fragment of Tprim resid-
ing under that folder. OVI-3 will then have at its disposal a set of all the students (a key
fragment file contains only the StudentID values) who have taken course C; this can be
stored temporarily if necessary 5.

	  Returning to our example query, two key fragment files for table Tprim are read,
one for course ‘MECH-1001’ (read from under dir(‘MECH-1001’)) and the other for
course ‘MECH-1002’ (read under dir(‘MECH-1001’)). These files together generate a
set S2 of students who took one (or both) of theses two courses as seen in Algorithm 1,
Step 5. Finally, the result set is obtained by taking the intersection of set S1 with set S2
(Algorithm 1, Step 6) using the set intersection algorithm described in Section 4.5. It
took OVI-3 84ms (Table 4) to complete this step 3.

5  The application at this stage is not concerned when a particular course was taken; in order to keep the
user interface in OVI-3 simple, we assume that any student who has taken course C at some point in time
gets included into set S2.

793Journal of Intelligent Information Systems (2023) 60:777–801

1 3

Ta
bl

e 
4  

T
he

 in
iti

al
 st

ep
 (s

te
p

0)
 a

nd
 th

e
fiv

e
pr

op
er

 st
ep

s (
1-

5)
 n

ee
de

d
to

 ru
n

th
e

O
V

I-
3

qu
er

y
in

 S
ec

tio
n

4.
3

 T
he

 to
ta

l t
im

e
re

qu
ire

d
to

 ru
n

th
e

qu
er

y
(e

xc
lu

di
ng

 th
e

pr
el

im
in

ar
y

ste
p)

 w
as

 s
lig

ht
ly

 o
ve

r o
ne

 s
ec

on
d,

 (1
.1

75
s

in
 la

st
ro

w
) w

hi
le

 th
e

eq
ui

va
le

nt
 S

Q
L

qu
er

y
in

 L
ist

in
g

4
to

ok

4.
84

s t
o

co
m

pl
et

e.
 T

he
 la

st
co

lu
m

n
sh

ow
s t

he
 ti

m
e

re
qu

ire
d

fo
r e

ac
h

in
cr

em
en

ta
l O

V
I-

3
ste

p.
 N

ot
e

th
at

 e
xc

ep
t f

or
 st

ep
 1

, a
ll

ste
ps

 a
re

 w
el

l w
ith

in
 th

e
su

gg
es

te
d

0.
5s

 th
re

sh
ol

d
la

te
nc

y
an

d
th

at
 th

e
fa

ste
st

ste
ps

 (3
, 4

 a
nd

 5
) a

re
 th

os
e

th
at

 m
ak

e
us

e
of

 th
e

D
B

I t
ec

hn
iq

ue

Q
ue

ry
 S

te
p

D
es

cr
ip

tio
n

Ev
al

ua
tio

n
Q

ue
ry

 ti
m

e
(s

ec
s)

0
Pr

el
im

in
ar

y
ste

p
do

ne
 a

t s
ta

rtu
p:

 C
op

y
la

te
st

da
ta

.
C

op
y

la
te

st
ke

y
va

lu
e

sto
re

s f
or

 c
ur

re
nt

 u
se

r
2.

28
7

1
Fi

nd
 st

ud
en

ts
 in

 h
om

e
(‘

EN
G

’)
 sc

ho
ol

 w
ho

 h
av

e
ac

hi
ev

ed
 a

t l
ea

st
on

e
un

it
of

 c
re

di
t (

do
ne

 a
ut

om
at

ic
al

ly
 a

t s
ta

rtu
p)

.
Re

ad
 p

rim
ar

y
va

lu
e

sto
re

 a
nd

 g
en

er
at

e
ne

w
 se

t S
0 c

on
ta

in
in

g
on

ly

stu
de

nt
s i

n
ho

m
e

sc
ho

ol
.

0.
60

3

2
Re

str
ic

t c
ur

re
nt

 se
t t

o
stu

de
nt

s w
ho

 a
re

 c
ur

re
nt

ly
 in

 a
tte

nd
an

ce
.

U
se

 p
re

vi
ou

s s
et

 S
0 t

o
ge

ne
ra

te
 a

 m
or

e
re

str
ic

tiv
e

se
t S

1 e
xc

lu
di

ng
 th

e
stu

de
nt

 ID
s o

f s
tu

de
nt

s n
ot

 in
 a

tte
nd

an
ce

.
0.

