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instance wildfires, droughts, and the outbreak of pest spe-
cies as temperatures are rising (Seidl et al. 2017). However, 
the consequences of such disturbances can be quite distinct 
in different ecosystems. Due to their comparatively long 
live spans, trees for example can only adapt slowly to envi-
ronmental changes and are therefore particularly affected by 
climate change (Brodribb et al. 2020). Accordingly, Seidl 
et al. (2014) forecasted that 60 million m3 of timber will 
be annually damaged in Europe by storms and bark beetle 
outbreaks between 2021 and 2030. Since forests cover 30% 
of our planet’s land mass (FAO 2020) and provide important 
resources along with many ecosystem services (Seidl et al. 
2014; Morris et al. 2016; Muys et al. 2022), the predicted 
forest dieback will have serious consequences (IPCC 2022).

Forests harbor a substantial share of the global terrestrial 
biodiversity (Brodribb et al. 2020). This is true especially for 
tropical rainforests (Erwin 1982; Pillay et al. 2022), while 
intensively managed European forests are considered to be 

Introduction

Anthropogenic climate change is one of the biggest chal-
lenges of our time. Recently, scientists projected that the 
1.5-degree target, agreed upon at the UN climate change 
conference 2015 in Paris (United Nations 2015), will most 
likely be exceeded even earlier than expected (IPCC 2022). 
This will have considerable impacts on human societies, but 
also on ecosystems and the services they provide for human-
ity (IPCC, 2018). For example, the frequency of climate-
induced disturbances is constantly increasing, including for 
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Abstract
Anthropogenic climate change poses a major threat to ecosystems and their biodiversity. Forests, for example, are suffer-
ing from climate-amplified disturbances like droughts or pest outbreaks. Throughout Europe, such disturbances resulted 
in large-scale diebacks of managed spruce stands in recent years. While such stands are often salvage-logged to reduce 
economic losses, it is still rather unclear how post-disturbance management affects forest biodiversity in anthropogenic 
spruce stands. By comparing epigeal beetle communities among salvage-logged sites, standing deadwood patches, and 
succession areas, we show that spruce dieback can be a chance for biodiversity conservation. Even though individual 
beetle families responded partly differently to post-disturbance management, standing deadwood enhanced the overall 
diversity of ground-dwelling beetles compared to salvage logging, while succession sites were intermediate. We also show 
that community composition and functional guilds vary strongly between management categories.

Implications for insect conservation: We suggest to set-aside areas of standing deadwood for natural succession to 
enhance beetle taxonomic and functional diversity, especially of deadwood-dependent species. As different types of man-
agement support different species assemblages, well-planned post-disturbance management, including a partial abandon-
ment of salvage logging and a consideration of natural succession, may counter biodiversity losses in forests.
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relatively species-poor (Paillet et al. 2010; Schulze 2018). 
Natural disturbances may contribute to ecosystem renewal 
and to creating heterogeneity, and thus tend to promote 
biodiversity (White and Pickett 1985; Müller et al. 2008; 
Swanson et al. 2011; Senf et al. 2020). Accordingly, studies 
investigating the effects of natural disturbances in European 
forests found beneficial effects for most taxa under investi-
gation (Moretti et al. 2004; Winter et al. 2015; Beudert et al. 
2015; Kortmann et al. 2021, 2022). However, for economic 
(Sessions et al. 2004; Prestemon et al. 2006; Kausrud et al. 
2012) and aesthetic reasons (Morris et al. 2016; Hlásny et al. 
2021), forests are rarely left untreated after disturbance, but 
are typically salvage-logged (Müller et al. 2019). Logging 
though may alter forest communities and even ecosystem 
stability (Thorn et al. 2016a; Doerfler et al. 2020). Beetles 
are a particularly important taxon in forest ecosystems, and 
may act as predators, seed dispersers, decomposers, prey for 
higher trophic levels or even as ecosystem engineers (Mül-
ler et al. 2008; Zumr et al. 2021; López-Bedoya et al. 2021). 
Due to such diverse roles, beetles are important for ecosys-
tem functioning and resilience (Lange et al. 2014; Homburg 
et al. 2019). However, different beetle families or ecologi-
cal guilds may respond differently to forest management. 
While some groups seem little affected by post-disturbance 
management (Thorn et al. 2016a), others, such as saprox-
ylic beetles, strongly decline due to the associated dead-
wood removal (Thorn et al. 2014; Seibold 2015; Zumr et 
al. 2021; Uhl et al. 2022). This complicates the assessment 
of different management approaches, but also allows for a 
more holistic evaluation if beetles of different taxa or func-
tional groups are taken into consideration (e.g. Desender et 
al. 2010).

