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Abstract
Community detection in networks is a useful tool for detecting the behavioral and inclina-
tions of users to a specific topic or title. Weighted, unweighted, directed, and undirected 
networks can all be used for detecting communities depending on the network structure and 
content. The proposed model framework for community detection is based on weighted 
networks. We use two important and effective concepts in graph analysis. The structural 
density between nodes is the first concept, and the second is the weight of edges between 
nodes. The proposed model advantage is using a probabilistic generative model that esti-
mates the latent parameters of the probabilistic model and detecting the community based 
on the probability of the presence or absence of weighted edge. The output of the proposed 
model is the intensity of belonging each weighted node to the communities. A relationship 
between the observation of a pair of nodes in multiple communities and the probability of 
an edge with a high weight between them, is one of the important outputs that interpret the 
detected communities by finding relevancy between membership of nodes to communities 
and edge weight. Experiments are performed on real-world weighted networks and syn-
thetic weighted networks to evaluate the performance and accuracy of the proposed algo-
rithm. The results will show that the proposed algorithm is more density and accurate than 
other algorithms in weighted community detection.
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1 Introduction

Network analysis is a critical tool for accurate network component monitoring and detec-
tion. A complex network (Sia et al., 2019) can be a network of friendly communication in 
social networks (McAuley & Leskovec, 2012), a network of cells in biology (Ahn et al., 
2010), or a network of scientific researchers engaged in collaborative scientific research 
(Girvan & Newman, 2002). To put it another way, it can be any grid with nodes and edges 
that can be represented as a graph. For example, if social network users, author of an arti-
cle, a cell of a protein is considered a node in various networks, then friendship between 
social network users, shared articles between the two authors, and the relationship between 
cells can all be considered edges.

Community detection is one of the usable approaches and techniques for analyzing com-
plex networks. Detection of the community means Finding a subgraph of a graph whose 
connections between its nodes are stronger and denser than the connections between the 
graph’s other nodes (Blondel et al., 2008). Communities can represent a way of thinking, a 
category, an interest, a topic orientation, and so on. Communities can be separate, and they 
can also be shared, which are called overlap communities.

The proposed model uses a probabilistic model to detect the community in weighted 
networks without direction. To get acquainted with the proposed model approach, we will 
have an overview of the community detection approaches in complex networks.

Modularity-based methods are one of the most well-known community detection 
approaches. The Louvain method (Blondel et al., 2008) is one of them, and it is often used 
in weighted graphs. This method presents a simple and fast algorithm for detecting sepa-
rate communities in complex weighted and unweighted networks. The greedy approach 
(Sánchez-Oro & Duarte, 2018) is used in this algorithm to cluster graph nodes and maxi-
mize modularity. However, the Louvain algorithm has flaws, which the Leiden algorithm 
addresses (Traag et al., 2019). The goal is to accelerate the local movement and transfer 
nodes to random neighbors while also modifying the community discovered during the 
iteration cycle.

Label propagation methods, which were first introduced in Raghavan et al. (2007), are 
another type of community detection method in weighted networks. These approaches use 
a local network’s architecture and structural features for community detection. To address 
the flaws in the label propagation process, the COPRA (Gregory, 2010) and Speaker-
listener Label Propagation Algorithm (SLPA) (Xie et al., 2011) were proposed, in which 
each node has only one label that is modified repeatedly using the maximum label in its 
neighborhood. Separate communities can be identified after the algorithm converges. In 
Chen et al. (2010) presents an algorithm based on the basic concepts outlined in the label 
propagation methods in the following section. Its primary strategy is to create an initial 
partial community based on a node with the highest node strength, then add strong nodes 
to expand the partial community and increase modularity.

In contrast to the methods mentioned above, which use traditional approaches to detect 
communities in weighted graphs, newer methods estimate the probabilistic model to detect 
communities. The model parameters are estimated using this method, which generates a 
potential generative model from the network graph. Community detection in unweighted 
networks is addressed using methods (Yang & Leskovec, 2012; 2013). Most community 
detection methods in complex networks have relied on undirected and unweighted graphs 
up until now (Sánchez-Oro & Duarte, 2018). Many of these techniques necessitate specific 
assumptions and constraints. In other words, the accuracy of these approaches is limited to 
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detailed descriptions of the problem conditions, and they lack comprehensiveness in terms 
of accuracy, scalability, and data compatibility (Kumar et al., 2021).