35
4

3
G

en
er

at
e

se
pa

ra
te

 se
t S

2 f
or

 st
ud

en
ts

 w
ho

 h
av

e
ta

ke
n

ei
th

er
 c

ou
rs

e
‘M

EC
H

-1
00

1’
 o

r ‘
M

EC
H

-1
00

2’
.

G
en

er
at

e
a

ne
w

 se
t S

2 c
on

ta
in

in
g

th
e

stu
de

nt
 ID

s o
f s

tu
de

nt
s w

ho

to
ok

 ‘M
EC

H
-1

00
1’

 o
r ‘

M
EC

H
-1

00
2’

 (o
r b

ot
h)

. D
is

pl
ay

 to
 u

se
r t

he

re
su

lt
se

t o
f S

1 ∩
 S

2.

0.
08

4

4
Re

str
ic

t p
re

vi
ou

s s
et

 to
 st

ud
en

ts
 w

ho
 h

av
e

al
so

 ta
ke

n
co

ur
se

 ‘M
EC

H
-

10
03

’ o
r c

ou
rs

e
‘M

EC
H

-1
00

4’
.

U
pd

at
e

se
t S

2 t
o

co
nt

ai
n

th
e

stu
de

nt
 ID

s o
f s

tu
de

nt
s w

ho
 a

ls
o

to
ok

‘M

EC
H

-1
00

3’
 o

r ‘
M

EC
H

-1
00

4’
 (o

r b
ot

h)
. D

is
pl

ay
 to

 u
se

r t
he

re

su
lt

se
t o

f S
1 ∩

 S
2.

0.
05

39

5
Re

str
ic

t p
re

vi
ou

s r
es

ul
t s

et
 to

 st
ud

en
ts

 w
ho

 h
av

e
no

t c
om

pl
et

ed

co
ur

se
 ‘M

EC
H

-1
00

3’
.

U
pd

at
e

se
t S

2 t
o

ex
cl

ud
e

th
e

stu
de

nt
 ID

s o
f s

tu
de

nt
s w

ho
 to

ok

‘M
EC

H
-1

00
3’

. D
is

pl
ay

 th
e

fin
al

 re
su

lt
se

t a
s S

1 ∩
 S

2.
0.

08
04

To
ta

l q
ue

ry
 ti

m
e:

3.
46

2
Pu

re
 q

ue
ry

 ti
m

e
(e

xc
lu

di
ng

 st
ar

tu
p

tim
e)

:
1.

17
5

794 Journal of Intelligent Information Systems (2023) 60:777–801

1 3

4.5 � Steps 4 and 5 of the query

In the following final steps, the query is transformed into its final form with the negation.

•	 Step 4 of the query: students who have also taken either course ‘MECH-1003’ or
course ‘MECH-1004’ OVI-3 deals with negation by first defining the negated restric-
tion as a normal restriction, and then switching it to a negation in a separate step as
shown next. We thus first add the requirement that besides the earlier course require-
ments, either course ‘MECH-1003’ or course ‘MECH-1004’ (or both) also needs to
have been taken.

	  As this new requirement builds on the previous course requirements, it gets placed
in a separate, adjacent course box. Course restrictions that reside in adjacent course
boxes thus have an implicit conjunction between them. The query in Fig. 2 still dif-
fers from our example query, which stipulated that course ‘MECH-1003’ must not have
been taken.

Fig. 2   The final incremental steps for the OVI-3 query in Section 4.3. (All names and dates are fictitious).
a A query that specifies that either course ‘MECH-A1001’ or ‘MECH-1002’ needs to have been taken in
addition to course ‘MECH-1003’ or ‘MECH-1004’. A third, empty course requirement box has appeared
in case the user would like to enter further course restrictions to form a conjunction (be ‘ANDed’) with the
two leftmost course restriction boxes. b The user has, through a right mouse button click, changed the status
of course ‘MECH-1003’ to not-taken. The query therefore stipulates that in addition to course ‘MECH-
1004’, students must have passed either course ‘MECH-1001’ or ‘MECH-1002’ and must not have taken
course ‘MECH-1003’

