
https://doi.org/10.1007/s10844-021-00682-5

A relational tsetlin machine with applications
to natural language understanding

Rupsa Saha1 ·Ole-Christoffer Granmo1 ·Vladimir I. Zadorozhny1,2 ·
Morten Goodwin1

Received: 19 March 2021 / Revised: 11 October 2021 / Accepted: 11 October 2021 /

© The Author(s) 2021

Abstract
Tsetlin machines (TMs) are a pattern recognition approach that uses finite state machines
for learning and propositional logic to represent patterns. In addition to being natively
interpretable, they have provided competitive accuracy for various tasks. In this paper, we
increase the computing power of TMs by proposing a first-order logic-based framework
with Herbrand semantics. The resulting TM is relational and can take advantage of logical
structures appearing in natural language, to learn rules that represent how actions and con-
sequences are related in the real world. The outcome is a logic program of Horn clauses,
bringing in a structured view of unstructured data. In closed-domain question-answering,
the first-order representation produces 10× more compact KBs, along with an increase
in answering accuracy from 94.83% to 99.48%. The approach is further robust towards
erroneous, missing, and superfluous information, distilling the aspects of a text that are
important for real-world understanding

Keywords Tsetlin machine · Natural language processing · Logic programming ·
Knowledge representation · Question answering

1 Introduction

Using Artificial Intelligences (AI) to answer natural language questions has long been an
active research area, considered as an essential aspect in machines ultimately achieving
human-level world understanding. Large-scale structured knowledge bases (KBs), such as
Freebase (Bollacker et al., 2008), have been a driving force behind successes in this field.
The KBs encompass massive ever-growing amounts of information, which enable easier
handling of Open-Domain Question-Answering (QA) (Prager, 2006) by organizing a large

� Rupsa Saha
rupsa.saha@uia.no

1 Centre for AI Research, Department of IKT, University of Agder, Agder, Norway
2 School of Computing and Information, University of Pittsburgh, Pittsburgh, PA, USA

Published online: 1 January 2022

Journal of Intelligent Information Systems (2022) 59:121–148

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-021-00682-5&domain=pdf
http://orcid.org/0000-0002-3006-5249
mailto: rupsa.saha@uia.no

variety of answers in a structured format. The difficulty arises in successfully interpret-
ing natural language by artificially intelligent agents, both to build the KBs from natural
language text resources and to interpret the questions asked.

Generalization beyond the information stored in a KB further complicates the QA prob-
lem. Human-level world understanding requires abstracting from specific examples to build
more general concepts and rules. When the information stored in the KB is error-free
and consistent, generalization becomes a standard inductive reasoning problem. How-
ever, abstracting world-knowledge entails dealing with uncertainty, vagueness, exceptions,
errors, and conflicting information. This is particularly the case when relying on Artifi-
cial Intelligences (AI) approaches to extract and structure information, which is notoriously
error-prone.

This paper addresses the above QA challenges by proposing a Relational Tsetlin machine
(TM) that builds non-recursive first-order Horn clauses from specific examples, distilling
general concepts and rules.

Tsetlin Machines (Granmo, 2018) are a pattern recognition approach to constructing
human-understandable patterns from given data, founded on propositional logic. While the
idea of Tsetlin automaton (TA) (Tsetlin, 1961) have been around since 1960s, using them
in pattern recognition is relatively new. TMs have successfully addressed several machine
learning tasks, including natural language understanding (Yadav et al., 2021a, b; Bhat-
tarai et al., 2021; Saha et al., 2020; Berge et al., 2019), image analysis (Granmo et al.,
2019), classification (Abeyrathna et al., 2021), regression (Abeyrathna et al., 2019), and
speech understanding (Lei et al., 2021). The propositional clauses constructed by a Tsetlin
machine (TM) have high discriminative power and constitute a global description of the
task learnt (Blakely & Granmo, 2020; Saha et al., 2020). Apart from maintaining accuracy
comparable to state-of-the-art machine learning techniques, the method also has provided a
smaller memory footprint and faster inference than more traditional neural network-based
models (Wheeldon et al., 2020; Lei et al., 2020; Abeyrathna et al., 2021; Lei et al., 2021;
Phoulady et al., 2019). Furthermore, Shafik et al. (2020) shows that TMs can be fault-
tolerant, able to mask stuck-at faults. However, although TMs can express any propositional
formula by using disjunctive normal form, first-order logic is required to obtain the com-
puting power equivalent to a universal Turing machine. In this paper, we take the first steps
towards increasing the computing power of TM by introducing a first order TM framework
with Herbrand semantics, referred to as the Relational TM. Accordingly, we will in the
following denote the original approach as Propositional TM.

Closed-Domain Question-Answering: As proof-of-concept, we apply our proposed Rela-
tional TM to so-called Closed-Domain QA. Closed-Domain QA assumes a text (single or
multiple sentences) followed by a question which refers to some aspect of the preceding
text. Accordingly, the amount of information that must be navigated is less than for open
question-answering. Yet, answering closed-domain questions poses a significant natural
language understanding challenge.

Consider the following example of information, taken from Rajpurkar et al. (2016): “The
Black Death is thought to have originated in the arid plains of Central Asia, where it then
travelled along the Silk Road, reaching Crimea by 1343. From there, it was most likely
carried by Oriental rat fleas living on the black rats that were regular passengers on merchant
ships.”One can then have questions such as “Where did the black death originate?” or “How
did the black death make it to the Mediterranean and Europe?”. These questions can be

122 Journal of Intelligent Information Systems (2022) 59:121–148

answered completely with just the information provided, hence it is an example of closed-
domain question answering. However, mapping the question to the answer requires not only
natural language processing, but also a fair bit of language understanding.

Here is a much simpler example: “Bob went to the garden. Sue went to the cafe. Bob
walked to the office.” This information forms the basis for questions like “Where is Bob?” or
“Where is Sue?”. Taking it a step further, given the previous information and questions, one
can envision a model that learns to answer similar questions based on similar information,
even though the model has never seen the specifics of the information before (i.e., the names
and the locations).

With QA being such an essential area of Natural Language Understanding, there has been
a lot of different approaches proposed. Common methods to QA include the following:

– Linguistic techniques, such as tokenization, POS tagging and parsing that transform
questions into a precise query that merely extracts the respective response from a
structured database;

– Statistical techniques such as Support Vector Machines, Bayesian Classifiers, and
maximum entropy models, trained on large amount of data, specially for open QA;

– Pattern matching using surface text patterns with templates for response generation.

Many methods use a hybrid approach encompassing more than one of these approaches for
increased accuracy. Most QA systems suffer from a lack of generality, and are tuned for
performance in restricted use cases. Lack of available explainabilty also hinders researchers’
quest to identify pain points and possible major improvements (Soares & Parreiras, 2020;
Pundge et al., 2016).

Paper Contributions: Our main contributions in this paper are as follows:

– We introduce a Relational TM, as opposed to a propositional one, founded on non-
recursive Horn clauses and capable of processing relations, variables and constants.

– We propose an accompanying relational framework for efficient representation and
processing of the QA problem.

– We provide empirical evidence uncovering that the Relational TM produces at least one
order of magnitude more compact KBs than the Propositional TM. At the same time,
answering accuracy increases from 94.83% to 99.48% because of more general rules.

– We provide a model-theoretical interpretation for the proposed framework.

Overall, our Relational TM unifies knowledge representation, learning, and reasoning in a
single framework.

Paper Organization: The paper is organized as follows. In Section 2, we present related
work on Question Answering. Section 3 focuses on the background of the Propositional TM
and the details of the new Relational TM. In Sections 4 and 5, we describe how we employ
Relational TM in QA and related experiments.

2 Background and related work

The problem of QA is related to numerous aspects of Knowledge Engineering and Data
Management.

123Journal of Intelligent Information Systems (2022) 59:121–148

Knowledge engineering deals with constructing and maintaining knowledge bases to
store knowledge of the real world in various domains. Automated reasoning techniques
use this knowledge to solve problems in domains that ordinarily require human logical
reasoning. Therefore, the two key issues in knowledge engineering are how to construct
and maintain knowledge bases, and how to derive new knowledge from existing knowledge
effectively and efficiently. Automated reasoning is concerned with the building of
computing systems that automate this process. Although the overall goal is to automate
different forms of reasoning, the term has largely been identified with valid deductive
reasoning as conducted in logical systems. This is done by combining known (yet possi-
bly incomplete) information with background knowledge and making inferences regarding
unknown or uncertain information.

Typically, such a system consists of subsystems like knowledge acquisition system, the
knowledge base itself, inference engine, explanation subsystem and user interface. The
knowledge model has to represent the relations between multiple components in a symbolic,
machine understandable form, and the inference engine has to manipulate those symbols
to be capable of reasoning. The “way to reason” can range from earlier versions that were
simple rule-based systems to more complex and recent approaches based on machine learn-
ing, especially on Deep Learning. Recently, transformer based systems have significantly
improved question-answering performance in general, even more so when they can be sup-
plied with a very large amount of training data (Lu et al., 2020; Lewis et al., 2019; Wolf
et al., 2019; Jung & Kim, 2020; Srinivasan et al., 2021). Typically, rule-based systems suf-
fered from lack of generality, and the need for human experts to create rules in the first
place. On the other hand most machine learning based approaches have the disadvantage of
not being able to justify decisions taken by them in a human understandable form Ludwig
(2010) and Cyras et al. (2020).