Consequently, today due to the immense communication space of networks, the pres-
ence of big data, providing accurate analysis, and the importance of accuracy of perfor-
mance, more features such as edge weight can be used to achieve this aim, that the advan-
tage of the proposed model is covering these items. The proposed model framework for 
community detection is based on using probabilistic models on weighted networks. For 
this purpose, the proposed model develops the idea of Yang & Leskovec (2012; 2013) for 
weighted networks, in which the intensity of each node’s dependence on each community 
is considered the model’s latent parameter. The sum of these interdependencies is compiled 
into a matrix with nodes in the rows and communities in the columns. The graph adjacency 
matrix will be factorized into this matrix, which will be non-negative. Nodes are the com-
ponents of the graph adjacency matrix; graph nodes can be found in both the row and col-
umn of this matrix. The number 1 will be inserted in the matrix if there is an edge between 
two nodes; otherwise, 0 will be used. Since the values of the factorized matrix, which is 
the intensity of each node’s dependence on each community (an unknown parameter in 
the model), must have non-negative values, the proposed model employs the non-negative 
matrix factorization (NMF) approach (Lee & Seung, 1999; Hsieh & Dhillon, 2011). This 
is because it is assumed that a node does not belong to a community. In this case, the cell 
in the factorized matrix will have a value of zero or belong to a low or high-intensity com-
munity, which should be a positive value. The proposed model’s goal is to estimate the 
unknown and hidden values of model parameters in such a way that the best cluster of 
communities is created based on a combination of a node belonging to the community and 
edge weight. The proposed model will be compared quantitatively and qualitatively with 
other community detection methods in weighted networks, to determine its accuracy. Mod-
ularity, conductance, NMI, and F1Score are well-known evaluation criteria in community 
density quality and accuracy measurement, were used in this study.

2  Related works

Detecting communities in complex networks is a complex problem that has been 
approached from various perspectives. The form of problem assumptions and the input 
graph has a significant influence on community detection methods. Community detection 
has gotten much attention because of these variations. Due to the importance of commu-
nity detection in network analysis, various categories of approaches have been presented in 
authoritative sources (Fortunato & Hric, 2016; Javed et al., 2018) by researchers of differ-
ent disciplines that we review some of these studies in this section based on the proposed 
model’s concepts and evaluation criteria.

2.1  Traditional clustering approaches

Over the years various algorithms based on clustering were proposed, which are called tra-
ditional approaches, hierarchical clustering, spectral clustering, partitional clustering and 
graph partitioning are some well-known traditional algorithms which introduced impor-
tant concepts of community detection and paved path for future advancements (Javed et al., 
2018).
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Hierarchical clustering techniques are appropriate for the networks having hierarchical 
structures. These algorithms develop a binary tree that merges similar clusters based on the 
similarity between vertices. In hierarchical clustering, there is no need to specify the num-
ber of clusters beforehand as compared to partitional clustering. Two popular approaches 
of hierarchical clustering are agglomerative and divisive algorithms (Fortunato, 2010). In 
the agglomerative algorithms, clusters are combined iteratively (bottom-up) if they have a 
high similarity index (or similarity score) (Maqbool & Babri, 2004). The maximal clique 
and hierarchical link-based clustering are examples of agglomerative hierarchical cluster-
ing algorithms (Shen et al., 2009). Divisive algorithms are a top-down approach that starts 
with all nodes in one cluster, and then partitioning using a flat clustering algorithm is exe-
cuted that removes the edges which connect low similarity vertices and the highest edge 
betweenness (Morvan et al., 2017). This process continues recursively until communities 
are detecting by cutting edges of the graph. Girvan and Newman proposed algorithms for 
community detection in the form of divisive algorithms (Girvan & Newman, 2002; New-
man & Girvan, 2004; Newman, 2006). The newer work of hierarchical clustering utilizes 
leading trees. The leading tree is an efficient granule calculation model (GrC) for hierarchi-
cal clustering and requires two elements: the distance between the grains and the calculated 
density in Euclidean space (Fu et al., 2021). For non-Euclidean network data, vertices must 
be embedded in Euclidean space before calculating density.

Spectral clustering divides a graph into clusters using the eigenvectors of the input 
data matrix. It converts a given set of nodes into a set of nodes in multidimensional space, 
whose coordinates are the eigenvector components. This transformation reveals implicit 
properties of the initial dataset (Javed et al., 2018). In spectral clustering algorithms, the 
first contribution was submitted by Donath and Hoffman (Donath & Hoffman, 2003), in 
which they used eigenvectors of adjacency matrix and eigenvalues of similarity matrix for 
graph partitioning.