795Journal of Intelligent Information Systems (2023) 60:777–801

1 3

	  Set S2 is now updated to students (or rather their student IDs) who took either course
‘MECH-1001’ or ‘MECH-1002’ (or both) and who took either course ‘MECH-1003’
or ‘MECH-1004’ (or both), as shown in Steps 8 and 9 in Algorithm 1. This is achieved
by first taking the set of students who took either ‘MECH-1003’ or ‘MECH-1004’
and then taking its intersection with the previous set S2. We note that when there are
three or more course boxes involved, we can compute the S2 set in steps through binary
set intersections or in a single operation that involves all sets (Culpepper and Moffat,
2007). OVI-3 uses the latter approach, and assuming a case with three adjacent course
boxes defined, OVI-3 will determine the course box with the least number of elements
(i.e., the smallest number of course IDs), say Cj, and then proceed to build the set S2 by
including only those students in course box Cj who also appear in the other key frag-
ment files containing values for αprim related to the other two course boxes. The restric-
tion for step 4 was completed in just 53.9ms (Table 4).

•	 Step 5 of the query: placing the negation In the final step (which required 80.4ms as
indicated in Table 4), the restriction for course ‘MECH-1003’ is changed from being
taken to not being taken by selecting course restriction ‘MECH-1003’, and then press-
ing the right-mouse button, upon which restriction ‘MECH-1003’ moves into a sepa-
rate negation area. The final query is shown in Fig. 2b.

	  The set S2 now gets updated to contain only students who have not taken course
‘MECH-1003’ by subtracting from set S2 those students’ IDs who took course ‘MECH-
1003’. These are Steps 10 and 11 in Algorithm 1.

	  There is a clear benefit in requiring the user to define a negated restriction by first
specifying it in a positive (non-negated) format. This way, when the restriction gets
changed into a negation, it is highly likely that the key fragment file associated with the
restriction (i.e., values for αprim, or the student IDs in this case) is going to be found in
the cache. Reading the data from cache rather than from slower main memory naturally
reduces the query retrieval time (Morfonios & Ioannidis, 2008).

4.6 � A comparison of running queries using OVI‑3 and an SQL‑database

We now compare the performance of the SQL query in Listing 4 to its equivalent OVI-3
query in Section 4.3, which is actually query Q5 in Table 5. In addition, several other que-
ries (denoted Q1 to Q4 and Q6) tested using both OVI-3 and an equivalent SQL query are
shown in Table 5. Note how query Q3, which only contains a negation, is orders of magni-
tude faster when using DBI.

4.6.1 � Cost comparison for an anti‑join

We next compute the theoretical cost of an anti-join query using the OVI-3 approach and
an equivalent SQL-based query. The hypothetical query finds those students who have not
taken course ‘MECH-1001’, with the assumption that 256 students have taken that course.
It involves two tables, of which R, the larger (1024000 rows), stands for CoursesTaken,
while the smaller table S (124000 rows), stands for Students. We denote those 256 students
who took course ‘MECH-1001’ through the set S′ , so that R − S

� is the query’s answer set.
We neglect the cost of writing the final answer set to disk and assume a blocking factor of
64 rows per data page.

For the database server side, we assume a text-book approach as in Molina et al. (2009)
with a two pass set difference, requiring two block accesses for partitioning and one for the