While databases have long been a mechanism of choice for storing information, they
only had inbuilt capability to identify relations between various components, and did not
have the ability to support reasoning based on such relations. Efforts to combine formal
logic programming with relational databases led to the advent of deductive databases. In
fact, the field of QA is said to have arisen from the initial goal of performing deduc-
tive reasoning on a set of given facts (Green, 1969). In deductive databases, the semantics
of the information are represented in terms of mathematical logic. Queries to deductive
databases also follow the same logical formulation (Gallaire et al., 1989). One such exam-
ple is ConceptBase (Jarke et al., 1995), which used the Prolog-inspired language O-Telos
for logical knowledge representation and querying using deductive object-oriented database
framework.

With the rise of the internet, there came a need for unification of information on the web.
The Semantic Web (SW) proposed by W3C is one of the approaches that bridges the gap
between the Knowledge Representation and the Web Technology communities. However,
reasoning and consistency checking is still not very well developed, despite the underlying
formalism that accompanies the semantic web. One way of introducing reasoning is via
descriptive logic. It involves concepts (unary predicates) and roles (binary predicates) and
the idea is that implicitly captured knowledge can be inferred from the given descriptions
of concepts and roles (Dong et al., 2003; Turhan, 2011).

One of the major learning exercises is carried out by the NELL mechanism proposed
by Mitchell et al. (2018), which aims to learn many semantic categories from primarily
unlabeled data. At present, NELL uses simple frame-based knowledge representation, aug-
mented by the PRA reasoning system. The reasoning system performs tractable, but limited

124 Journal of Intelligent Information Systems (2022) 59:121–148

types of reasoning based on restricted Horn clauses. NELL’s capabilities is already lim-
ited in part by its lack of more powerful reasoning components; for example, it currently
lacks methods for representing and reasoning about time and space. Hence, core Artificial
Intelligence (AI) problems of representation and tractable reasoning are also core research
problems for never-ending learning agents.

While other approaches such as neural networks are considered to provide attribute-based
learning, Inductive Logic Programming (ILP) is an attempt to overcome their limitations by
moving the learning away from the attributes themselves and more towards the level of first-
order predicate logic. ILP builds upon the theoretical framework of logic programming and
looks to construct a predicate logic given background knowledge, positive examples and
negative examples. One of the main advantages of ILP over attribute-based learning is ILP’s
generality of representation for background knowledge. This enables the user to provide, in
a more natural way, domain-specific background knowledge to be used in learning. The use
of background knowledge enables the user both to develop a suitable problem representation
and to introduce problem-specific constraints into the learning process. Over the years, ILP
has evolved from depending on hand-crafted background knowledge only, to employing
different technologies in order to learn the background knowledge as part of the process. In
contrast to typical machine learning, which uses feature vectors, ILP requires the knowledge
to be in terms of facts and rules governing those facts. Predicates can either be supplied or
deducted, and one of the advantages of this method is that newer information can be added
easily, while previously learnt information can be maintained as required (Cropper et al.,
2020). Probabilistic inductive logic programming is an extension of ILP, where logic rules,
as learnt from the data, are further enhanced by learning probabilities associated with such
rules (Bratko & Muggleton, 1995; Nickles & Mileo, 2014; De Raedt & Kersting, 2008;
Kramer et al., 2001).

To sum up, none of the above approaches can be efficiently and systematically applied to
the QA problem, especially in uncertain and noisy environments. In this paper we propose
a novel approach to tackle this problem. Our approach is based on relational representation
of QA, and using a novel Relational TM technique for answering questions. We elaborate
on the proposed method in the next two sections.

3 Building a relational tsetlin machine

3.1 Tsetlin machine foundation

A Tsetlin Automaton (Tsetlin Automaton (TA)) is a deterministic automaton that learns the
optimal action among the set of actions offered by an environment. It performs the action
associated with its current state, which triggers a reward or penalty based on the ground
truth. The state is updated accordingly, so that the Tsetlin automaton (TA) progressively
shifts focus towards the optimal action (Tsetlin, 1961). A 2-action Tsetlin automaton (TA),
as shown in Fig. 1a, has 2N states, such that, a final state between 1 and N indicates Action
1, while final state between N + 1 and 2N indicates Action 2. A reward reinforces a par-
ticular action by changing state away from the central state, i.e. moving “deeper” towards
Action 1 or 2, as the case maybe. The opposite happens in the case of a penalty, where the
resultant state after an iteration is closer to the central states (N/N + 1). A TM consists
of a collection of such TAs, which together create complex propositional formulas using
conjunctive clauses.

125Journal of Intelligent Information Systems (2022) 59:121–148

3.1.1 Classification

A TM takes a vector X = (x1, . . . , xf) of propositional features as input, to be classified
into one of two classes, y = 0 or y = 1. Together with their negated counterparts, x̄k =
¬xk = 1 − xk , the features form a literal set L = {x1, . . . , xf , x̄1, . . . , x̄f }. We refer to
this “regular” TM as a Propositional TM, due to the input it works with and the output it
produces.

A TM pattern is formulated as a conjunctive clause Cj , formed by ANDing a subset
Lj ⊆ L of the literal set:

Cj (X) = ∧
lk∈Lj

lk = ∏
lk∈Lj

lk . (1)

E.g., the clause Cj (X) = x1 ∧ x2 = x1x2 consists of the literals Lj = {x1, x2} and outputs
1 iff x1 = x2 = 1.

Each clause has access to 2 × f Tsetlin automaton (TAs), one per literal k. The bidirec-
tional action of each TA decides which of the literals form a part of a clause. The TA (TA)
states from 1 to N map to the exclude action, which means that the corresponding literal

Fig. 1 Clause Formation in a Tsetlin Machine

126 Journal of Intelligent Information Systems (2022) 59:121–148

is excluded from the clause. For states from N + 1 to 2N , the decision becomes include,
i.e., the literal is included instead. The states of all the TAs in all of the clauses are jointly
stored in the matrix A : A = (aj,k)ε{1, . . . , 2N}m×2f with j and k referring to the clause
and the literal respectively. Thus I I

j = {k|aj,k > N, 1 ≤ k ≤ 2f } encompasses the literal

indices contained in I I
j . Figure 1b shows the structure of the clauses and the voting scheme

diagrammatically.
The number of clauses employed is a user set parameter m. Half of the m clauses are

assigned positive polarity (C+
j). The other half is assigned negative polarity (C−

j). The
clause outputs, in turn, are combined into a classification decision through summation:

v = ∑m/2
j=1 C+

j (X) − ∑m/2
j=1 C−

j (X). (2)

In effect, the positive clauses vote for y = 1 and the negative for y = 0. Classification is
performed based on a majority vote, using the unit step function: ŷ = u(v) = 1 if v ≥
0 else 0. The classifier ŷ = u (x1x̄2 + x̄1x2 − x1x2 − x̄1x̄2), for instance, captures the XOR-
relation.

3.1.2 Learning

Alg. 1 encompasses the entire learning procedure. We observe that learning is performed by
a team of 2f Tsetlin automaton (TAs) per clause, one Tsetlin automaton (TA) per literal lk
(Alg. 1, Step 2). Each Tsetlin automaton (TA) has two actions – Include or Exclude – and
decides whether to include its designated literal lk in its clause.

TM learn on-line, processing one training example (X, y) at a time (Step 7). The Tsetlin
automaton (TAs) first produce a new configuration of clauses (Step 8), C+

1 , . . . , C−
n/2,

followed by calculating a voting sum v (Step 9).
Feedback are then handed out stochastically to each Tsetlin automaton (TAs) team. The

difference ε between the clipped voting sum vc and a user-set voting target T decides the
probability of each Tsetlin automaton (TAs) team receiving feedback (Steps 12-20). Note
that the voting sum is clipped to normalize the feedback probability. The voting target for
y = 1 is T and for y = 0 it is −T . Observe that for any input X, the probability of reinforc-
ing a clause gradually drops to zero as the voting sum approaches the user-set target. This
ensures that clauses distribute themselves across the frequent patterns, rather than missing
some and over-concentrating on others.

Clauses receive two types of feedback. Type I feedback produces frequent patterns, while
Type II feedback increases the discrimination power of the patterns.

Type I feedback is given stochastically to clauses with positive polarity when y = 1
and to clauses with negative polarity when y = 0. Each clause, in turn, reinforces its Tsetlin
automaton (TAs) based on: (1) its output Cj (X); (2) the action of the Tsetlin automaton (TA)
– Include or Exclude; and (3) the value of the literal lk assigned to the Tsetlin automaton
(TA). Two rules govern Type I feedback:

– Include is rewarded and Exclude is penalized with probability s−1
s

whenever Cj (X) =
1 and lk = 1. This reinforcement is strong (triggered with high probability) and makes
the clause remember and refine the pattern it recognizes in X.1

– Include is penalized and Exclude is rewarded with probability 1
s

whenever Cj (X) =
0 or lk = 0. This reinforcement is weak (triggered with low probability) and coarsens
infrequent patterns, making them frequent.

1Note that the probability s−1
s

is replaced by 1 when boosting true positives.