Partitional clustering divides the graph nodes into k clusters with maximizing or 
minimizing a loss function based on the distance between them. Minimum K-clustering, 
K-clustering sum, K-center, K-median, and K-means are some of the partitional cluster-
ing approaches. Among these methods, the K-means (MacQueen, 1967) is a famous algo-
rithm for partitional clustering which minimizes the squared loss function of intra-cluster 
distance. In developing the K-means, Lloyd’s algorithm (Celebi, 2014) helps to speed up 
the minimization of the loss function. Fuzzy K-means (FKM) clustering (Nie et al., 2020) 
assigns each data point to multiple clusters with some degree of certainty. U-k-means 
(Sinaga & Yang, 2020) proposed a novel unsupervised K-means clustering algorithm with 
automatically finding an optimal number of clusters that solved the K-means problem with 
initializations with a necessary number of clusters a priori. Recently, novel methods have 
use combined partitional clustering and network embedding techniques to detect communi-
ties in complex networks. The network embedding technique (Kumar et al., 2021) repre-
sents the nodes of the input graph into vector space and preserves their inherent and topo-
logical features and can contribute significantly to various applications in network analysis. 
In Kumar et  al. (2021) firstly, nodes of the graph are embedded in the feature space of 
dimensions, and then a low-rank approximation is applied to avoid the results from being 
affected by noise or outliers. Further, K-means clustering is employed to find the centroids 
of the clusters in the network and followed by a gravitational search algorithm to improve 
the results of centroids of clusters.

Graph partitioning divides the vertices into g groups whose size is predefined to get 
the minimum number of links between identified groups. The number of vertices running 
among the clusters is termed as cut size. If one does not give the number of clusters in 
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advance and inflict a partition with minimum cut size, a trivial solution will be the output 
(Javed et al., 2018).

2.2  Modularity optimization approaches

Several methods focused on modularity optimization are moving towards optimal commu-
nity detection in weighted networks. In general, the modularity optimization approaches 
lead to a classification of more densely connected nodes than others, to construct related 
classes of nodes with the similar structural characteristics. The Louvain method (Blondel 
et al., 2008) is one of the most critical approaches in this area. This algorithm uses a greedy 
approach to form communities and optimize them, focusing on modularity maximization at 
each stage. This process is divided into two parts:

• Small communities are formed initially due to local optimization
• Core communities are formed as a result of merging small communities with the ability 

to create larger communities, and the method continues to evolve

These two steps are repeated until the communities remain unchanged, and the modularity 
of the method is maximized. The random selection of a neighboring node in the first phase 
is one of this method’s drawbacks. Comprehensibility of algorithm phases, simplicity, and 
speed are also among features of Louvain. To improve and solve Louvain’s problems, the 
Leiden algorithm was proposed (Traag et  al., 2019). Because the Louvain algorithm is 
greedy, this method may combine incompatible communities. In the worst-case scenario, 
it could even cut off a newly discovered real community’s connection and split it into two 
or more parts or move nodes between communities, while that node may serve as a strong 
link between the various parts of its previous community. This unpleasant event will be 
exacerbated by the algorithm’s repeated execution to reach the optimal point, to the point 
where it may appear that the algorithm’s qualitative performance based on modularity will 
improve. However, the desired result will not be achieved in practice. This is due to the 
randomness with which the neighboring node is chosen in the first phase of this method. 
To address this issue, Leiden proposes accelerating local movement and transferring nodes 
to random neighbors, as well as altering the community discovered during the iteration 
cycle. There are three main steps in the Leiden algorithm:

• Local clustering of nodes
• Modification and improvement of clusters
• Network integration and community detection based on improved clusters

2.3  Label propagation approaches

Another class of weighted network community detection methods is based on the label 
propagation method, which was first introduced in Raghavan et al. (2007). This algorithm 
extracts communities by detecting strong label connections by propagating each node’s 
label. Label propagation methods are typically used to detect communities based on net-
work structure. In these cases, optimizing a predefined objective function or utilizing sup-
plementary and content data are less effective in detecting communities. Each node is 
given a distinct label in Raghavan et al. (2007). The key node for developing and complet-
ing a community is then chosen as the node with the most neighbors. Due to the random 
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approach in choosing the neighboring node, this process is correlated with issues such as 
community instability discovered in multiple runs and detection of heterogeneous com-
munities. To fix the shortcomings of the label propagation process, the COPRA method 
for directed and weighted networks was implemented in Gregory (2010), followed by the 
Speaker-listener Label Propagation Algorithm (SLPA) to extract higher quality communi-
ties in Xie et al. (2011). Each node in Xie et al. (2011) has only one label, modified repeat-
edly using the maximum label in its neighborhood. Separate communities are detected 
after the algorithm has been converging and consolidating. Method (Chen et al., 2010) is 
another label propagation algorithm that is discussed in the following sections. It calcu-
lates the concept of power per node first, then creates an initial community centered on the 
node with the most power and its node neighbors. The initial community is then expanded 
by repeatedly adding nodes with maximum modularity to the community and discovering 
overlap nodes.