Salvage logging after disturbance is still widespread in 
managed forests throughout Europe (Muys et al. 2022), 
where Norway spruce (Picea abies) is the economically 
most important tree species (Brus et al. 2012). In Germany, 
spruce stands have increased strongly since World War II. 
They now occupy one quarter of the national forest area 
(BMEL 2021), exceeding the natural range of spruce by 
far. However, spruce is highly susceptible to natural dis-
turbances like storm, drought, and bark beetle outbreaks 
(Overbeck and Schmidt 2012). For example, in the Ger-
man federal state of Rhineland-Palatinate, 70% of all spruce 
trees were killed by the bark beetle Ips typographus during 
the unusually dry years 2018–2020 (MUEEF 2020). The 
consequences of spruce dieback and the subsequent man-
agement for biodiversity conservation are largely unclear, 
at least in managed spruce forests (Hlásny et al. 2017; 
Thorn et al. 2018). Previous studies have often focused on 
nature reserves or stands within the natural range of Picea 
abies (e.g. Müller et al. 2008; Thorn et al. 2016b), other 
disturbance types (e.g. fire: Cobb et al. 2011; windthrow: 

Georgiev et al. 2022) and / or single response groups (Lange 
et al. 2014). Though managed spruce forests are considered 
to have a comparatively low biodiversity (Magura et al. 
2000; Morris et al. 2016; Hlásny et al. 2017; Zumr et al. 
2021), their dieback and subsequent management will sig-
nificantly alter local species communities and thereby forest 
biodiversity (Muys et al. 2022).

Here, we investigate the effects of different post-distur-
bance management approaches on epigeal beetle diversity 
in managed spruce stands. Specifically, we compare former 
spruce stands that were (1) salvage-logged and cleared after 
a bark beetle outbreak in 2020, (2) left untreated follow-
ing the same disturbance event, or (3) left untreated after a 
windthrow in 2008 to allow for secondary succession. The 
latter category was included to determine potential benefi-
cial effects of set-aside stands over time, although type of 
and time since disturbance differs from the first two catego-
ries. We thus investigate to what extent the post-disturbance 
management of spruce stands affects epigeal beetle diver-
sity and thus biodiversity conservation. As different families 
or ecological groups of beetles may respond differently, we 
analyze effects on overall epigeal beetle diversity as well as 
on Carabidae, Staphylinidae, Curculionoidea (Curculioni-
dae and Scolytidae), and on saproxylic beetles. We focus 
on the following research questions: (i) How does beetle 
taxonomic diversity respond to post-disturbance manage-
ment? (ii) How do community composition and guilds dif-
fering in moisture, food, and habitat preferences respond to 
post-disturbance management? (iii) Which post-disturbance 
management is best suited to enhance beetle diversity?

Materials and methods

Study area

We investigated former spruce forests within the district 
of the forestry office Neuhäusel (50°38’N, 7°1’E), located 
within the Westerwald mountain range in western Ger-
many (Fig. 1; Table 4, Supplementary material). All sites 
were located between 510 and 545 m above sea level in the 
vicinity of the mountain ‘Alarmstange’, which is the highest 
elevation of the ‘Montabaurer Höhe’ in turn representing a 
subunit of the Westerwald mountain range. The ‘Montabau-
rer Höhe’ is characterized by a high proportion of forests 
(61%), mainly anthropogenically planted spruce stands, 
while the natural vegetation would consist mainly of mixed 
beech forests. Agriculture (16%), settlements, and infra-
structure (in total 21%) make up comparatively small shares 
and are mainly located at the foot of the ridge (MKUEM RLP 
2022; Statistisches Landesamt Rheinland-Pfalz 2020). Our 
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study area is dominated by Devonian quartzites, on which 
mainly loose brown soils and pseudogleys have developed 
(Landesamt für Geologie und Bergbau Rheinland-Pfalz 
2013 a, b). The climate is oceanic with a long-term average 
precipitation of 890 mm and an annual mean temperature 
of 9.0 °C (years 2014–2021; Agrarmeteorologie Rheinland-
Pfalz 2022). In 2020, though, the average temperature was 
9.8 °C and the precipitation 740 mm. This not only acceler-
ated the spruce forest dieback on the Montabaurer Höhe, but 
has also sparked an ongoing discussion about appropriate 
management strategies between foresters, conservationists 
and citizens, as also experienced in other regions (Thorn et 
al. 2018).