796 Journal of Intelligent Information Systems (2023) 60:777–801

1 3

Ta
bl

e 
5  

T
he

 to
ta

l t
im

es
 re

qu
ire

d
to

 ru
n

se
ve

n
di

ffe
re

nt
 q

ue
rie

s o
pe

ra
tin

g
on

 th
e

sa
m

e
da

ta
 v

ia
 a

n
SQ

L
qu

er
y

an
d

th
e

eq
ui

va
le

nt
 O

V
I-

3
ap

pr
oa

ch

 T
he

 ti
m

es
 s

ho
w

n
w

er
e

ob
ta

in
ed

 b
y

ru
nn

in
g

th
e

sa
m

e
qu

er
y

th
re

e
tim

es
 fo

r e
ac

h
of

 th
e

tw
o

ap
pr

oa
ch

es
 a

nd
 ta

ki
ng

 th
e

m
ed

ia
n

of
 th

e
ob

ta
in

ed
 ti

m
es

. F
or

 O
V

I-
3,

 th
er

e
w

as
 a

st

ar
tu

p
tim

e
in

vo
lv

ed
 fo

r e
ac

h
qu

er
y

th
at

 v
ar

ie
d

be
tw

ee
n

2.
74

s a
nd

 3
.1

s.
Th

e
ac

tu
al

 q
ue

ry
 ti

m
es

 w
ith

ou
t t

he
 st

ar
tu

p
tim

es
 a

re
 sh

ow
n

in
 p

ar
en

th
es

es

Q
ue

ry
 n

o
D

es
cr

ip
tio

n
SQ

L
tim

e
(s

ec
s)

O
V

I-
3

tim
e

(w
/o

 fi
le

co

py
)

Q
0

Fi
nd

 st
ud

en
ts

 in
 h

om
e

sc
ho

ol
 (‘

EN
G

’)
 w

ho
 h

av
e

ta
ke

n
co

ur
se

 ‘M
EC

H
-1

00
3’

.
1.

3s
2.

98
s (

0.
23

s)
Q

1
Fi

nd
 st

ud
en

ts
 in

 h
om

e
sc

ho
ol

 (‘
EN

G
’)

, c
ur

re
nt

ly
 in

 a
tte

nd
an

ce
 w

ho
 h

av
e

no
t t

ak
en

 c
ou

rs
e

‘M
EC

H
-1

00
3’

.
27

5.
8s

3.
67

s (
1.

36
s)

Q
2

Fi
nd

 st
ud

en
ts

 in
 h

om
e

sc
ho

ol
 (‘

EN
G

’)
 w

ho
 h

av
e

no
t t

ak
en

 c
ou

rs
e

’M
EC

H
-1

00
3’

.
54

0s
3.

52
s (

1.
32

s)
Q

3
Fi

nd
 st

ud
en

ts
 (i

nc
lu

de
 a

ll
sc

ho
ol

s)
 w

ho
 h

av
e

no
t t

ak
en

 c
ou

rs
e

‘M
EC

H
-1

00
3’

.
36

04
s

4.
91

s (
2.

67
s)

Q
4

Fi
nd

 st
ud

en
ts

 in
 h

om
e

sc
ho

ol
 (‘

EN
G

’)
 w

ho
 h

av
e

no
t t

ak
en

 a
ny

 o
f t

he
 fo

ur
 c

ou
rs

es
: ‘

M
EC

H
-1

00
1’

, ‘
M

EC
H

-
10

02
’,

‘M
EC

H
-1

00
3’

, ‘
M

EC
H

-1
00

4’
.

20
9.

3s
3.

58
s (

1.
37

s)

Q
5

Fi
nd

 st
ud

en
ts

 in
 h

om
e

sc
ho

ol
 (‘

EN
G

’)
 w

ho
 a

re
 c

ur
re

nt
ly

 in
 a

tte
nd

an
ce

, h
av

e
ta

ke
n

co
ur

se
 ‘M

EC
H

-1
00

1’
 o

r
‘M

EC
H

-1
00

2’
 (o

r b
ot

h)
 a

nd
 h

av
e

al
so

 ta
ke

n
co

ur
se

 ‘M
EC

H
-1

00
4’

 b
ut

 h
av

e
no

t t
ak

en
 c

ou
rs

e
‘M

EC
H

-1
00

3’
.

5.
4s

3.
46

s (
1.

17
s)

Q
6

Fi
nd

 st
ud

en
ts

 in
 h

om
e

sc
ho

ol
 (‘

EN
G

’)
 a

nd
 w

ho
 a

re
 c

ur
re

nt
ly

 in
 a

tte
nd

an
ce

.
57

.5
s

3.
43

s (
0.

94
s)

797Journal of Intelligent Information Systems (2023) 60:777–801

1 3

actual set difference, amounting to a query cost C[SQL] = 3B(R) + 3B(S�) . Substituting, we
get B(R) = 1024000/64 = 16000 and B(S�) = (124000 − 256)∕64 = 1994 , so the query cost
C[SQL] = 48000 + 5982 = 53982 I/O blocks. Assuming an average access disk time of 8ms
per block, 53982 *8ms≈ 432s. Little wonder then, that when a similar query (with a much
larger number of tables and attributes as the one described here) was run in the Oracle
SQL-server, it took about 1h to complete (Query Q3 in Table 5).