2.4  Model‑based approaches

The probabilistic model estimation approach is used to solve the problem of community 
detection in another category of methods (Yang & Leskovec, 2012; 2013; Yang et  al., 
2013). The primary axes of these methods are estimating a probability distribution function 
and use the intensity of nodes affiliation to communities as a parameter in the probabilistic 
model. Following the research process (Yang & Leskovec, 2012), the Bigclam algorithm 
(Yang & Leskovec, 2013) is presented, which estimates the probability of the presence 
or absence of edges in the graph, using non-negative matrix factorization (NMF) meth-
ods (Lee & Seung, 1999; Hsieh & Dhillon, 2011). The NMF method divides the adja-
cency matrix into two matrices whose rows are nodes and columns are communities, and 
unknown probabilistic model parameters are estimated using maximum likelihood esti-
mation (MLE) (Myung, 2003) on the factorized matrix. However, the assumptions of the 
Bigclam method have some limitations. One of the most significant disadvantages is that 
this method is only presented in unweighted graphs and does not provide a solution for 
graphs with the weighted edge. Another limitation is that Bigclam only works structurally 
in community detection because it ignores the content of the node and the weight of the 
edge between two nodes, focusing instead on the relationship and density of communica-
tion with neighboring nodes. This has hampered the method’s ability to work with various 
datasets. The CESNA method (Yang et al., 2013), which combines node content and graph 
structure, is presented as part of the Bigclam research process. However, the role of edge 
weight between two nodes in community detection is not mentioned at CESNA, and there 
is almost no solution for weighted graphs. Another problem with CESNA is that in proba-
bilistic calculations, node properties are assumed to be limited.

3  Proposed model frameworks

Simply paying attention to the structure or content of the nodes will not provide the 
required accuracy for community detection in complex networks; instead, a closer look 
at the details of the problem and the use of the inherent features of the initial graph is 
required. One of these features is the weight of the edge between the two nodes, which 
due to the difficulty of implementation and limitation of results on the weighted data-
set, has received less attention in community detection methods. On the other hand, 
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most of the community detection approaches in weighted networks, focus on traditional 
methods such as hierarchical clustering (Liu et  al., 2014; Li et  al., 2019), segmenta-
tion (Qi et al., 2012), and modularity maximization (Chen et al., 2010; Beckett, 2016; 
Nicolini et  al., 2017). In this paper, a weighted community detection algorithm based 
on a probabilistic generative model is presented. The proposed method is referred to 
as WSCD (Structured Community Detection in Weighted Networks). It will be demon-
strated in this approach that using edge weight for community detection performs better 
than unweighted methods. The edge weight indicates the content relationship between 
the nodes in a way that the previous methods do not, and by which community detec-
tion in the graph can be done with acceptable accuracy and quality. In comparison to 
previous community detection methods, the model presented in WSCD takes a different 
approach. This method presents characteristics that have demonstrated correct perfor-
mance in experiment results. Characteristics that were less taken into account in previ-
ous approaches. Among these are:

• Using the probabilistic weighted model and matrix factorization method
• Heeding node connection density in detecting communities and combining it with edge 

weight
• Conceptual connection of community detection with the probability presence or 

absence of weighted edge
• Using evolutionary methods and MLE in calculations

The proposed model is a probabilistic generative model that will be presented on a 
weighted graph and is based on the following assumptions:

• A weighted edge is possible between pairs of nodes in a community
• When a pair of nodes are observed in multiple communities, the possibility of a high 

weight edge between them is increased
• Communities can be overlap; overlap communities have higher weight density

The components of the proposed model are described below. We assume a weighted net-
work G(N,E,W) in the WSCD model, where N,E, and W respectively represent nodes, 
edges, and edge weight between two nodes. We assign a nonnegative value Iuc between 
node u ∈ N and community c ∈ C. (Iuc = 0 means u does not belong to c.) Therefore the 
dependency strength of each node to each community is represented in the I matrix. In 
WSCD the probability of the presence or absence of an edge between two nodes u and v 
in community c is depending on the value of I and the edge weight between u and v, Each 
community c generates edges independently. In particular, we assumed that two nodes u 
and v are connected by considering the following probability,