127Journal of Intelligent Information Systems (2022) 59:121–148

Above, the user-configurable parameter s controls pattern frequency, i.e., a higher s

produces less frequent patterns.
Type II feedback is given stochastically to clauses with positive polarity when y = 0

and to clauses with negative polarity when y = 1. It penalizes Exclude whenever Cj (X) =
1 and lk = 0. Thus, this feedback produces literals for discriminating between y = 0 and
y = 1, by making the clause evaluate to 0 when facing its competing class. Further details
can be found in Granmo (2018).

128 Journal of Intelligent Information Systems (2022) 59:121–148

3.2 Relational tsetlin machine

In this section, we introduce the Relational TM, which is a major contribution of this paper.
It is designed to take advantage of logical structures appearing in natural language and
process them in a way that leads to a compact, logic-based representation, which can ulti-
mately reduce the gap between structured and unstructured data. While the Propositional
TM operates on propositional input variables X = (x1 . . . , xf), building propositional con-
junctive clauses, the Relational TM processes relations, variables and constants, building
Horn clauses. Based on Fig. 2 and Alg. 2, we here describe how the Relational TM builds
upon the original TM in three steps. First, we establish an approach for dealing with rela-
tions and constants. This is done by mapping the relations to propositional inputs, allowing
the use of a standard TM. We then introduce Horn clauses with variables, showing how
this representation detaches the TM from the constants, allowing for a more compact rep-
resentation compared to only using propositional clauses. We finally introduce a novel
convolution scheme that effectively manages multiple possible mappings from constants to
variables. While the mechanism of convolution remains the same as in the original (Granmo
et al., 2019), what we wish to attain from using it in a Relational TM context is completely
different, as explained in the following.

3.2.1 Model-theoretical interpretation

The concept of Relational TM can be grounded in the model-theoretical interpretation of a
logic program without functional symbols and with a finite Herbrand model (Lloyd, 1984;
Kowalski, 2014). The ability to represent learning in the form of Horn clauses is extremely
useful due to the fact that Horn clauses are both simple, as well as powerful enough to
describe any logical formula (Kowalski, 2014).

Next, we define the Herbrand model of a logic program. A Herbrand Base (HB) is the set
of all possible ground atoms, i.e., atomic formulas without variables, obtained using predi-
cate names and constants in a logic program P. A Herbrand Interpretation is a subset I of
the Herbrand Base (I ⊆ HB). To introduce the Least Herbrand Model we define the imme-
diate consequence operator TP : P(HB) → P(HB), which for an Herbrand Interpretation
I produces the interpretation that immediately follows from I by the rules (Horn clauses)
in the program P :

TP(I) = {A0 ∈ HB | A0 ← A1, ..., An

∈ ground(P) ∧ {A1, ..., An} ⊆ I } ∪ I .

The least fixed point lfp(TP) of the immediate consequence operator with respect to
subset-inclusion is the Least Herbrand Model (LHM) of the program P . LHM identifies the
semantics of the program P : it is the Herbrand Interpretation that contains those and only
those atoms that follow from the program:

∀A ∈ HB : P |= A ⇔ A ∈ LHM.

As an example, consider the following program P :

p(a). q(c).

q(X) ← p(X).

Its Herbrand base is

HB = {p(a), p(c), q(a), q(c)},

129Journal of Intelligent Information Systems (2022) 59:121–148

Fi
g.
2

R
el

at
io

na
lT

M
pr

oc
es

si
ng

st
ep

s

130 Journal of Intelligent Information Systems (2022) 59:121–148

and its Least Herbrand Model is:

LHM = lfp(TP) = {p(a), q(a), q(c)},
which is the set of atoms that follow from the program P .

3.2.2 Learning problem

Let A = {a1, a2, . . . , aq} be a finite set of constants and let R = {r1, r2, . . . , rp} be a
finite set of relations of arity wu ≥ 1, u ∈ {1, 2, . . . , p}, which forms the alphabet �. The
Herbrand base

HB = {r1(a1, a2, . . . , aw1), r1(a2, a1, . . . , aw1),

. . . , rp(a1, a2, . . . , awp), rp(a2, a1, . . . , awp), . . .} (3)

is then also finite, consisting of all the ground atoms that can be expressed using A and R.
We also have a logic program P , with program rules expressed as Horn clauses without

recursion. Each Horn clause has the form:

B0 ← B1, B2, · · · , Bd . (4)

Here, Bl, l ∈ {0, . . . , d}, is an atom ru(Z1, Z2, . . . , Zwu) with variables Z1, Z2, . . . ,

Zwu , or its negation ¬ru(Z1, Z2, . . . , Zwu). The arity of ru is denoted by wu.
Now, let X be a subset of the LHM of P , X ⊆ lfp(TP), and let Y be the subset of the

LHM that follows from X due to the Horn clauses in P . Further assume that atoms are
randomly removed and added to X and Y to produce a possibly noisy observation (X̃ , Ỹ),
i.e., X̃ and Ỹ are not necessarily subsets of lfp(TP). The learning problem is to predict the
atoms in Y from the atoms in X̃ by learning from a sequence of noisy observations (X̃ , Ỹ),
thus uncovering the underlying program P .

3.2.3 Relational tsetlin machine with constants

We base our Relational TM on mapping the learning problem to a Propositional TM pattern
recognition problem. We consider Horn clauses without variables first. In brief, we map
every atom in HB to a propositional input xk , obtaining the propositional input vector X =
(x1, . . . , xo) (cf. Section 3.1). That is, consider the w-arity relation ru ∈ R, which takes
w symbols from A as input. This relation can thus take qw unique input combinations. As
an example, with the constants A = {a1, a2} and the binary relations R = {r1, r2}, we
get 8 propositional inputs: x

1,1
1 ≡ r1(a1, a1); x

1,2
1 ≡ r1(a1, a2); x

2,1
1 ≡ r1(a2, a1);x

2,2
1 ≡

r1(a2, a2); x
1,1
2 ≡ r2(a1, a1); x

1,2
2 ≡ r2(a1, a2); x

2,1
2 ≡ r2(a2, a1); and x

2,2
2 ≡ r2(a2, a2).

Correspondingly, we perform the same mapping to get the propositional output vector Y .
Finally, obtaining an input (X̃ , Ỹ), we set the propositional input xk to true iff its corre-

sponding atom is in X̃ , otherwise it is set to false. Similarly, we set the propositional output
variable ym to true iff its corresponding atom is in Ỹ , otherwise it is set to false.

Clearly, after this mapping, we get a Propositional TM pattern recognition problem that
can be solved as described in Section 3.1 for a single propositional output ym. This is
illustrated as Step 1 in Fig. 2.

3.2.4 Detaching the relational TM from constants

The TM can potentially deal with thousands of propositional inputs. However, we now detach
our Relational TM from the constants, introducing Horn clauses with variables. Our intent

131Journal of Intelligent Information Systems (2022) 59:121–148

is to provide a more compact representation of the program and to allow generalization
beyond the data. Additionally, the detachment enables faster learning even with less data.

Let Z = {Z1, Z2, . . . , Zz} be z variables representing the constants appearing in an
observation (X̃ , Ỹ). Here, z is the largest number of unique constants involved in any
particular observation (X̃ , Ỹ), each requiring its own variable.

Seeking Horn clauses with variables instead of constants, we now only need to consider
atoms over variable configurations (instead of over constant configurations). Again, we
map the atoms to propositional inputs to construct a propositional TM learning problem.
That is, each propositional input xk represents a particular atom with a specific variable
configuration: xk ≡ ru(Zα1 , Zα2 , . . . , Zαwu

), with wu being the arity of ru. Accordingly,
the number of constants in A no longer affects the number of propositional inputs xk needed
to represent the problem. Instead, this is governed by the number of variables in Z (and,
again, the number of relations in R). That is, the number of propositional inputs is bounded
by O(zw), with w being the largest arity of the relations in R.

To detach the Relational TM from constants, we first replace the constants in Ỹ with vari-
ables, from left to right. Accordingly, the corresponding constants in X̃ is also replaced with
the same variables (Step 2, Fig. 2). Finally, the constants now remaining in X̃ is arbitrarily
replaced with additional variables (Step 3, Fig. 2).

3.2.5 Relational tsetlin machine convolution over variable assignment permutations

Since there may be multiple ways of assigning variables to constants, the above approach
may produce redundant rules. One may end up with equivalent rules whose only differ-
ence is syntactic, i.e., the same rules are expressed using different variable symbols. This
is illustrated in Step 3 of Fig. 2, where variables can be assigned to constants in two ways.
To avoid redundant rules, the Relational TM produces all possible permutations of variable
assignments. To process the different permutations, we finally perform a convolution over
the permutations in Step 4, employing a TM convolution operator (Granmo et al., 2019).
The target value of the convolution is the truth value of the consequent (Step 5).

3.2.6 Walk-through of algorithmwith example learning problem

Figure 2 contains an example of the process of detaching a Relational TM from constants.
We use the parent-grandparent relationship as an example, employing the following Horn
clause.

grandparent (Z1, Z2) ← parent (Z1, Z3), parent (Z3, Z2).
We replace the constants in each training example with variables, before learning the
clauses. Thus the Relational TM never “sees” the constants, just the generic variables.