Field methods

We examined former spruce stands in which all spruce trees 
had died, according to three post-disturbance management 
categories for our sampling: (1) salvage-logged sites, where 
spruce trees had been cut and cleared after bark beetle infes-
tation in 2020 (hereafter ‘salvage logging’); (2) stands with 

standing dead spruce which had also died in 2020 (hereafter 
‘standing deadwood’); (3) successional areas, which were 
left to secondary succession after a storm had uprooted all 
trees in 2008 (hereafter ‘succession’). Even though the dis-
turbance type (windthrow, no subsequent bark beetle infes-
tation) and time since disturbance differs from the other two 
categories, the succession sites were included in this study 
to assess the longer-term effects of secondary succession on 
the epigeal beetle diversity of disturbed stands. Thus, while 
uprooted trees may provide a different habitat and cause dif-
ferent changes in microclimate than dead trees following a 
bark beetle infestation (Swanson et al. 2011), we assume 
that subsequent succession may follow similar patterns, 
when dead trees fall down in the course of the decay process. 
Moreover, we were interested in the beetle community of the 
former as storms are among the most common disturbance 
events in Central European forests, and their frequency is 
predicted to increase in the future (Seidl et al. 2014, 2017). 
All categories were thus chosen to represent different man-
agement strategies after spruce forest disturbance, either 
salvage-logging, leaving the standing deadwood untreated, 

Fig. 1 Location of our study area in Rhineland-Palatinate, Germany, and of the study sites within different post-disturbance management categories 
((LVermGeo RLP 2021); modified with QGIS 3.4 (QGIS Development Team))
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forest eurytopic; ubiquitous; open landscape; unknown for 
10 out of 231 species), and habitat niche (deadwood; tree-
layer; herb-layer; litter-layer; ground-dwelling; unknown 
for 7 out of 231 species) according to Koch (1989–1996). 
We then calculated the relative abundance (percentage of all 
individuals of an ecological type relative to the total num-
ber of individuals; species with unknown preferences were 
excluded from these analyses) among management types for 
each ecological preference. Also, the relative abundances of 
the five most common families and species were compared 
among management categories.

Statistical analyses

We used ANOVAs to test for significant variation in the 
numbers of individuals and species, the effective num-
ber of species, rarefied species richness, and conservation 
value across management categories. Afterwards, Tukey 
HSD tests were performed to identify significant differ-
ences between categories. The following parameters had 
to be Ln-transformed prior to analyses to meet ANOVA 
requirements: individual numbers of all beetles, Carabidae, 
Staphylinidae, and Curculionoidea; the number of species 
of Carabidae; the effective species numbers of all beetles, 
Carabidae, and Staphylinidae; the rarefied species richness 
of all beetles, Carabidae, Staphylinidae, and saproxylic 
beetles; and the conservation value of Carabidae and Cur-
culionoidea. The number of species of the Curculionoidea 
was square-root-transformed prior to analysis. To account 
for the spatial aggregation of sampling locations, we tested 
for spatial autocorrelation using the Moran’s I test (ape-
package in R; Dormann et al. 2007; Paradis and Schliep 
2019). As the results were non-significant throughout 
(results not shown), an influence of spatial autocorrelation 
on any dependent variable could be excluded. Variation in 
the relative abundance of species with different ecological 
preferences across management types were identified using 
PERMANOVAs (permutations = 999). Subsequently, pair-
wise PERMANOVAs were carried out to locate significant 
differences between categories. PERMANOVA was also 
used to test for significant differences in community com-
position. To this end, we used the Bray-Curtis dissimilar-
ity index based on our abundance data, and we visualized 
the results with the help of a non-metric multidimensional 
scaling (NMDS) analysis. If not mentioned otherwise, sta-
tistical analyses were performed using the vegan-package 
(Oksanen et al. 2020) in R (R Core Team 2020).

and long-term succession. For each category, we selected 
ten sites based on accessibility as granted by the forestry 
office (Fig. 1; Table 4, Supplementary material). Per site, 
two pitfall traps were buried ten meters apart with their 
rims at ground level. 125 ml PET cups, filled with 60 ml 
of a mixture of water and monopropylene glycol (70:30%), 
were used as traps and protected against rain with a plastic 
roof. All 60 traps were emptied every two weeks (six times) 
between the 27th of April and 21st of July 2021 (85 trap-
ping days in total for each trap, see Niemelä et al. 1990), 
corresponding to the period with highest beetle activity in 
Germany (e.g. Renner 1980; Benisch 2023). After sorting, 
the collected beetles were stored in 70% ethanol until iden-
tification using taxonomic keys (Freude et al. 1965–1983; 
Lompe 2002).