In this case, the weight of the edge between the two nodes (Buv) would have a direct impact 
on determining the likelihood of the presence or absence of an edge between two nodes in 
addition to the intensity of each node’s belonging to the community (Iuc) and the likelihood 
of a weighted edge between two nodes and their membership in common communities 
grows as a result of this process. In other words, nodes that belong to multiple communities 
are more likely to share edges with strong weight. According to the generative probabilis-
tic procedure between any pair of nodes, each pair of nodes are independently distributed 

(1)Pc(u, v) = 1 − exp
(

−Iuc.I
T
vc
.Buv

)
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by Bernoulli distribution. Therefore, each component of the adjacency matrix is generated 
based on the following generative approach.

In some real-world datasets, the values of the weighted edges are natural numbers (greater 
than 1). These values must be normalized between 0 and 1 to calculate the probability in 
(2). Hence we consider (Wuv) as an abnormal weight and (Buv) as the weight of the normal-
ized edge between two nodes. By (3), we normalize the values of the weighted edges.

Instead of 0 in the Buv value, a minimal value (0.0001) is used because the absence of an 
edge between nodes in the weighted matrix would mean 0 and prevent those nodes from 
participating in subsequent calculations.

4  Community detection by WSCD model

We will show how to use the WSCD model for community detection in undirected and 
weighted networks after describing the components of the model. The belonging degree of 
a node to the community (Iuc) and edge weight between two nodes are model parameters 
described in the previous section. We find the optimal I by maximizing the likelihood as 
follows,

After inserting (1) into (5), a natural logarithm can be obtained from both sides to convert 
the multiplication to the sum and simplify subsequent calculations. The maximum like-
lihood estimation procedure will not be hampered by the logarithm because it is strictly 
ascending

4.1  Updating the parameter

To solve the objective function in (6) and estimate the maximum likelihood function, we must 
use the non-linear optimization procedures. For this purpose, we used the well-known Block 
Coordinate Ascent algorithm (Lin, 2007; Hsieh & Dhillon, 2011). We update Iu for each node 
u by keeping fix the neighbors (Iv) and weight between them (Buv). We solve the following 
subproblem for each u:

(2)
P(u, v) = 1 − exp(−Iu.I

T
v
.Buv)

Auv ∼ Bernoulli(Puv)

(3)B(u, v)
u,v∈E

=
Wuv

maxWuv

(4)l(I) = logP(G ∣ I,B)

(5)I = argmax
I>0

L(I) = argmaxI
∏

(u,v)∈E

P(u, v)
∏

(u,v)∉E

(1 − P(u, v))

(6)L(I) =
∑

(u,v)∈E

ln(1 − exp(−Iu.I
T
v
.Buv)) +

∑

(u,v)∉E

�

−Iu.I
T
v
.Buv

�

(7)L(Iu) =
∑

v∈N(u)

ln(1 − exp(−Iu.I
T
v
.Buv)) +

∑

v∉N(u)

(−Iu.I
T
v
.Buv)
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where N(u) represents the set of neighbors of u. To estimate maximum likelihood (maxi-
mum point of the diagram) we must look for a point on the diagram where the slope is 0. 
Therefore, it is required to derive the partial derivative of the log-likelihood function (7) 
with respect to Iu.

Finally, Iu values will be updated using the gradient ascent method (Lin, 2007; Hsieh & 
Dhillon, 2011) and alternating iterations. Because the belonging intensity of a node to a 
community cannot be negative, if it detects one, it will be replaced with 0:

where η is a learning rate parameter; The process of update each Iu at steps of the algorithm 
iteration is continued as far as the difference between the previous step’s value and current 
value be less than the desired threshold.

4.2  WSCD Algorithm

Algorithm  1 presents the proposed WSCD model (structural community detection in 
weighted networks). In this Algorithm, an undirected and weighted graph (G) and the num-
ber of communities (k) are the inputs of the model. The weights of all edges are normal-
ized to a value between 0 and 1, and the input graph is assumed to be weighted. A matrix 
containing the intensity of belonging each node to each community (Iuc) is also generated 
by the model. The relationship between observing a pair of nodes in multiple communities 
and the probability of a high-weight edge is another significant output that intuitively fol-
lows from the understanding of the proposed model. Following that, after the latent vari-
able of the model (I) is initialized (how to initialize I will be discussed below), the algo-
rithm starts in an iterative loop. When the difference between Iu(t + 1) and Iu(t) is less 
than a defined threshold (stop threshold = 0.001), the iterations will come to an end. The 
likelihood function of the probabilistic generative model (L(Iu)), which aims to estimate 
the unknown parameter of the model in the normalized weighted graph, is calculated in 
this iterative method. The logarithm of the likelihood function is extracted from each node 
u to get the likelihood function close to its maximum value (where the slope of the line 
is 0) (D(L(Iu)). We used ascending gradient method (Lin, 2007; Hsieh & Dhillon, 2011) 
to maximize the likelihood instead of the closed-form method due to the difficulty of the 
calculations.