Assume the first training example is
Input : parent (Bob, Mary) = 1;
T arget output : child(Mary, Bob) = 1.
Then Mary is replaced with Z1 and Bob with Z2 in the target output:
Input : parent (Bob, Mary) = 1;
T arget output : child(Z1, Z2) = 1.
We perform the same exchange for the input, getting:
Input : parent (Z2, Z1) = 1;
T arget output : child(Z1, Z2) = 1.
Here, “parent(Z2, Z1)” is treated as an input feature by the Relational TM. That is,

“parent(Z2, Z1)” is seen as a single propositional variable that is either 0 or 1, and the name

132 Journal of Intelligent Information Systems (2022) 59:121–148

of the variable is simply the string “parent(Z2, Z1)”. The constants may be changing from
example to example, so next time it may be Mary and Ann. However, they all end up as Z1
or Z2 after being replaced by the variables. After some time, the Relational TM would then
learn the following clause:

child(Z1, Z2) ← parent (Z2, Z1).
This is because the feature “parent(Z2, Z1)” predicts “child(Z1, Z2)” perfectly. Other

candidate features like “parent(Z1, Z1)” or “parent(Z2, Z3)” are poor predictors of
“child(Z1, Z2)” and will be excluded by the TM. Here, Z3 is a free variable representing
some other constant, different from Z1 and Z2.

Then the next training example comes along:
Input : parent (Bob, Mary) = 1;
T arget output : child(Jane, Bob) = 0.
Again, we start with replacing the constants in the target output with variables:
Input : parent (Bob, Mary) = 1;
T arget output : child(Z1, Z2) = 0
which is then completed for the input:
Input : parent (Z2, Mary) = 1;
T arget output : child(Z1, Z2) = 0.
The constant Mary was not in the target output, so we introduce a free variable Z3 for

representing Mary:
Input : parent (Z2, Z3) = 1;
T arget output : child(Z1, Z2) = 0.
The currently learnt clause was:
child(Z1, Z2) ← parent (Z2, Z1).
The feature “parent(Z2, Z1)” is not present in the input in the second training example,

only “parent(Z2, Z3)”. Assuming a closed world, we thus have
parent (Z2, Z1) = 0.

Accordingly, the learnt clause correctly outputs 0.
For some inputs, there can be many different ways variables can be assigned to constants

(for the output, variables are always assigned in a fixed order, from Z1 to Zz). Returning to
our grandparent example in Fig. 2, if we have:

Input : parent (Bob,Mary); parent (Mary, P eter); parent (Bob, Jane)

T arget output : grandparent (Bob, P eter).
replacing Bob with Z1 and Peter with Z2, we get:
Input : parent (Z1,Mary); parent (Mary, Z2);

parent (Z1, J ane)

T arget output : grandparent (Z1, Z2).
Above, both Mary and Jane are candidates for being Z3. One way to handle this ambigu-

ity is to try both, and pursue those that make the clause evaluate correctly, which is exactly
how the TM convolution operator works (Granmo et al., 2019).

Note that above, there is an implicit existential quantifier over Z3. That is, ∀Z1, Z2
(∃Z3(parent (Z1, Z3) ∧ parent (Z3, Z2) → grandparent (Z1, Z2)).

A practical view of how the TM learns in such a scenario is shown in Fig. 3. Continuing
in the same vein as the previous examples, the Input Text in the figure is a set of state-
ments, each followed by a question. The text is reduced to a set of relations, which act as the
features for the TM to learn from. The figure illustrates how the TM learns relevant infor-
mation (while disregarding the irrelevant), in order to successfully answer a new question

133Journal of Intelligent Information Systems (2022) 59:121–148

Fi
g.
3

T
he

R
el

at
io

na
lT

M
in

op
er

at
io

n

134 Journal of Intelligent Information Systems (2022) 59:121–148

(Test Document). The input text is converted into a features vector which indicates the pres-
ence or absence of relations (R1, R2) in the text, where R1 and R2 are respectively MoveT o

(in the statements) and WhereIs (in the question) relations. For further simplification and
compactness of representation, instead of using person and location names, those specific
details are replaced by (P1, P2) and (L1, L2), respectively. In each sample, the person name
that occurs first is termed P1 throughout, the second unique name is termed P2, and so on,
and similarly for the locations. As seen in the figure, the TM reduces the feature-set rep-
resentation of the input into a set of logical conditions or clauses, all of which together
describe scenarios in which the answer is L2 (or Location 2).

Remark 1 We now return to the implicit existential and universal quantifiers of the Horn
clauses, exemplified in: ∀Z1, Z2(∃Z3(parent(Z1, Z3) ∧ parent(Z3, Z2) → grandparent
(Z1, Z2)). A main goal of the procedure in Fig. 2 is to correctly deal with the quantifiers
“for all” and “exists”. “For all” maps directly to the TM architecture because the TM is
operating with conjunctive clauses and the goal is to make these evaluate to 1 (True) when-
ever the learning target is 1. “For all” quantifiers are taken care of in Step 3 of the relational
learning procedure.

Remark 2 “Exists” is more difficult because it means that we are looking for a specific value
for the variables in the scope of the quantifier that makes the expression evaluate to 1. This
is handled in the Steps 4-6 in Fig. 2, by evaluating all alternative values (all permutations
with multiple variables involved). Some values make the expression evaluate to 0 (False)
and some make the expression become 1. If none makes the expression 1, the output of
the clause is 0. Otherwise, the output is 1. Remarkably, this is exactly the behavior of the
TM convolution operator defined in Granmo et al. (2019), so we have an existing learning
procedure in place to deal with the “Exists” quantifier. (If there exists a patch in the image
that makes the clause evaluate to 1, the clause evaluates to 1).

4 QA in a relational TM framework

In this section, we describe the general pipeline to reduce natural language text into a
machine-understandable relational representation to facilitate question answering. Fig. 4
shows the pipeline diagrammatically, with a small example. Throughout this section, we
make use of two toy examples in order to illustrate the steps. One of them is derived
from a standard question answering dataset (Weston et al., 2015). The other is a simple
handcrafted dataset, inspired by Kowalski (1979), that refers to parent-child relationships
among a group of people. Both datasets consist of instances, where each instance is a set
of two or more statements, followed by a query. The expected output for each instance
is the answer to the query based on the statements. We would like to clarify here, that
we have chosen to highlight the details of our method with toy examples in this work,
due to ease of explainability. The ease arises primarily from the fact that the relations
that form a part of these two sets are well-understood, simple to describe and have well-
defined interactions between them. Further expansions on more advanced datasets, such as
SQUAD/SQUADv2.0 (which involves question-answering from longer context texts), as
well as on other real-world data is currently work in progress and beyond the scope of this
particular paper.

135Journal of Intelligent Information Systems (2022) 59:121–148

Fig. 4 General Pipeline

4.1 Relation extraction

As a first step, we need to extract the relation(s) present in the text. A relation here is a
connection between two (or more) elements of a text. As discussed before, relations occur
in natural language, and reducing a text to its constituent relations makes it more structured
while ignoring superfluous linguistic elements, leading to easier understanding. We assume
that our text consists of simple sentences, that is, each sentence contains only one relation.
The relation found in the query is either equal to, or linguistically related to the relations
found in the statements preceding the query.

Table 1 shows examples of Relation Extraction on our two datasets. In Example:Movement,
each statement has the relation “MoveTo”, while the query is related to “Location”. The
“Location” can be thought of as a result of the “MoveTo” relations. Example:Parentage has
“Parent” relations as the information and “Grandparent” as the query.

4.2 Entity extraction

Once the relations have been identified, the next step is to identify the elements of the text
(or the entities) that are participating in the respective relations. Doing so allows us to further
enrich the representation with the addition of restrictions (often real-world ones), which
allow the Relational TM to learn rules that best represent actions and their consequences in a
concise, logical form. Since the datasets we are using here consist only of simple sentences,
each relation is limited to having a maximum of two entities (the relations are unary or binary).

Table 1 Relation extraction

Sentence Relation
Mary went to the office. MoveTo

John moved to the hall MoveTo

Where is Mary? Location

Example:Movement

Sentence Relation
Bob is a parent of Mary. Parent

Bob is a parent of Jane. Parent

Mary is a parent of Peter Parent

Is Bob a grandparent of Peter? Grandparent

Example:Parentage

136 Journal of Intelligent Information Systems (2022) 59:121–148

Table 2 Entity extraction Sentence Relation Entities
Mary went to the office. MoveTo Mary, office

John moved to the hall MoveTo John, hall

Where is Mary? Location Mary, ?

Example:Movement

Sentence Relation Entities
Bob is a parent of Mary. Parent Bob, Mary

Bob is a parent of Jane. Parent Bob, Jane

Mary is a parent of Peter Parent Mary, Peter

Is Bob a grandparent of Peter? Grandparent Bob, Peter

Example:Parentage

In this step, the more external world knowledge that can be combined with the extracted
entities, the richer the resultant representation. In Table 2, Example:Movement, we could
add the knowledge that “MoveTo” relation always involves a “Person” and a “Location”. Or
in Example:Parentage, “Parent” is always between a “Person” and a “Person”. This could,
for example, prevent questions like “Jean-Joseph Pasteur was the father of Louis Pasteur.
Louis Pasteur is the father of microbiology. Who is the grandfather of microbiology?”

Note that, as per Fig. 4, it is only possible to start answering the query after both Rela-
tion Extraction and Entity Extraction have been performed, and not before. Knowledge
of the Relation also allows us to narrow down possible entities for answering the query
successfully.