As for OVI-3, we assume that the DBI technique is implemented via a file management
system that uses the B+-tree (used with Windows ReFs or NTFS). We allow for 1 billion
entries in the disk volume used in the DBI, so a B+-tree with height hR = 5 suffices. The
cost for the OVI-3 approach, (2) is the sum of three parts, namely, (1) using DBI to locate
the folder corresponding to course ‘MECH-1001’, (2) reading from that folder the contents
of the key fragment file F containing values for αprim (the set S′ ), and finally (3), obtain-
ing the result set by subtracting from the primary value store the set S′ . This last step is a
memory operation that is assumed never to exceed 0.2s.

The size of file F is assumed to be 1kB (256 *4B) where 4B is the key size. Being clearly
less than the block size 4kB, the key fragment file can thus be read with a single disk access.
Again using an access time of 8ms and assuming 200ms for the memory operation, the cost
COVI-3 is the sum of the previous parts (1) and (2): (5 + 1) * 8ms + 200ms which translates to
248ms. The measured time for a similar query Q3 in Table 5, is 2.67s and clearly much larger,
due to the fact that negation in OVI-3 occurs in parts (preceded by a non-negated part).

When using OVI-3 to express a negation not A, it will always be immediately preceded
by its non-negated restriction A. Thus when computing the negation, the non-negated part
A can be assumed to be in memory while the set of all primary keys αprim always resides
in memory. The cost of a negated expression for OVI-3 with respect to its correspond-
ing non-negated expression is thus merely an additional memory access rather than disk
access. Computing the ratio for the SQL query costs (measured time over computed time)
gives 3604s/ 432s ≈ 8.3 while the similar ratio for the OVI-3-query costs (measured over
computed) yields 2.67s / 0.248s ≈ 10.8. This rather minor discrepancy between these two
ratios (8.3 and 10.8) supports the notion that the computed costs for both the SQL and the
OVI-3 approach are valid.

5 � Conclusions

The four presented approaches used with OVI-3, namely (1) DBI, (2) viewpoints, (3) incre-
mental querying and (4) very late materialization are certainly not revolutionary, but when
used together, they do allow for efficient handling of primal joins and anti-joins. Incremen-
tal querying helps in avoiding unnecessary complex joins, since a new result set gets evalu-
ated as soon as there is a change in the query definition.

Since most OLAP queries can be considered to be essentially ad-hoc, introducing
incremental querying into the OVI-3 VQS proved very helpful. The incremental query
technique does not fit well into a database server with SQL queries. For instance in VQS
SIEUFERD (Bakke and Karger, 2016), the authors provided users with an impression of
incremental querying rather than an actual implementation of it.

We did not use a data warehousing approach since the original data for OVI-3 already
resided in a relational database. The option of configuring and setting up a big data

(2)COVI-3 = hR + Fdir(‘MECH-1001’) + antijoin(InMemory)

798 Journal of Intelligent Information Systems (2023) 60:777–801

1 3

platform such as SQL-on-Hadoop System (Alavi et al., 2014) was deemed too costly, and
querying in the cloud was not an option due to university policy on sensitive data. Moreo-
ver, big data platforms are not without their challenges, often providing indexes only for
the primary key (Agrawal et al., 2018).

Although OVI-3 is a novel query application that was in test use by three academic
counsellors for under a year, it handled their analytical query needs at impressive speeds.
The DBI scheme, together with the incremental query approach, truly encourages users to
explore data, since each query will, in most cases, terminate well within one second.

Acknowledgements  We are grateful for Academy of Finland’s grants as listed below in Funding. Besides the
academic counsellors who tested OVI-3, we also gratefully acknowledge the following key people at Aalto
University’s School of Engineering for their kind support for OVI-36: Ms. Soile Koukkari (Development Man-
ager), Mr. Harri Långstedt (Coordinator) and Dr. Kirsi Virrantaus (Vice-Dean).

Author contributions  S.E. developed the system and wrote most of the paper. E.S-S., P.O. and P.R made
substantial contributions towards the clarity of the paper’s presentation. Authors P.R and H.H contributed
towards the design of the VQS’s interface. All authors reviewed and commented on the manuscript.