Data collection

For each site, we calculated the numbers of individuals and 
species. Alpha diversity, considering the number of species 
and their abundance, was determined using the effective 
number of species, which is a derivate of the Shannon-
Wiener index (Jost 2006). We are aware that, rather than 
recording abundances, pitfall traps record activity densi-
ties (Sunderland et al. 1995), which can be influenced by 
various factors (Saska et al. 2013). Therefore, the rarefied 
species richness of each site was estimated for a sample cov-
erage of 90% (iNEXT-Package in R; Hsieh et al. 2016) to 
account for differences in the detection probabilities among 
management categories. Furthermore, we assigned a point 
score to every species according to its status on the red list 
of Germany (Geiser 1998). The score values correspond to 
an exponential distribution, so that endangered species have 
a greater weight according to their status (least concern = 1 
point, near-threatened = 4, vulnerable = 16; no other catego-
ries were found). All point scores per site were then added 
up as ‘conservation value’ (Görn and Fischer 2011) to iden-
tify management categories that harbor species of relevance 
for conservation. The five parameters described above were 
calculated for all beetles as well as separately for Carabidae, 
Staphylinidae, Curculionoidea (Curculionidae and Scolyti-
dae), and saproxylic beetles (beetles with an ecological 
preference for deadwood, according to Koch 1989–1996). 
Additionally, we determined indicator species for each 
management category (Dufrêne and Legendre 1997; indval-
function, labdsv-package in R; Roberts 2023).

If known, species were allocated to different categories 
regarding their ecological preferences for moisture (hygro-
philic; hemihygrophilic; mesophilic; xerophilic; unknown 
for 9 out of 231 species), food (xylophagous; phytopha-
gous; mycetophagous; zoophagous; omnivorous; unknown 
for 14 out of 231 species), habitat type (forest stenotopic; 

1 3



Journal of Insect Conservation

For all beetles, standing deadwood showed the highest 
numbers of individuals and species as well as the highest 
conservation value, while differences between salvage-
logged and succession sites were non-significant through-
out (Fig. 3; Table 7, Supplementary material). Significant 
differences were also found within the separately analyzed 
groups except from Carabidae, which showed no significant 
responses throughout. In the Staphylinidae, all five param-
eters differed significantly among management types. The 
number of individuals was significantly higher at standing 
deadwood than at succession sites (Fig. 3). The number of 
species and the effective number of species were signifi-
cantly lower at salvage-logged as compared with standing 
deadwood or succession sites. Similarly, the rarefied species 
richness and conservation value were significantly lower at 
salvage-logged than at succession sites.

Weevils (Curculionoidea) and saproxylic beetles showed 
significantly higher values at standing deadwood than at 
succession sites throughout, except from rarefied species 
richness in saproxylic species. In Curculionoidea, salvage-
logged sites also showed significantly higher values than 
succession sites for the effective number of species and 
rarefied species richness, while the conservation value of 
salvage-logged sites was equal to that of succession sites, 
and thus significantly lower than the value of standing 
deadwood. In terms of individual and species numbers, the 
values for salvage-logged sites were in between those for 
standing deadwood and succession sites. In saproxylic bee-
tles, individual and species numbers of salvage-logged sites 
were significantly lower compared with deadwood sites, 
while effective species number and conservation value of 
salvage-logged sites ranged between the figures for standing 
deadwood and succession sites.

Community and guild composition

The relative abundance of individuals differed significantly 
across management regimes for all ecological parameters 
(Table 2). The distributions of moisture and habitat type 