Finally, after updating the (Iu) at each step of the algorithm iteration and fixing the I 
values, the belonging intensity of each node to each community will be calculated. After 
comparing it to an experimental threshold (for example, the average of I values), this value 
is labeled as belonging or not belonging to the communities.

4.3  Computational complexity

The number of communities and the density of weighted edges determine the WSCD algo-
rithm’s computational complexity. As seen in Algorithm 1’s iteration steps, the degree of 
belonging to the community, which is at the heart of the algorithm, is updated using (8) 

(8)
�l(Iu)

�Iu
=

∑

v∈N(u)

IuBuv

exp(−Iu .I
T
v
.Buv)

1−exp(−Iu .I
T
v
.Buv)

−
∑

v∉N(u)

Iv.Buv

(9)Iu(t + 1) = max
(

0, Iu(t) + �

(

�l(Iu)

�Iu

))
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and (9). In this case, whether or not two nodes have a weighted edge depends on whether 
or not their neighbors belong to one or more communities. As a result, the computational 
complexity will be determined by the order of each node’s neighbors (N(u)) and its combi-
nation with the number of communities, which in the worst case will be O(k.∣E∣).

4.4  initialization

The matrix of belonging intensity the nodes to each community can be initialized in two 
ways. The first solution, which appears simplest solution, is to fill the values randomly. 
However, the main drawback is that to reach the model stability stages, the algorithm 
repeats the steps longer and this increasing the computational complexity. The second 
option is to use the local minimum neighborhood method (Gleich & Seshadhri, 2012), 
which has been proven to be a good starting point for community detection algorithms 
through experiments. Other benefit of using this approach is that it can help predict the ini-
tial number of communities to start the community detection phase in the proposed model, 
in addition to minimizing iteration steps and beginning the algorithm in a steady state.

5  Experiments

The proposed WSCD method has been implemented in the spyder environment and using 
the Python programming language. We used 3 real-world datasets (Table 2) and 8 synthetic 
networks (Table  4) to evaluate the results. The real-world datasets analyzed during the 

Algorithm 1  Structural community detection in weighted networks (WSCD) 
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current study are available in the network repository.1 The LFR-Benchmark_UndirWeight-
Ovp2 generates the synthetic networks. Also, the proposed method is compared with basic 
weighted algorithms such as Louvain (Lancichinetti et  al., 2008; Lancichinetti & Fortu-
nato, 2009), Leiden (Traag et al., 2019), Label propagation (Gregory, 2010), Greedy modu-
larity (Clauset et al., 2004), ASLPAW (Xie et al., 2011), and wCommunity (Chen et al., 
2010) on the above datasets. Table 1 summarizes these algorithms (Table 2).

5.1  Evaluation metrics

Two well-known evaluation metrics are applied to measure the quality and accuracy of 
the community detection algorithms. The modularity (Clauset et  al., 2004) and the con-
ductance (Shi & Malik, 2000) as internal metrics for assessing the quality of communities 
and also, the F1Score alongside NMI3 as external metrics for measuring the accuracy of 
communities by compared to the ground-truth communities (Fortunato & Hric, 2016). In 
internal metrics, the modularity criterion is derived from the Girvan-Newman algorithm 
(Clauset et  al., 2004) and is the well-known criteria for calculating the density of edges 
in communities. Modularity value is equal to the ratio of edges estimated within the com-
munity to the expected edges. In this case, the closer a community’s modularity value is 
to 1, nodes with higher density in communities and the higher the quality of the detected 
community. The conductance criterion is a method of calculating the ratio of edges that 
have left the community to the total edges of the graph. As a result, the lower the numeri-
cal value of conductance, the quality of a community is higher. In external metrics, the 
F1Score is a famous evaluation measure in community detection algorithms, which 