Funding  Open Access funding provided by Aalto University. Academy of Finland, grants no 295908 (Tech-
niques for efficient processing of big data), no 272195 (CoE-LaSR) and no 293389 (Combat).

Data availability  The student data accessed was of a confidential nature and is therefore not available
publicly.

Declarations 

Human and animal Ethics  Not Applicable.

Ethics approval and consent to participate  The included screenshots refer to imaginary students. There are
no references to real life persons or to their opinions.

Consent for publication  There are no references or identifiable details to any participants in this work.

Competing interests  The authors have no conflicts of interest to declare that are relevant to the content of
this article.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

Abadi, D.J., Madden, S.R., & Hachem, N. (2008). Column-stores vs. row-stores: How different are they
really? . In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data
(pp. 967–980). ACM.

6  The position listed for each person is the one that was active during the time that OVI-3 was being devel-
oped.

799Journal of Intelligent Information Systems (2023) 60:777–801

http://creativecommons.org/licenses/by/4.0/

1 3

Agrawal, D., Chawla, S., Contreras-Rojas, B., & et al. (2018). RHEEM: Enabling Cross-platform data pro-
cessing: May the big data be with you!. Proceedings of the VLDB Endowment, 11(11), 1414–1427.
https://​doi.​org/​10.​14778/​32361​87.​32361​95.

Ahlberg, C., & Shneiderman, B. (1994). Visual information seeking: Tight coupling of dynamic query fil-
ters with starfield displays. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 313–317). ACM.

Ahmed, T., Pedersen, T.B., & Lu, H. (2013). A data warehouse solution for analyzing RFID-based baggage
tracking data. In Proceedings of the 2013 IEEE 14th International Conference on Mobile Data Man-
agement (pp. 283–292). Washington, DC: IEEE Computer Society.

Alavi, Z., Zhou, L., Powers, J., & et al. (2014). RASP-QS: Efficient And confidential query services in the
cloud. Proceedings of the VLDB Endowment, 7(13), 1685–1688.

Atserias, A., Dawar, A., & Kolaitis, P.G. (2006). On preservation under homomorphisms and unions of
conjunctive queries. Journal of the ACM, 53(2), 208–237. https://​doi.​org/​10.​1145/​11313​42.​11313​44.

Bakke, E., & Karger, D.R. (2016). Expressive query construction through direct manipulation of nested
relational results. In Proceedings of the 2016 International Conference on Management of Data (pp.
1377–1392). ACM.

Bárány, V, ten Cate, B., & Otto, M. (2012). Queries with guarded negation. Proceedings of the VLDB
Endowment, 5(11), 1328–1339. https://​doi.​org/​10.​14778/​23502​29.​23502​50.

Bellatreche, L., & Boukhalfa, K. (2005). An evolutionary approach to schema partitioning selection in a
data warehouse. In Proceedings of the 7th International Conference on Data Warehousing and Knowl-
edge Discovery (pp. 115–125). Springer. https://​doi.​org/​10.​1007/​11546​849_​12

Benzi, F., Maio, D., & Rizzi, S. (1996). Visionary: A visual query language based on the user viewpoint
approach. In J. Kennedy P. Barclay (Eds.) Proceedings of the 3rd International Workshop on Interfaces
to Databases, 8-10 July 1996 (pp. 6–1–6–13). Edinburgh, IDS-3: Springer, Napier University.

Blasgen, M.W., & Eswaran, K.P. (1977). Storage and access in relational data bases. IBM Systems Journal,
16(4), 363–377.

Bouchez, A. (2010). mORMot Open Source Benchmarks. https://​synop​se.​info/​forum/​viewt​opic.​php?​pid=​
1011, [Online; accessed 09-May-2022].

Bouchez, A. (2018). Synopse mORMot Framework v.1.18. https://​synop​se.​info/​files/​html/​Synop​se18.​html,
[Online; accessed 7-Jan-2018].

Catarci, T., Costabile, M.F., Levialdi, S., & et al. (1997). Visual query systems for databases: a survey. Jour-
nal of Visual Languages and Computing, 8, 215–260.

Ceri, S., Gottlob, G., & Tanca, L. (1989). What you always wanted to know about datalog (and never
dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(1), 146–166. https://​doi.​
org/​10.​1109/​69.​43410.