Results

Sampling results

In total, we collected 7878 beetle individuals from 231 spe-
cies and 32 families. We found five species listed in the red 
list of Germany (Geiser 1998) as near-threatened (salvage-
logged: Astenus longelytratus (1 individual), Hypoganus 
inunctus (1); standing deadwood: Pterostichus cristatus 
(14); succession: Acupalpus dubius (6), Amara nitida (4) and 
two listed as vulnerable (standing deadwood: Rutidosoma 
graminosus (3); succession: Agonum gracile (2); Table 5, 
Supplementary material). Eleven species had a preference 
for salvage-logged sites, 32 for standing deadwood, and 15 
for succession areas (Table 6, Supplementary material). The 
five most common families were Staphylinidae (36.3% of 
all individuals), Curculionidae (23.8%), Carabidae (15.9%), 
Scolytidae (11.0%), and Geotrupidae (2.7%). The distribu-
tion of families in standing deadwood differed significantly 
from that of both other categories (Table 2; Fig. 2a). Stand-
ing deadwood was characterized by a low proportion of 
Curculionidae but a high one of Scolytidae (bark beetles). 
At the species level, all three management categories dif-
fered significantly (Table 2; Fig. 2b). The most frequent 
species, Exomias araneiformis (16.3% of all individuals), 
reached the highest proportion on salvage-logged followed 
by succession and finally standing deadwood sites. Atheta 
negligens (9.3%) was particularly abundant in succession 
areas. As expected, the bark beetle Ips typographus (8.8%) 
was largely restricted to standing deadwood. Throughout, 
more than 50% of the individuals were other species than 
the five most numerous ones, documenting high proportions 
of species with low abundance.

Taxonomic diversity

For all beetles, post-disturbance management significantly 
affected the numbers of individuals and species as well as 
the conservation value (Table 1).

Fig. 2 Relative abundance of the five most common families (a) and 
species (b) across post-disturbance management categories. Percent-
ages were calculated based on the number of individuals per manage-

ment type (n). Different letters behind bars indicate significant differ-
ences among categories (PERMANOVA pairwise comparisons)
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significantly from both other management regimes, which 
were statistically indistinguishable from one another. Stand-
ing deadwood was characterized by the highest proportions 
of xylophagous (Fig. 4b), dead wood and tree layer species 
(Fig. 4d) compared to salvage-logged and succession sites. 
The NMDS analysis shows that the beetle assemblages of 
the three management categories differed strongly, with all 
three categories being significantly differentiated from each 
other (Fig. 5; Table 3).

Discussion

Our results indicate a strong impact of post-disturbance 
management on the diversity and composition of epigeal 
beetle communities in the investigated former spruce stands. 
However, this study is facing some limitations that need to 
be acknowledged when interpreting our results. Our area 
of investigation is relatively small and therefore the trap-
ping sites are rather close to each other. We addressed this 
problem by testing for spatial autocorrelation, which did not 
reveal any significant effect. However, this study only com-
pares clustered sites within neighboring patches and is thus 
limited in its transferability to other stands or larger spatial 
scales. We further used post-disturbance management cat-
egories covering different time periods since disturbance as 
well as two different disturbance types. This complicates the 
interpretation of our results, as it remains unclear whether 
different patterns found for a given category are affected by 
the time period since disturbance or the disturbance type. 
Nonetheless, we believe that our study provides valuable 
insights into the effects of post-disturbance management on 
epigeal beetles in former spruce plantations, as the observed 
responses of various beetle groups can be largely attributed 
to their ecological demands, which are related to the differ-
ent on-site conditions. As storms are also among the most 
common disturbance events in Central European forests, 
windthrow areas are often part of forest landscapes, espe-
cially in spruce-dominated ones (Seidl et al. 2014, 2017). 
Our study thus additionally addresses the question of how 
secondary succession on such sites contributes to beetle 
diversity, which may also be helpful for the management 
of beetle-infested sites, possibly undergoing similar succes-
sion dynamics despite potential initial differences caused by 
different disturbance regimes (Swanson et al. 2011; Winter 
et al. 2015).

(i) Responses of beetle taxonomic diversity to post-distur-
bance management

Previous studies (e.g. Lange et al. 2014; Thorn et al. 2018) 
identified inconsistent responses among and within species 

preferences differed between all three management regimes. 
Regarding moisture, hygrophilic species were most abun-
dant in succession areas, hemihygrophilic species at sal-
vage-logged, and xerophilic species in standing deadwood 
sites (Fig. 4a).

Regarding habitat type preferences, the largest proportion 
were eurytopic forest species throughout. The highest pro-
portion of stenotopic forest species was found in standing 
deadwood stands, while the highest proportion of open land 
species was found on succession areas (Fig. 4c). For food 
and habitat niche preferences, standing deadwood differed 