4.3 Entity generalization

One of the drawbacks of the relational representation is that there is a huge increase in the
number of possible relations as more and more examples are processed. One way to reduce
the spread is to reduce individual entities from their specific identities to a more gener-
alised identity. Let us consider two instances : “Mary went to the office. John moved to the
hall. Where is Mary?” and “Sarah moved to the garage. James went to the kitchen. Where
is Sarah?”. Without generalization, we end up with six different relations : MoveTo(Mary,
Office), MoveTo(John, Hall), Location(Mary), MoveTo(Sarah, Garage), MoveTo(James,
Kitchen), Location(Sarah). However, to answer either of the two queries, we only need the
relations pertaining to the query itself. Taking advantage of that, we can generalize both
instances to just 3 relations: MoveTo(Person1, Location1), MoveTo(Person2, Location2) and
Location(Person1).

In order to prioritise, the entities present in the query relation are the first to be general-
ized. All occurrences of those entities in the relations preceding the query are also replaced
by suitable placeholders (Table 3).

The entities present in the other relations are then replaced by what can be considered as
free variables (since they do not play a role in answering the query) (Table 4).

In the next section we explain how this relational framework is utilized for question
answering using TM.

We have not gone into the details of the relation extraction and entity extraction processes
in this work. Depending upon the initial data, there can be different strategies for the same.
In a related work using TM on natural text data, the researchers show that a TM based
classification mechanism successfully identifies various semantic relation the text. Such a
system could be a possible way to identify and extract various relations from the text. On
the other hand, there are also existing methods that can be used for relation identification.

137Journal of Intelligent Information Systems (2022) 59:121–148

Table 3 Entity generalization : Part 1

Sentence Relation Entities Reduced Relation
Mary went to the office. MoveTo Mary, office Source MoveTo(X, office)

John moved to the hall. MoveTo John, hall Source MoveTo(John, hall)

Where is Mary? Location Mary, ? Target Location(X, ?)

Example:Movement

Sentence Relation Entities Reduced Relation
Bob is a parent of Mary. Parent Bob, Mary Source Parent(X, Mary)

Bob is a parent of Jane. Parent Bob, Jane Source Parent(X,Jane)

Mary is a parent of Peter Parent Mary, Peter Source Parent(Mary, Y)

Is Bob a grandparent

of Peter?

Grand-

parent
Bob, Peter Target Grandparent(X, Y)

Example:Parentage

For example, in one of our ongoing work, we use data derived from the PULSAR system,
where raw natural language text on various human rights violations from across the world
has already been processed by experts into a database-based ecosystem (Park et al., 2020).
The relational aspect of a database system allows for access to relations and entities that
have already been extracted with a certain level of confidence, and leaves our system to
focus on enhancing existing logical constructs or extracting newer ones based on the given
information. A similar approach would be to use available knowledge-bases, e.g. NELL or
Freebase, to use extracted relations as an initial ’seed’ set to infer or extract newer ones.

4.4 Computational complexity in relation TM

One of the primary differences between the relational framework proposed in this paper
versus the existing TM framework lies in Relation Extraction and Entity Generalization.
The reason for these steps is that they allow us more flexibility in terms of what the TM
learns, while keeping the general learning mechanism unchanged.

Extracting relations allows the TM to focus only on the major operations expressed via
language, without getting caught up in multiple superfluous expressions of the same thing.
It also enables to bridge the gap between structured and unstructured data. Using relations
helps the resultant clauses be closer to real-world phenomena, since they model actions and
consequences, rather than the interactions between words.

Entity Generalization allows the clauses to be succinct and precise, adding another layer
of abstraction away from specific literals, much like Relation Extraction. It also gives the

Table 4 Entity Generalization : Part 2

Sentence Relation Entities Reduced Relation
Mary went to the office. MoveTo Mary, office Source MoveTo(X, A)

John moved to the hall. MoveTo John, hall Source MoveTo(Y, B)

Where is Mary? Location Mary, ? Target Location(X, ?)

Example:Movement

Sentence Relation Entities Reduced Relation
Bob is a parent of Mary. Parent Bob, Mary Source Parent(X, Z)

Bob is a parent of Jane. Parent Bob, Jane Source Parent(X, W)

Mary is a parent of Peter Parent Mary, Peter Source Parent(Z, Y)

Is Bob a grandparent

of Peter?

Grand-

parent
Bob, Peter Target Grandparent(X, Y)

Example:Parentage

138 Journal of Intelligent Information Systems (2022) 59:121–148

added benefit of making the learning of the TM more generalized. In fact, due to this pro-
cess, the learning reflects ‘concepts’ gleaned from the training examples, rather than the
examples themselves.

To evaluate computational complexity, we employ the three costs α, β, and γ , where
in terms of computational cost, α is cost to perform the conjunction of two bits, β is cost
of computing the summation of two integers, and γ is cost to update the state of a single
automaton. In a Propositional TM, the worst case scenario would be the one in which all the
clauses are updated. Therefore, a TM with m clauses and an input vector of o features, needs
to perform (2o + 1) × m number of Tsetlin automaton (TA) updates for a single training
sample. For a total of d training samples, the total cost of updating is d × γ × (2o+ 1)×m.

Once weight updates have been successfully performed, the next step is to calculate
the clause outputs. Here the worst case is represented by all the clauses including all the
corresponding literals, giving us a cost of α × 2o × m (for a single sample).

The last step involves calculating the difference in votes from the clause outputs, thus
incurring a per-sample cost of β × (m − 1).

Taken together, the total cost function for a Propositional TM can be expressed as:

f (d) = d × [(γ × (2o + 1) × m) + (α × 2o × m) + (β × (m − 1))] (5)

Expanding this calculation to the Relation TM scenario, we need to account for the extra
operations being performed, as detailed earlier: Relation Extraction and Entity Generaliza-
tion. The number of features per sample is restricted by the number of possible relations,
both in the entirety of the training data, as well as only in the context of a single sample.
For example, in the experiments involving “MoveTo” relations, we have restricted our data
to have 3 statements, followed by a question (elaborated further in the next section). Each
statement gives rise to a single “MoveTo” relation, which has 2 entities (a location and a
person).

When using the textual constants (i.e., without Entity Generalization), the maximum num-
ber of possible features thus becomes equal to the number of possible combination between
the unique entities in the relations. Thus if each sample contains r Relations, and a Rela-
tion R involves e different entities (E1, E2, ..., Ee), and cardinality of sets E1, E2, ..., Ee be
represented as |E1|, |E2|, ..., |Ee|, the number of features in Eq. 5 can be re-written as

o = [|E1| × |E2| × ... × |Ee|] × r .
As discussed earlier in Section 4.3 as well as shown in the previous paragraph, this

results in a large o, since it depends on the number of unique textual elements in each of the
entity sets. Using Entity Generalization, the number of features no longer depends on the
cardinality of set En, 1 ≤ n ≤ e in the context of the whole dataset. Instead, it only depends
on the context of the single sample. Thus, if each sample contains r Relations, and a Relation
R involves e different entities (E1, E2, ..., Ee), and maximum possible cardinality of sets
E1, E2, ..., Ee are |E1| = |E2| = ... = |En| = r , the number of features simply become :

o = r(e+1).
In most scenarios, this number is much lower than the one obtained without the use of

Entity Generalization.
A little further modification is required when using the convolutional approach. In cal-

culating f (d), the measure of o remains the same as we just showed with/without Entity
Generalization. However the second term in the Eq. 5, which refers to the calculation of
clause outputs (d × α × 2o × m), changes due to the difference in the mechanism of cal-
culating outputs for convolutional and non-convolutional approaches. In the convolutional
approach, with Entity Generalization, we need to consider free and bound variables in the
feature representation. Bound variables are the ones which are linked by appearance in the

139Journal of Intelligent Information Systems (2022) 59:121–148

source and target relations, while the other variables, which are independent of that restric-
tion, can be referred to as the free variables. Each possible permutation of the free variables
in different positions are used by the convolutional approach to determine the best generic
rule that describes the scenario. In certain scenarios, it may be possible to have certain per-
mutations among the bound variables as well, without violating the restrictions added by
the relations. One such scenario is detailed with an example in Section 5.2, where a bound
“Person” entity can be permuted to allow any other “Person” entity, as long as the order of
“MoveTo” relations are not violated. However, it is difficult to get a generic measure for
the same, which would work irrespective of the nature of the relation (or their restrictions).
Therefore, for the purpose of this calculation, we only take into account the permutations
afforded to us by the free variable. Using the same notation as before, if each sample con-
tains r Relations, and a Relation R involves e different entities, the total number of variables
is R×e. Of these, if v is the number of free variables, then they can be arranged in v! differ-
ent ways. Assuming v is constant for all samples, the worst case f (d) from Eq. 5 can thus
be rewritten as:

f (d) = d × [(γ × (2o + 1) × m) + (v! × α × 2o × m) + (β × (m − 1))] (6)

5 Experimental study

To further illustrate how the TM based logic modelling works practically, we employ exam-
ples from a standard question answering dataset (Weston et al., 2015), which defines a set
of prerequisite tasks as part of QA. For the scope of this work, we limit ourselves to the
first subtask as defined in the dataset, viz. a question that can be answered by the preceding
context, and the context contains a single supporting fact.