Culpepper, J.S., & Moffat, A. (2007). Compact set representation for information retrieval. In Proceed-
ings of the 14th International Conference on String Processing and Information Retrieval (pp. 137–
148). Springer. https://​doi.​org/​10.​1007/​978-3-​540-​75530-2_​13

Derthick, M., Harrison, J., Moore, A., & et al. (1999). Efficient multi-object dynamic query histograms.
In Proceedings of the 1999 IEEE Symposium on Information Visualization (pp. 84–91). IEEE.

Eichmann, P., Zgraggen, E., Binnig, C., & et al. (2020). Idebench: A benchmark for interactive data
exploration. In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data (pp. 1555–1569).

El-Mahgary, S., & Soisalon-Soininen, E. (2015). A form-based query interface for complex queries.
Journal of Visual Languages and Computing, 29(C), 15–53.

Embarcadero Technologies. (2018). Delphi Homepage. https://​www.​embar​cadero.​com/​produ​cts/​delphi,
[Online; accessed 4-Jan-2018].

Gessert, F., Wingerath, W., Friedrich, S., & et al. (2017). NoSQL database systems: a survey and deci-
sion guidance. Computer Science - Research and Development, 32, 353–365. https://​doi.​org/​10.​
1007/​s00450-​016-​0334-3.

Goodman, J.R. (1980). An investigation of multiprocessor structures and algorithms for data base man-
agement. PhD thesis, University of California, Berkeley.

Greco, S., & Molinaro, C. (2016). In Z. Meral Özsoyoğlu (Ed.) Datalog and Logic Databases. Synthesis
Lectures on Data Management. https://​doi.​org/​10.​2200/​S0064​8ED1V​01Y20​1505D​TM041. Morgan
& Claypool Publishers.

Gutiérrez-Basulto, V, Ibáñez-garcía, Y., Kontchakovc, R., & et al. (2015). Queries with negation and
inequalities over lightweight ontologies. Journal of Web Semantics, 35, 184–202.

Hamdi, M., Yu, F., Alswedani, S., & et al. (2017). An efficient data structure for fast join query process-
ing. In IEEE Technically sponsored future technologies conference (FTC) 2017 (pp. 483–492).

800 Journal of Intelligent Information Systems (2023) 60:777–801

https://doi.org/10.14778/3236187.3236195
https://doi.org/10.1145/1131342.1131344
https://doi.org/10.14778/2350229.2350250
https://doi.org/10.1007/11546849_12
https://synopse.info/forum/viewtopic.php?pid=1011
https://synopse.info/forum/viewtopic.php?pid=1011
https://synopse.info/files/html/Synopse18.html
https://doi.org/10.1109/69.43410
https://doi.org/10.1109/69.43410
https://doi.org/10.1007/978-3-540-75530-2_13
https://www.embarcadero.com/products/delphi
https://doi.org/10.1007/s00450-016-0334-3
https://doi.org/10.1007/s00450-016-0334-3
https://doi.org/10.2200/S00648ED1V01Y201505DTM041

1 3

Idreos, S., Kersten, M.L., & Manegold, S. (2009). Self-organizing tuple reconstruction in column-stores.
In Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data (pp.
297–308). ACM.

Ilyas, I.F., Aref, W.G., & Elmagarmid, A.K. (2004). Supporting top-k join queries in relational data-
bases. The VLDB Journal, 13(3), 207–221.

Larson, J.A. (1986). A visual approach to browsing in a database environment. Computer, 19(6), 62–71.
https://​doi.​org/​10.​1109/​MC.​1986.​16632​55.

Lazarus. (2018). Lazarus homepage. https://​www.​lazar​us-​ide.​org/.
Li, Z., & Ross, K.A. (1999). Fast joins using join indices. The VLDB Journal, 8(1), 1–24. https://​doi.​org/​

10.​1007/​s0077​80050​071.
Liu, Z., & Heer, J. (2014). The effects of interactive latency on exploratory visual analysis. IEEE Trans-

actions on Visualization and Computer Graphics, 20 (12), 2122–2131. https://​doi.​org/​10.​1109/​
TVCG.​2014.​23464​52.