Table 1 Results of ANOVAs for the effects of management type on the 
number of individuals, number of species, effective number of species, 
rarefied species richness, and conservation value for all beetles as well 
as separately for Carabidae, Staphylinidae, Curculionoidea, and sap-
roxylic beetles. Significant p-values are given in bold
Group Parameter DF MS F p-value
All beetles Number of 

individuals
2 0.8 5.82 0.008

Number of species 2 410.6 5.80 0.008
Effective species 
number

2 0.2 1.74 0.195

Rarefied richness 2 0.2 1.35 0.276
Conservation 
value

2 568.4 4.67 0.018

Carabidae Number of 
individuals

2 1142.4 1.35 0.276

Number of species 2 0.4 0.04 0.961
Effective species 
number

2 0.2 1.22 0.310

Rarefied richness 2 0.4 1.50 0.241
Conservation 
value

2 0.1 0.27 0.766

Staphylinidae Number of 
individuals

2 1.1 3.54 0.043

Number of species 2 139.3 4.87 0.016
Effective species 
number

2 1.2 13.55 < 0.001

Rarefied richness 2 2.2 7.44 0.003
Conservation 
value

2 122.6 3.83 0.034

Curculionoidea Number of 
individuals

2 1.7 5.00 0.014

Number of species 2 2.3 20.13 < 0.001
Effective species 
number

2 7.1 8.31 0.002

Rarefied richness 2 21.7 8.68 0.001
Conservation 
value

2 2.3 15.42 < 0.001

Saproxylic 
beetles

Number of 
individuals

2 4.3 19.02 < 0.001

Number of species 2 37.7 10.24 < 0.001
Effective species 
number

2 15.6 6.36 0.005

Rarefied richness 2 1.4 2.42 0.108
Conservation 
value

2 36.4 7.24 0.003
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Fig. 3 Means and SE for the number 
of individuals (a), number of species 
(b), effective number of species (ENS; 
c), rarefied species richness (d), and 
conservation value (e) across post-dis-
turbance management categories for 
all beetles and for four different beetle 
groups. Different letters above bars 
indicate significant differences among 
management types (Tukey HSD after 
ANOVA). The results for Carabidae 
were non-significant throughout
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Consequently, previous studies also found negative impacts 
of logging on beetle communities (Cobb et al. 2011; Thorn 
et al. 2018). Concomitantly, Curculionoidea and saproxylic 
beetles showed the highest abundance and species richness 
in standing deadwood stands in our study (Fig. 3). This was 
expected since both families are often associated with the 
occurrence of dead or at least sick trees (Cours et al. 2021). 
Note, however, that many Curculionoidea and saproxylic 
beetles are flight-active and therefore probably under-repre-
sented in pitfall traps. Thus, our results likely only relate to 
the ground-dwelling minority of these groups and may not 
be representative. Some Curculionoidea species found in or 
study though are known as pest species (e.g. Ips typogra-
phus, Pityogenes chalcographus, Hylobius abietis), and 
many saproxylic beetles benefit from the damage legacies 
they cause. In contrast to deadwood-dependent species, 
ground-active beetles such as Carabidae are often adapted to 
open habitats, and hence seem to be less affected by logging 
activities and may even show positive responses (Pearce 
and Venier 2006; Koivula and Spence 2006; Thorn et al. 
2018; Georgiev et al. 2022; Plath et al. 2024). Interestingly, 
the response of rove beetles, mainly comprising generalist 
ground-dwelling predators (Lange et al. 2014), to post-dis-
turbance management differed substantially from all other 
beetle groups. Rove beetles performed best on succession 
followed by standing deadwood and finally salvage-logged 
sites. This underlines the importance of early successional 
stages for the conservation of specific beetle families, which 
has also been shown for other taxonomic groups (Swanson 
et al. 2011; Lehnert et al. 2013; Hilmers et al. 2018).

groups to post-disturbance management, which might blur 
its overall effect on biodiversity. In our study, we also found 
that post-disturbance management had partly different 
influences on beetle groups (Fig. 3). Carabids showed no 
clear response to different management approaches, while 
all other groups considered here showed reduced values 
at salvage-logged compared to standing deadwood sites. 
Similarly, studies focusing on carabid versus saproxylic 
beetles revealed contrasting responses to logging (Koivula 
and Spence 2006; Thorn et al. 2014, 2018). In general, 
intense management and according harvesting activities 
may reduce the population sizes of forest-dwelling arthro-
pods (Lange et al. 2014). In particular, salvage-logging 
reduces habitat heterogeneity, deadwood volumes and qual-
ity (Thorn et al. 2014, 2018), which is especially detrimen-
tal to saproxylic beetles (Grove 2002; Thorn et al. 2016a). 