Table 1  Summarizes of the utilized algorithms

Method Name Description

Louvain Louvain maximizes a modularity score for each community
Leiden The Leiden algorithm is an improvement of the Louvain
Label propagation The LPA detects communities using network structure alone
Greedy modularity The CNM algorithm uses the modularity to find the communities structures
ASLPAW ASLPAW can be used for disjoint and overlapping community detection
wCommunity Algorithm to identify overlapping communities in weighted graphs

Table 2  Details of the utilized 
dataset

Dataset Name N (Number of Nodes) E (Num-
ber of 
Edges)

Net Science 379 914
Wiki-Vote 879 2914
Twitter 1003 25779

1 https:// netwo rkrep osito ry. com/
2 https:// github. com/ eXasc aleIn folab/ LFR- Bench mark_ Undir Weigh tOvp/
3 Normalized mutual information
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quantifies the comparative frequency of the number of correct detections of the nodes in 
each community based on the ground-truth information. The second external metric is 
NMI which is the mutual information of the association detected between the discovered 
communities and the ground-truth.

5.2  Real‑world Networks

Net Science (Rossi & Ahmed, 2015) is the first dataset containing 379 nodes and 914 con-
necting edges between them. This dataset contains a scientific research communication 
network wherein researchers are as nodes. The grid contains an undirected weighted edge 
from i to j if node i and node j has at least one article in common. The normalized num-
ber of joint articles between two nodes equals the weight of the edge. Wiki-Vote (Rossi 
& Ahmed, 2015) is the second dataset, which contains 879 nodes and 2914 connecting 
edges. A poll’s voter data is contained in this dataset. The network’s nodes represent net-
work users and connecting node i to node j denotes the edge that user i voted to user j. The 
normalized number of votes is also the weight of connecting edges. The third dataset, with 
1003 nodes and 25779 connecting edges, is based on data from the social network Twitter 
(Kumar et al., 2014). The nodes in this graph represent social network users, and the edge 
between node i and node j represents tweets of node i retweet by node j. The normalized 
number of these retweets is also used to calculate the weight of edges (Fig. 1).

Fig. 1  Networks density representation (a) Netscience, (b) Twitter , and (c) Wiki-Vote datasets
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5.2.1  Experimental results on real‑world networks

We will compare the proposed model with two Categories of conventional community 
detection methods, namely methods based on label propagation and methods based on 
modularity optimization, to assess the efficiency and accuracy of WSCD in weighted com-
munity detection. Some of these methods were briefly discussed in the preceding sections. 
Five weighted algorithms are used to evaluate the proposed method with modularity and 
conductance criteria. In terms of modularity maximum and conductance minimum, the 
results show that our method is superior. The results in Fig. 2 show that WCSD has higher 
modularity than other methods. In addition, Fig. 3 show that WSCD has lower conduct-
ance than other methods, which indicates minimum edge exit from the community in the 
proposed method.

Figure 4 shows the results of the communities detected by the WSCD method in the 
NetScience weighted graph. As seen, the detected communities have acceptable node den-
sities and no scattered nodes outside communities. Also, the dispersion of blue communi-
ties in Fig. 4 indicates the division of nodes according to the weight of the edge between 
them in different communities and the intuitive interpretation of the relationship between 
the weight of the edge and the belonging of the node to the community in WSCD, which 
is calculated in (7). In case of weight of the edge is removed from the calculations, the 
proposed method would identify the communities only based on the belonging of nodes to 

Fig. 2  WCSD modularity 
evaluation with five weighted 
community detection methods on 
three datasets

Fig. 3  WCSD conductance 
evaluation with five weighted 
community detection methods on 
three datasets
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the communities, in which case all the blue communities are aggregated and represented 
as a single community. This fact indicates the role of using edge weight in community 
detection and the accuracy of the proposed method. This interpretation is also true for 
the other datasets used in the proposed method, but due to the high volume of nodes and 
edges, the images of the output communities do not have the necessary clarity for intuitive 
understanding.

5.3  Synthetic networks

There are different ways to create synthetic networks for evaluate community detection 
algorithms, one of the well-known approaches widely used is the LFR4 benchmark. The 
LFR benchmark (Lancichinetti et al., 2008) generates undirected and unweighted synthetic 
networks with ground-truth communities by taking the degree and community size dis-
tributions. For creating simulated networks with LFR, should set parameters of network 
and communities. One of the significant parameters in LFR is the mixing parameter (μ). 
This parameter controls the interactions between communities. A high value of the mixing 
parameter will reduce the modularity value of the network. The LFR generated datasets are 
split into two types of sparse and dense communities according to the modularity criterion. 
Another important parameter is the average degree. The increasing value of the average 
degree will cause to increasing the interactions between communities. The extended ver-
sion of the LFR Benchmark for Undirected and Weighted networks is presented in Lan-
cichinetti and Fortunato (2009) to evaluate community detection algorithms. The principal 
change in parameters is appending the mixing parameter for the weights (μw) alongside the 
mixing parameter for the topology (μt). The main parameters of the LFR synthetic datasets 
are shown in Table 3. The characterization of the created dataset through the LFR approach 
that we used, is displayed in Table 4.