To start with, there is a set of statements, followed by a question, as discussed previously.
For this particular subtask, the answer to the question is obtained by a single statement out
of the set of statements provided (hence the term, single supporting fact). Choosing samples
where the context contained a maximum of 6 sentences, this resulted in a set of 6000 unique
sentences.

Input:William moved to the office. Susan went to the garden. William walked to the
pantry. Where is William?

Output: pantry
We assume the following knowledge to help us construct the task:

1. All statements only contain information pertaining to relation MoveTo
2. All questions only relate to information pertaining to relation CurrentlyAt
3. Relation MoveTo involves 2 entities, such that MoveT o(a, b) : a ∈ {Persons},

b ∈ {Locations}
4. Relation CurrentlyAt involves 2 entities, such that CurrentlyAt(a, b) : a ∈

{Persons}, b ∈ {Locations}
5. MoveTo is a time-bound relation, it’s effect is superseded by a similar action performed

at a later time. In this scenario, ‘later time’ is indicated by position in text.

5.1 Without entity generalization

The size of the set of statements from which the model has to identify the correct answer
influences the complexity of the task. For the purpose of this experiment, the data is capped

140 Journal of Intelligent Information Systems (2022) 59:121–148

to have a maximum of three statements per input, and over all has five possible locations.
This means that the task for the TM model is reduced to classifying the input into one of
five possible classes.

To prepare the data for the TM, the first step involves reducing the input to relation-entity
bindings. These bindings form the basis of our feature set, which is used to train the TM.
We encode sentence order into the features as well, since MoveTo is time-sensitive (as
mentioned in assumed world knowledge previously). Consider the following input example:

Input => MoveTo(S1,William,Office), MoveTo(S2, Susan,Garden), MoveTo(S3,

William, Pantry), Q(William).
Since the TM requires binary features, each input is converted to a vector, where each

element represents the presence (or absence) of the relationship instances. Secondly, the list
of possible answers is obtained from the data, which is the list of class labels. Continuing
our example, possible answers to the question could be:

Possible Answers : [Office, Pantry, Garden, Foyer, Kitchen]
Once training is complete, we can use the inherent interpretability of the TM to get

an idea about how the model learns to discriminate the information given to it. The set
of all clauses arrived at by the TM at the end of training represents a global view of the
learning, i.e. what the model has learnt in general. The global view can also be thought of
as a description of the task itself, as understood by the machine. We also have access to a
local snapshot, which is particular to each input instance. The local snapshot involves only
those clauses that help in arriving at the answer for that particular instance.

Table 5 shows the local snapshot obtained for the above example. As mentioned earlier,
the TM model depends on two sets of clauses for each class, a positive set and a negative set.
The positive set represents information favour of the class, while the negative set represents
the opposite. The sum of the votes given by these two sets thus represent the final class the
model decides on. As seen in the example, all the classes other than “Pantry” receive more
negative votes than positive, making it the winning class. The clauses themselves allow us

Table 5 Local Snapshot of Clauses for example “William moved to the office. Susan went to the garden.
William walked to the pantry. Where is William?” The winning vote is indicated in bold

Class Clause +/- Votes

Total

Votes

for Class

Office
Q(William) AND MoveTo(S1,William, Office) + 12

-35
Q(William) AND MoveTo(S1,William, Office)

AND MoveTo(S3,William, Pantry)
- 47

Pantry

Q(William) AND MoveTo(S1,William, Office)

AND MoveTo(S3,William, Pantry)
+ 64

+49

Q(William) AND MoveTo(S1,William, Office) - 15

Garden
MoveTo(S2,Susan, Garden) + 12

-36
Q(William) AND MoveTo(S1,William, Office)

AND MoveTo(S3,William, Pantry)
- 48

Foyer
- + 0

-106
Q(William) AND MoveTo(S1,William, Office)

AND MoveTo(S3,William, Pantry)

AND MoveTo(S2,Susan, Garden)
- 106

Kitchen
- + 0

-113
Q(William) AND MoveTo(S1,William, Office)

AND MoveTo(S3,William, Pantry)

AND MoveTo(S2,Susan, Garden)
- 113

141Journal of Intelligent Information Systems (2022) 59:121–148

to peek into the learning mechanism. For the class “Office”, a clause captures the informa-
tion that (a) the question contains “William”, and (b) the relationship MoveTo(S1,William,
Office) is available. This clause votes in support of the class, i.e. this is an evidence that
the answer to the question “Where is William?” may be “Office”. However, another clause
encapsulates the previous two pieces of information, as well as something more : (c) the rela-
tionship MoveTo(S3,William, Pantry) is available. Not only does this clause vote against the
class “Office”, it also ends up with a larger share of votes than the clause voting positively,
thus pushing “Office” out of contention.

The accuracy obtained over 100 epochs for this experiment was 94.83%, with a F-score
of 94.80.

5.1.1 Allowing negative literals in clauses

Above results were obtained by only allowing positive literals in the clauses. The descriptive
power of the TM goes up if negative literals are also added. However, the drawback to that
is, while the TM is empowered to make more precise rules (and by extension, decisions),
the overall complexity of the clauses increase, making them less readable. Using the above
example again, if we do allow negative literals the positive evidence for Class Office looks
like:

Q(William) AND Not(Q(Susan)) AND MoveT o(S1,William, Off ice) AND

Not(MoveT o(S3,William, Garden)) AND Not(MoveT o(S3,William, Foyer))

AND Not(MoveT o(S3,William, Kitchen)) AND

Not(MoveT o(S3, Susan,Garden)) AND Not(MoveT o(S3, Susan, Off ice))

AND Not(MoveT o(S3, Susan, Pantry)) AND Not(MoveT o(S3, Susan, Foyer))

AND Not(MoveT o(S3, Susan, Kitchen)).
At this point, we can see that the use of constants lead to a large number of repetitive

information in terms of the rules learnt by the TM. Generalizing the constants as per their
entity type can prevent this.

5.2 Entity generalization

Given a set of sentences and a following question, the first step remains the same as in the
previous subsection, i.e. reducing the input to relation-entity bindings. In the second step,
we carry out a grouping by entity type, in order to generalize the information. Once the
constants have been replaced by general placeholders, we continue as previously, collecting
a list of possible outputs (to be used as class labels), and further, training a TM based model
with binary feature vectors.

As before, the data is capped to have a maximum of three statements per input.
Continuing with the same example as above,

Input:William moved to the office. Susan went to the garden. William walked to the
pantry. Where is William?

Output: pantry
1. Reducing to relation-entity bindings:
Input => MoveT o(S1,William, Off ice), MoveT o(S2, Susan, Garden),

MoveT o(S3,William, Pantry), Q(William).
2. Generalizing bindings:
Modified=> MoveT o(S1, P er1, Loc1), MoveT o(S2, P er2, Loc2),

MoveT o(S3, P er1, Loc3), Q(Per1)

3. Possible Answers : [Loc1, Loc2, Loc3]

142 Journal of Intelligent Information Systems (2022) 59:121–148

Table 6 Clause snapshot for ”William moved to the office. Susan went to the garden. William walked to the
pantry. Where is William?” after generalization. The winning vote is indicated in bold

Class Clause +/- Votes

Total

Votes

for Class

Loc1
Q(Per1) AND MoveTo(S1,Per1, Loc1) + 3

-44
Q(Per1) AND MoveTo(S1,Per1, Loc1)

AND MoveTo(S3,Per1, Loc3)
- 47

Loc2
MoveTo(S1,Per1, Loc1) + 2

-88
Q(Per1) AND MoveTo(S3,Per1, Loc3) - 90

Loc3

Q(Per1) AND MoveTo(S1,Per1, Loc1)

AND MoveTo(S3,Per1, Loc3)
+ 51

+51

- - 0

The simplifying effect of generalization is seen right away: even though there are 5 pos-
sible location in the whole dataset, for any particular instance there are always maximum of
three possibilities, since there are maximum three statements per instance.

As seen from the local snapshot (Table 6), the clauses formed are much more compact
and easily understandable. The generalization also releases the TM model from the restric-
tion of having had to seen definite constants before in order to make a decision. The model
can process “Rory moved to the conservatory. Rory went to the cinema. Cecil walked to the
school. Where is Rory?”, without needing to have encountered constants “Rory”, “Cecil”,
“school”, “cinema” and “conservatory”.

Accuracy for this experiment over 100 epochs was 99.48% , with a F-score of 92.53.
A logic based understanding of the relation “Move” could typically be expressed as :
→ MoveT o(S1,William, off ice) + MoveT o(S2, Susan, garden) +

MoveT o(S3,William, pantry)

→ MoveT o(S1, P1, off ice)+MoveT o(S2, P2, garden)+MoveT o(S3, P1, pantry)

→ MoveT o(S1, P1, L1) + MoveT o(S2, P2, L2) + MoveT o(S3, P1, L3)

→ MoveT o(S1, P1, L1) + ∗ + MoveT o(Sn, P1, Ln)

=⇒ Location(P1, Ln).
From the above two subsections, we can see that with more and more generalization, the

learning encapsulated in the TM model can approach what could possibly be a human-level
understanding of the world.