Lo, A., Özyer, T., Kianmehr, K., & et al. (2010). VIREX and VRXQuery: Interactive approach for vis-
ual querying of relational databases to produce XML. Journal of Intelligent Information Systems,
35(1), 21–49. https://​doi.​org/​10.​1007/​s10844-​009-​0087-6.

Minock, M. (2003). Knowledge representation using schema tuple queries. In Proc. of KRDB 2003,
Hamburg, Germany, September 15-16, 2003, Vol. 79. IEEE Computer Society Press.

Mishra, P., & Eich, M.H. (1992). Join processing in relational databases. ACM Computing Surveys,
24(1), 63–113. https://​doi.​org/​10.​1145/​128762.​128764.

Molina, H.G., Ullman, J.D., & Widom, J. (2009). Database Systems, 2nd edn. Pearson Prentice Hall.
Morfonios, K., & Ioannidis, Y. (2008). Supporting the data cube lifecycle: the power of ROLAP. The

VLDB Journal, 17(4), 729–764.
Nandi, A., & Jagadish, H.V. (2011). Guided interaction: Rethinking the query-result paradigm. PVLDB,

4(12), 1466–1469.
Schweikardt, N., Schwentick, T., & Segoufin, L. (2010). Database Theory: Query Languages, 2nd edn.,

CRC Press, pp 1–48.
Sippu, S., & Soisalon-Soininen, E. (1996). An analysis of magic sets and related optimization strategies

for logic queries. Journal of the ACM, 43(6), 1046–1088. https://​doi.​org/​10.​1145/​235809.​235814.
Soylu, A., Giese, M., Jiménez-Ruiz, E., & et al. (2016). Experiencing optiquevqs: A multi-paradigm and

ontology-based visual query system for end users. Universal Access in the Information Society, 15,
129–152.

Stolte, C., Tang, D., & Hanrahan, P. (2002). Polaris: A system for query, analysis, and visualization of mul-
tidimensional relational databases. IEEE Transactions on Visualization and Computer Graphics, 8(1),
52–65.

Stonebraker, M., Abadi, D.J., Batkin, A., & et al. (2005). C-store: A column-oriented DBMS. In Proceed-
ings of the 31st International Conference on Very Large Data Bases. VLDB Endowment (pp. 553–564).

Tanin, E., Beigel, R., & Shneiderman, B. (1996). Incremental data structures and algorithms for dynamic
query interfaces. SIGMOD Rec, 25(4), 21–24.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

801Journal of Intelligent Information Systems (2023) 60:777–801

https://doi.org/10.1109/MC.1986.1663255
https://www.lazarus-ide.org/
https://doi.org/10.1007/s007780050071
https://doi.org/10.1007/s007780050071
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1109/TVCG.2014.2346452
https://doi.org/10.1007/s10844-009-0087-6
https://doi.org/10.1145/128762.128764
https://doi.org/10.1145/235809.235814

	OVI-3: A NoSQL visual query system supporting efficient anti-joins
	Abstract
	1 Introduction
	2 Concepts and terminology related to M:N joins
	2.1 A simple toy database schema
	2.2 The concept of viewpoints and the value store
	2.3 A review of Datalog and its relation to present work
	2.3.1 Datalog and negation

	2.4 Problem definition
	2.5 The mapping relation for fast joins and negation
	2.5.1 Implementing negation

	3 OVI-3 in the light of five fundamental aspects of modern VQSs
	3.1 The visual aspect
	3.2 The data layout
	3.3 The query paradigm and the use of viewpoints
	3.4 The handling of joins
	3.4.1 Very late materialization

	3.5 The expressive power of a VQS
	3.6 The OVI-3 event-response model
	3.7 Some OVI-3 implementation issues
	3.7.1 Implementation of the mapping relation
	3.7.2 The batch application creates the DBI layout

	4 Results on querying with OVI-3
	4.1 The hardware for the OVI-3 DBI queries and the SQL queries
	4.2 Querying with OVI-3
	4.3 An example OVI-3 query involving conjunctions, disjunctions and negation
	4.4 Steps 0-3 of the query
	4.5 Steps 4 and 5 of the query
	4.6 A comparison of running queries using OVI-3 and an SQL-database
	4.6.1 Cost comparison for an anti-join

	5 Conclusions
	Acknowledgements
	References