Fig. 4  Community detection 
by the WSCD method on the 
NetScience dataset

4 Lancichinetti–Fortunato–Radicchi
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5.3.1  Experimental results on Synthetic networks

In addition to the real-world networks, we have implemented experiments on LFR syn-
thetic networks. We compare the WSCD method with the well-known weighted commu-
nity detection methods in Table 1 to show the effect of edge weights on the community 
detection process by using F1Score and NMI criteria. For this purpose, according to the 
properties of synthetic networks that are given in Table 3, eight LFR synthetic networks are 
created with different configurations of mixing parameter for the weights (μw) varying from 

Table 3  Parameters of LFR 
synthetic datasets (Lancichinetti 
& Fortunato, 2009)

Parameter Description

N Number of nodes
K Average degree
Min K Minimum degree of nodes
Max K Maximum degree of nodes
μt Mixing parameter for the topology
μw Mixing parameter for the weights
Min C Minimum for the community sizes
Max C Maximum for the community sizes

Table 4  The details of the LFR 
synthetic network generated

#N μt μw K #Edges #Communities Min C Max C

1000 0.1 0.1 20 7642 27 20 60
1000 0.2 0.2 20 7680 28 20 60
1000 0.3 0.3 20 7687 29 20 60
1000 0.4 0.4 20 7762 29 20 60
1000 0.5 0.5 20 7602 30 20 60
1000 0.6 0.6 20 7743 32 20 60
1000 0.7 0.7 20 7817 34 20 60
1000 0.8 0.8 20 7756 35 20 60

Fig. 5  NMI evaluation diagram, 
comparing WCSD with six 
weighted community detection 
methods on eight LFR datasets
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0.1 to 0.8, showed in Table 4. By the results, for the small of the mixing parameter values 
(e.g. 0.1 ≤ μw ≤ 0.4), the communities are dense and all compared algorithms have near 
accuracy in this case. But the central difference between the weighted algorithms occurs 
when the value of the mixing parameter (μw) increasing. (e.g. 0.4 < μw ≤ 0.8), because 
edges between communities increase, the communities are sparse, and detecting communi-
ties are difficult. As shown in Figs. 5 and 6, some algorithms have NMI and F1Score values 
equal to zero as the mixing parameter value increases and in the range of 0.4 < μw ≤ 0.8, 
the proposed method (WSCD) is better than most of the well-known weighted methods.

6  Conclusion

In this paper, we present a probabilistic model-based method for community detection in 
weighted networks. The proposed approach, WSCD, used the weight of the edge between 
the two nodes and the intensity belonging of node to the community to estimate latent vari-
able of probabilistic model, which because of the hardness of implementation and restric-
tion of results on the weighted dataset, has received less consideration in recent community 
detection methods. We employed the well-known Block Coordinate Ascent algorithm to 
maximize the likelihood function and estimate latent parameters of the model. Moreover, 
WSCD helps with the interpretation of detected communities by finding relevancy between 
membership of nodes to communities and edge weight, when a pair of nodes is observed 
in multiple communities, the possibility of a high-weight edge between them is amplified. 
For evaluation proposed method 3 real-world and 8 synthetic weighted networks were 
used. In 3 real-world weighted networks, WSCD was able to obtain a proper quorum when 
compared to the other five methods on internal evaluation metrics. Also, evaluation of the 
proposed method on 8 synthetic weighted networks by external evaluation metrics show 
that WSCD outperforms on the sparse networks than other methods. In addition, the pro-
posed method’s execution time complexity analysis reveals that outperforms other meth-
ods. There is some future work for researchers to develop a proposed method. Such as 
considering edge weight as a latent parameter and the estimate it by a probabilistic genera-
tive model, extending the method by employing node attributes in the weighted network to 
present a more accurate interpretation of detected communities.

Fig. 6  F1Score evaluation dia-
gram, comparing WCSD with six 
weighted community detection 
methods on eight LFR datasets
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Data availability The real-world datasets generated during and/or analysed during the current study are 
available on the network repository,5 and the LFR-Benchmark_UndirWeightOvp6 generates the synthetic 
networks.
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