Moreover, as shown in Table 7, compared to the Propositional TM, not only does the
Relational TM give a more compact and easily understandable explanation, it also has the

Table 7 Representative Winning Clauses for “William moved to the office

Propositional TM Relational TM Relational TM with entity
generalization

Q(William) AND Q(Where) AND
S1 William AND S1 Office AND
S1 moved AND S3 William
AND S3 Pantry AND S3 walked
AND NOT(S3 Garden) AND
NOT(S3 Susan)

Q(William) AND
MoveTo (S1,William,
Office) AND MoveTo
(S3,William, Pantry)

Q(Per1) AND
MoveTo(S1,Per1,
Loc1) AND
MoveTo(S3,Per1, Loc3)

Susan went to the garden. William walked to the pantry. Where is William?” with Propositional, Relational
and Relational TM with Entity Generalization

143Journal of Intelligent Information Systems (2022) 59:121–148

added advantage of allowing reasoning to be built on top of obtained explanations (as dis-
cussed above). How different entities interact with each other in a given environment, and
what is the result of those interactions, is something that is very important to be able to
successfully model the world around us, rather than just the presence (or absence) of cer-
tain words in a textual description of that environment. This can only be captured by the
Relational TM, and not by the propositional one.

5.3 Variable permutation and convolution

As described in Section 3.2.5, we can produce all possible permutations of the available
variables in each sample (after Entity Generalization) as long as the relation constraints are
not violated. Doing this gives us more information per sample:

Input:William moved to the office. Susan went to the garden. William walked to the
pantry. Where is William?

Output: pantry
1. Reducing to relation-entity bindings:
Input => MoveT o(S1,William, Off ice), MoveT o(S2, Susan,Garden),

MoveT o(S3,William, Pantry), Q(William).
2. Generalizing bindings:
Modified=> MoveT o(S1, P er1, Loc1), MoveT o(S2, P er2, Loc2),

MoveT o(S3, P er1, Loc3), Q(Per1)

3. Performing Permutations:
Permuted=> MoveT o(S1, P er2, Loc1), MoveT o(S2, P er1, Loc2),

MoveT o(S3, P er2, Loc3), Q(Per2)

4. Possible Answers : [Loc1, Loc2, Loc3]
This has two primary benefits. Firstly, in a scenario where the given data does not encom-

pass all possible structural differences in which a particular information maybe represented,
using the permutations allows the TM to view a closer-to-complete representation from
which to build it’s learning (and hence, explanations). Moreover, since the TM can learn
different structural permutations from a single sample, it ultimately requires fewer clauses
to learn effectively. In our experiments, permutations using Relational TM Convolution
allowed for up to 1.5 times less clauses than using a non-convolutional approach.

As detailed in Section 4.4, convolutional and non-convolutional approaches have differ-
ent computational complexity. Hence, the convolutional approach makes sense only when
the reduction in complexity from fewer clauses balance the increase due to processing the
convolutional window itself.

5.4 Comparison with some other QA approaches

We use the following related approaches as a guide for judging the performance of the
proposed method on the task (Table 8). All the approaches were trained (where applicable)
and tested on the same set as described earlier for our proposed approach, i.e. collection

Table 8 Comparing accuracies with other QA approaches

Method Relational TM RTM+ Entity
Gen.

Mem Net Cross- encoders BART BERT+ Bi-
Encoder

Accuracy 94.8 99.5 98.2 99.6 98.5 84.5

144 Journal of Intelligent Information Systems (2022) 59:121–148

of 6000 samples from the single supporting fact dataset. Implementations of the same have
been suitably modified from the ParlAI platform (Miller et al., 2017).

– MemNet (Weston et al., 2014) integrates basic inference with long-term memory
component that is used for prediction of output (or answer).

– Cross-encoders (Wolf et al., 2019) perform full (cross) self-attention over a given input
and label candidate (with pre-trained representations). This is a neural network based
model.

– BART (Lewis et al., 2019) adds noise to the text and trains by learning a model to
reconstruct the original. This is a Tranformer-based neural machine translation model.

– BERT-based Bi-encoder (Lu et al., 2020) which uses two separate representations of
the document and query based on a BERT-like model. We use the pre-trained large
language model as available and do not train it specifically on our data.

While detailed comparisons in terms of memory usage and training times with these models
are beyond the scope of this work, other researchers have favourably compared the perfor-
mance of Tsetlin Machine based systems to similar models (Yadav et al., 2021b; Bhattarai
et al., 2021). As an example, while the MemNet takes an average of 220 seconds to train on
the current dataset, the RTM takes 218 seconds (both averaged over 100 separate runs).

5.5 Noise tolerance

To verify our claims of noise tolerance as shown by the TM based architecture, the above
experiments were repeated, but with increasing amount of noise artificially introduced into
the training data. The results are shown in Table 9. We observe that with 1%, 2%, 5% and
10% of noise, the testing accuracy fell only by approximately 1.1 percentage points each
time when entity generalization was used.

Along with the obvious strengths of having a transparent explainable system, the noise
tolerance is one of the more compelling pros of the TM based solution. Typical methods
are more isomorphic to the text provided, along with its imperfections, and not capable of
generalizing like the TM. Comparing with accuracies obtained from a few other standard
classification techniques, viz. CNN-LSTM, Naive Bayes, and Random Forests, the drop is
on average 3-5%.

5.6 Horn clause representation

The example elaborated in the previous section can be formulated as the following Horn
clause representation:

1. Person(Susan).
2. Person(William).
3. Location(Off ice).
4. Location(Garden).

Table 9 Average accuracy on test with increase in error in training data

Error Rate 0% 1% 2% 5% 10%

Accuracy 99.48 98.79 98.24 97.02 95.08

145Journal of Intelligent Information Systems (2022) 59:121–148

5. Location(Pantry).
6. CurrentlyAt(Susan, Pantry).
7. CurrentlyAt(William, Pantry).
8. MoveT o(Susan,Garden) ← Person(Susan), Location(Garden), not

CurrentlyAt(Susan, Garden)

9. MoveT o(William, Off ice) ← Person(William), Location(Off ice),

not CurrentlyAt(William, Off ice).

After generalization, we substitute ground rules 8 and 9 with the following rule:

10. MoveT o(P,L) ← Person(P), Location(L), not CurrentlyAt(P,L).

The above set of Horn clauses define the immediate consequences operator whose LFP
represents the Herbrand interpretation of our QA framework.

6 Conclusion

Making interpretable logical decisions in question answering system is an area of active
research. In this work, we propose a novel relational logic based TM framework to approach
QA tasks systematically. Our proposed method takes advantage of noise tolerance showed
by TMs to work in uncertain or ambiguous contexts. We reduce the context-question-answer
tuples to a set of logical arguments, which is used by the TM to determine rules that mimic
real-world actions and consequences.

The resulting TM is relational (as opposed to the previously propositional TM) and can
take work on logical structures that occur in natural language in order to encode rules rep-
resenting actions and effects in the form of Horn clauses. We show initial results using the
Relational TM on artificial datasets of closed-domain question answering, and those results
are extremely promising. The use of first-order representations, as described in this paper,
allows KBs to be up to 10 times smaller, while at the same time showing an answering
accuracy increase of almost 5% to 99.48%.

Further work on this framework will involve a larger number of relations, with greater
inter-dependencies, and analyzing how well the TM can learn the inherent logical structure
governing such dependencies. We also intend to introduce recursive Horn clauses to make
the computing power of the Relational TM equivalent to a universal Turing machine. More-
over, we wish to experiment with this framework on real-world natural language datasets,
rather than on toy ones. A prominent example is exploring large corpus of documents related
to human rights violation and using them to assess risks of social instability. We expect that
the resultant logic structures will be large and complicated, however, once obtained, can be
used to effectively translate to and fro between the machine world and the real world.

Data Availability The toy tasks dataset analysed during the current study are available publicly in the
BABI repository (http://www.thespermwhale.com/jaseweston/babi/tasks 1-20 v1-2.tar.gz). The data refer-
ring to parent-child relationships, generated for analysis during the current study are available from the
corresponding author on reasonable request.

Declarations

Conflict of Interest The Authors declare that there is no conflict of interest.

146 Journal of Intelligent Information Systems (2022) 59:121–148

http://www.thespermwhale.com/jaseweston/babi/tasks_1-20_v1-2.tar.gz

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abeyrathna, K. D., Granmo, O. C., & Goodwin, M. (2021). extending the tsetlin machine with Integer-
Weighted clauses for increased interpretability. IEEE Access, 9.

Abeyrathna, K. D., Granmo, O. C., Zhang, X., Jiao, L., & Goodwin, M. (2019). The regression tsetlin
machine - a novel approach to interpretable Non-Linear regression. Philosophical Transactions of the
Royal Society A, 378.

Berge, G. T., Granmo, O. C., Tveit, T. O., Goodwin, M., Jiao, L., & Matheussen, B.V. (2019). Using the
Tsetlin Machine to learn human-interpretable rules for high-accuracy text categorization with medical
applications. IEEE Access, 7, 115134–115146.

Bhattarai, B., Jiao, L., & Granmo, O.C. (2021). Measuring the Novelty of Natural Language Text Using the
Conjunctive Clauses of a Tsetlin Machine Text Classifier. In 13Th international conference on agents
and artificial intelligence (ICAART 2021). INSTICC.