Table 2 Results of PERMANOVAs (permutations = 999) for the rela-
tive abundance of the five most common beetle families, species, and 
groups with different preferences for moisture, food, habitat type, and 
habitat niche (according to Koch, 1989–1996) across post-disturbance 
management categories. Additionally, the PERMANOVA results for 
the Bray-Curtis dissimilarity of beetle assemblages across post-dis-
turbance management categories are shown. Significant p-values are 
given in bold
Parameter DF MS R2 F p
Families 2 0.35 0.37 7.81 < 0.001
Species 2 0.35 0.42 9.79 < 0.001
Moisture 2 0.23 0.43 10.22 < 0.001
Food 2 0.32 0.41 9.24 < 0.001
Habitat type 2 0.10 0.31 6.03 < 0.001
Habitat niche 2 0.20 0.30 5.68 < 0.001
Bray-Curtis 2 1.30 0.37 7.94 < 0.001

Fig. 4 Relative abundance of species with different preferences for 
moisture (a; 222 species), food (b; 217 species), habitat type (c; 221 
species), and habitat niche (d; 224 species) (according to Koch 1989–
1996) across post-disturbance management categories. Percentages 

were each calculated based on the number of individuals per manage-
ment type (n). Different letters behind bars indicate significant differ-
ences among categories (PERMANOVA pairwise comparison)

 

1 3



Journal of Insect Conservation

E. araneiformis on salvage-logged and succession sites; 
Fig. 2), leading to similar diversity values in all categories. 
Moreover, the rarefied richness showed no significant dif-
ferences, indicating that some differences among categories 
found for the numbers of individuals and species might 
be due to differences in detection probability among sites 
(Hsieh et al. 2016). Nevertheless, standing deadwood was 
overall most beneficial for the taxonomic diversity of epi-
geal beetles. Similarly, positive effects of bark beetle out-
breaks and the resulting deadwood stands were reported for 
plants, lichens, spiders, cicadas, hoverflies, bees, and wasps 
(Beudert et al. 2015). Also, springtails were found to peak 
in sites with standing deadwood one to five years after bark 
beetle induced spruce dieback (Winter et al. 2015). Later 
successional stages, which were about the same age as our 
succession sites, on the other hand, promoted herbs, shrubs, 
Heteroptera, and Aculeata, while fungi, molluscs, and 
spiders showed no clear response. The latter two groups, 
though, were reported to react positively to salvage logging, 
along with carabid beetles, indicating that organisms associ-
ated with open habitats might benefit from clear cuts, while 
mosses, lichens, wood-inhabiting fungi, saproxylic beetles, 
springtails and birds were negatively affected (Thorn et al. 
2018). These divergent responses demonstrate the need to 
apply different management approaches in order to provide 

Our results underline the benefit of investigating dif-
ferent taxa and response groups to properly assess forest 
biodiversity, as individual groups may show divergent pat-
terns. Thus, for effective conservation-planning, especially 
in times of changing disturbance regimes, different ecologi-
cal groups and / or taxa should be considered. Considering 
ground-living beetle groups, we overall found significantly 
higher values for individual number, species number, and 
conservation value at standing deadwood compared with 
salvage-logged sites. In contrast to the number of species, 
solely representing the actual species count, the effective 
number of species was non-significant. As the effective 
number represents the alpha-diversity and thus also takes 
into account the balance of taxa within a community (Jost 
2006), this could be influenced by the high proportion of 
species with low abundance and the dominance of a few 
species only (e.g. I. typographus in standing deadwood, 

Table 3 Bray-Curtis indices for the dissimilarity of beetle assemblages 
among different post-disturbance management categories. Bottom left: 
Bray-Curtis dissimilarity. Higher values indicate a higher dissimilarity 
(permutations = 999). Top right: p-values. Significant values are given 
in bold

Salvage 
logging

Standing 
deadwood

Succes-
sion

Salvage logging < 0.001 < 0.001
Standing deadwood 54.99 < 0.001
Succession 54.63 70.83

Fig. 5 Non-metric multidi-
mensional scaling (NMDS) 
analysis of beetle assemblages 
for the three post-disturbance 
management categories salvage 
logging, standing deadwood, and 
succession (n = 10 plots each, 2 
dimensions, Bray Curtis distance, 
tries = 20). The ordination is 
based on 7878 individuals of 231 
species
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habitats are especially preferred by saproxylic beetles, and 
their diversity is further increased by habitat heterogeneity 
(Seibold et al. 2016; Uhl et al. 2022). Preserving different 
types of deadwood under various microclimatic conditions 
seems to be especially suitable to enhance saproxylic beetle 
diversity (Grove 2002). A high structural diversity consist-
ing of snags, logs, and branches as well as a wide range of 
microclimatic conditions were also present at our standing 
deadwood sites, which also promoted overall beetle diver-
sity (Fig. 3). However, the within-management variation of 
beetle assemblages was rather small among standing dead-
wood compared with salvage-logged or succession sites 
(Fig. 5), and the alternative management types may favor 
different groups such as staphylinids in our study. This, in 
combination with the occurrence of unique assemblages 
(Fig. 5), suggests that open habitats generated by salvage 
logging as well as succession sites may also significantly 
contribute to β-diversity. We therefore suggest a post-distur-
bance management that includes set-aside stands of standing 
deadwood followed by secondary succession for formerly 
spruce-dominated forests. Although bark beetle outbreaks 
reduce the quality and quantity of timber in managed stands, 
subsequent succession may be an effective means to resil-
ient forest restoration (Seidl 2014; Seidl et al. 2016; Som-
merfeld et al. 2021). For example, the succession areas in 
our study were dominated by birch (Betula pendula) in addi-
tion to spruce, but some oak (Quercus petraea) trees could 
also be found amongst them. Also stands included rather 
open patches with grassy vegetation. Accordingly, Georgiev 
et al. (2022) proposed a balanced proportion between set-
aside and salvage-logged stands. Thus, to enhance biodiver-
sity, forest landscapes should consist of a mosaic of different 
forest types (in terms of age structure, tree composition, 
managed/unmanaged etc.) and should avoid large-scale for-
est plantations as well as fragmentation by large clear cuts 
(Desender et al. 2010; Plath et al. 2024).

Conclusions / management implications

We here compared three former spruce stands with differ-
ent post-disturbance management approaches after natural 
disturbances in western Germany. Our results show that 
standing deadwood, i.e. abandoning salvage-logging, pro-
vided highest returns for preserving diversity of ground-
dwelling beetles, especially for forest specialists. However, 
Staphylindae benefitted most from secondary succession, 
stressing the need for considering variation among taxa 
or guilds. Additionally, community and guild composi-
tion varied greatly among management categories, stress-
ing the need for a combination of different management 
regimes to enhance overall diversity. We therefore suggest a 

as many different habitats as possible for various organisms 
and enhance overall biodiversity.

(ii) Responses of beetle community and guild composition 
to post-disturbance management

Post-disturbance management significantly influenced com-
munity and guild composition (Figs. 2 and 4), which is in 
line with other studies showing that community composi-
tion differs among forest management practices either at the 
species (Work et al. 2013) or ecological level (Koivula and 
Spence 2006; Lange et al. 2014; Thorn et al. 2018; Plath 
et al. 2024). The latter three studies reported that salvage 
logging caused a shift from forest specialists to open-land 
generalists. In our study, standing deadwood harbored the 
highest abundance of (stenotopic) forest species, while that 
of open-land species was surprisingly highest on succession 
rather than salvage-logged sites. This may have been caused 
by a longer time period post disturbance for succession 
sites. Presumably owing to the relatively young tree age in 
combination with a high tree density and dense vegetation 
structure of succession sites, these also showed the high-
est relative abundance of hygrophilic species. As expected, 
standing deadwood was characterized by a high proportion 
of xylo- at the expense of phytophagous species, and higher 
proportions of deadwood and tree-inhabiting species com-
pared to both other management types. In turn, the higher 
solar radiation on salvage-logged and succession sites may 
promote herbaceous ground vegetation (Thorn et al. 2014) 
favoring phytophagous herb layer species. In summary, 
guild composition differed clearly among management 
types, with standing deadwood showing overall the stron-
gest divergence from other types.

(iii) Management strategies and insect conservation

Managed forests are often characterized by low tree diver-
sity, reduced deadwood availability, closed canopies, and 
even age structures (Lange et al. 2014). This typically results 
in reduced forest biodiversity across Europe (Paillet et al. 
2010). Natural disturbances create habitat heterogeneity by 
disrupting uniform structures and leaving so called distur-
bance legacies (Müller et al. 2008; Swanson et al. 2011; 
Thorn et al. 2016b). Thus, disturbances, including bark-bee-
tle outbreaks, tend to enhance forest biodiversity (Swanson 
et al. 2011; Beudert et al. 2015). By killing mature spruce 
trees, such infestations produce high amounts of deadwood, 
which is a rare resource in most managed forests. Müller 
et al. (2008) even identified Ips typographus as a possible 
keystone species creating forest gaps on which many for-
est insects rely, due to higher solar-radiation and elevated 
ground temperatures. The resulting sun-exposed deadwood 
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