Blakely, C. D., & Granmo, O. C. (2020). Closed-Form Expressions for Global and Local Interpretation of
Tsetlin Machines with Applications to Explaining High-Dimensional Data. arXiv:2007.13885.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008). Freebase: a collaboratively created graph
database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD international
conference on Management of data (pp. 1247–1250).

Bratko, I., & Muggleton, S. (1995). Applications of inductive logic programming. Communications of the
ACM, 38(11), 65–70.

Cropper, A., Dumančić, S., & Muggleton, S.H. (2020). Turning 30: New ideas in inductive logic program-
ming. arXiv:2002.11002.

Cyras, K., Badrinath, R., Mohalik, S. K., Mujumdar, A., Nikou, A., Previti, A., Sundararajan, V., & Feljan,
A. V. (2020). Machine reasoning explainability. arXiv:2009.00418.

De Raedt, L., & Kersting, K. (2008). Probabilistic inductive logic programming. In Probabilistic inductive
logic programming (pp. 1–27). Springer.

Dong, J. S., Sun, J., & Wang, H. (2003). Checking and reasoning about semantic web through alloy. In
International symposium of formal methods europe (pp. 796–813). Springer.

Gallaire, H., Minker, J., & Nicolas, J. M. (1989). Logic and databases: a deductive approach. In Readings in
artificial intelligence and databases (pp. 231–247). Elsevier.

Granmo, O. C. (2018). The Tsetlin Machine - A Game Theoretic Bandit Driven Approach to Optimal Pattern
Recognition with Propositional Logic. arXiv:1804.01508.

Granmo, O. C., Glimsdal, S., Jiao, L., Goodwin, M., Omlin, C. W., & Berge, G.T. (2019). The Convolutional
Tsetlin Machine. arXiv:1905.09688.

Green, C. (1969). Theorem proving by resolution as a basis for question-answering systems. Machine
Intelligence, 4, 183–205.

Jarke, M., Gallersdörfer, R., Jeusfeld, M. A., Staudt, M., & Eherer, S. (1995). Conceptbase—a deductive
object base for meta data management. Journal of Intelligent Information Systems, 4(2), 167–192.

Jung, H., & Kim, W. (2020). Automated conversion from natural language query to sparql query. Journal of
Intelligent Information Systems, 1–20.

Kowalski, R. (1979). Algorithm= logic+ control. Communications of the ACM, 22(7), 424–436.
Kowalski, R. (2014). Logic programming. In J. H. Siekmann (Ed.) Computational logic, handbook of

the history of logic, (Vol. 9 pp. 523–569). North-holland. https://doi.org/10.1016/B978-0-444-51624-
4.50012-5.

Kramer, S., Lavrač, N., & Flach, P. (2001). Propositionalization approaches to relational data mining.
Relational data mining, 262–291.

Lei, J., Rahman, T., Shafik, R., Wheeldon, A., Yakovlev, A., Granmo, O. C., Kawsar, F., & Mathur, A. (2021).
Low-Power Audio Keyword Spotting using Tsetlin Machines. arXiv:2101.11336.

147Journal of Intelligent Information Systems (2022) 59:121–148

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2007.13885
http://arxiv.org/abs/2002.11002
http://arxiv.org/abs/2009.00418
http://arxiv.org/abs/1804.01508
http://arxiv.org/abs/1905.09688
https://doi.org/10.1016/B978-0-444-51624-4.50012-5
https://doi.org/10.1016/B978-0-444-51624-4.50012-5
http://arxiv.org/abs/2101.11336

Lei, J., Wheeldon, A., Shafik, R., Yakovlev, A., & Granmo, O.C. (2020). From arithmetic to logic based AI:
a comparative analysis of neural networks and tsetlin machine. In 27Th IEEE international conference
on electronics circuits and systems (ICECS2020). IEEE.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., & Zettlemoyer, L.
(2019). Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. arXiv:1910.13461.

Lloyd, J. (1984). Foundations of logic programming. New York: Springer.
Lu, W., Jiao, J., & Zhang, R. (2020). Twinbert: Distilling knowledge to twin-structured compressed bert mod-

els for large-scale retrieval. In Proceedings of the 29th ACM International Conference on Information &
Knowledge Management (pp. 2645–2652).

Ludwig, S. A. (2010). Comparison of a deductive database with a semantic web reasoning engine.
Knowledge-Based Systems, 23(6), 634–642.

Miller, A. H., Feng, W., Fisch, A., Lu, J., Batra, D., Bordes, A., Parikh, D., & Weston, J. (2017). Parlai: A
dialog research software platform. arXiv:1705.06476.

Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Yang, B., Betteridge, J., Carlson, A., Dalvi, B., Gardner,
M., Kisiel, B., & et al. (2018). Never-ending learning. Communications of the ACM, 61(5), 103–115.

Nickles, M., & Mileo, A. (2014). Probabilistic inductive logic programming based on answer set program-
ming. arXiv:1405.0720.

Park, B., Greene, K., & Colaresi, M. (2020). How to teach machines to read human rights reports and identify
judgments at scale. Journal of Human Rights, 19(1), 99–116.

Phoulady, A., Granmo, O. C., Gorji, S. R., & Phoulady, H.A. (2019). The Weighted Tsetlin Machine:
Compressed Representations with Weighted Clauses. arXiv:1911.12607.

Prager, J. M. (2006). Open-domain question-answering. Found Trends Inf Retr, 1(2), 91–231.
Pundge, A. M., Khillare, S., & Mahender, C. N. (2016). Question answering system, approaches and

techniques: a review. International Journal of Computer Applications, 141(3), 0975–8887.
Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+ questions for machine

comprehension of text. arXiv:1606.05250.
Saha, R., Granmo, O. C., & Goodwin, M. (2020). Mining Interpretable Rules for Sentiment and Seman-

tic Relation Analysis using Tsetlin Machines. In Lecture Notes in Computer Science: Proceedings of
the 40th International Conference on Innovative Techniques and Applications of Artificial Intelligence
(SGAI-2020). Springer.

Shafik, R., Wheeldon, A., & Yakovlev, A. (2020). Explainability and Dependability Analysis of Learning
Automata based AI Hardware. In IEEE 26Th international symposium on on-line testing and robust
system design (IOLTS). IEEE.

Soares, M. A. C., & Parreiras, F. S. (2020). A literature review on question answering techniques, paradigms
and systems. Journal of King Saud University-Computer and Information Sciences, 32(6), 635–646.

Srinivasan, V., Santhanam, S., & Shaikh, S. (2021). Using reinforcement learning with external rewards for
open-domain natural language generation. Journal of Intelligent Information Systems, 56(1), 189–206.

Tsetlin, M. L. (1961). On behaviour of finite automata in random medium. Avtom I Telemekhanika, 22(10),
1345–1354.

Turhan, A. Y. (2011). Description logic reasoning for semantic web ontologies. In Proceedings of the
International Conference on Web Intelligence, Mining and Semantics (pp. 1–5).

Weston, J., Bordes, A., Chopra, S., Rush, A. M., van Merriënboer, B., Joulin, A., & Mikolov, T. (2015).
Towards ai-complete question answering: A set of prerequisite toy tasks. arXiv:1502.05698.

Weston, J., Chopra, S., & Bordes, A. (2014). Memory networks. arXiv:1410.3916.
Wheeldon, A., Shafik, R., Yakovlev, A., Edwards, J., Haddadi, I., & Granmo, O.C. (2020). Tsetlin machine:

a new paradigm for pervasive AI. In SCONA Workshop at design, automation and test in europe (DATE
2020).

Wolf, T., Sanh, V., Chaumond, J., & Delangue, C. (2019). Transfertransfo: A transfer learning approach for
neural network based conversational agents. arXiv:1901.08149.

Yadav, R. K., Jiao, L., Granmo, O. C., & Goodwin, M. (2021). Human-Level interpretable learning for
Aspect-Based sentiment analysis. In The thirty-fifth AAAI conference on artificial intelligence (AAAI-
21). AAAI.

Yadav, R. K., Jiao, L., Granmo, O. C., & Goodwin, M. (2021). Interpretable classification of word sense dis-
ambiguation using tsetlin machine. In 13Th international conference on agents and artificial intelligence
(ICAART 2021). INSTICC.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

148 Journal of Intelligent Information Systems (2022) 59:121–148

http://arxiv.org/abs/1910.13461
http://arxiv.org/abs/1705.06476
http://arxiv.org/abs/1405.0720
http://arxiv.org/abs/1911.12607
http://arxiv.org/abs/1606.05250
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1901.08149

	A relational tsetlin machine with applications to natural language understanding
	Abstract
	Introduction
	Closed-Domain Question-Answering:
	Paper Contributions:
	Paper Organization:

	Background and related work
	Building a relational tsetlin machine
	Tsetlin machine foundation
	Classification
	Learning

	Relational tsetlin machine
	Model-theoretical interpretation
	Learning problem
	Relational tsetlin machine with constants
	Detaching the relational TM from constants
	Relational tsetlin machine convolution over variable assignment permutations
	Walk-through of algorithm with example learning problem

	QA in a relational TM framework
	Relation extraction
	Entity extraction
	Entity generalization
	Computational complexity in relation TM

	Experimental study
	Without entity generalization
	Allowing negative literals in clauses

	Entity generalization
	Variable permutation and convolution
	Comparison with some other QA approaches
	Noise tolerance
	Horn clause representation

	Conclusion
	References

