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towards moderating insect losses (Samways et al. 2020; Sei-
bold et al. 2019). Relationships between heterogeneity and 
the diversity of ecological communities can be complex due 
to trade-offs between suitable habitat area and heterogene-
ity (Allouche et al. 2012; Heidrich et al. 2020). However, 
in many cases, heterogeneity increases insect diversity in 
various ways.

At the community level, heterogeneity provides diverse 
ecological niches which allow species with different habitat 
requirements to coexist (Fahriget al. 2011). For example, 
different vegetation types, heterogeneous vegetation struc-
ture, environmental gradients, and small natural features 
can increase species richness (Hunter et al. 2017; Löffler 
and Fartmann 2017; Pryke et al. 2013). Individual species 
also benefit from heterogeneity, as many species need a 
wide range of resources to fulfil their ecological and behav-
ioural needs. This includes consumable resources such 
as larval host plants and adult food, as well as structural 
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elements such as bare ground or tall vegetation that are 
needed for roosting, overwintering, egg-laying, and mate 
location (Dennis et al. 2003; Schultz et al. 2012). These var-
ied resources often do not co-occur in the same biotope, and 
a mix of biotopes within a species’ dispersal range can be a 
prerequisite for population persistence (Kalarus et al. 2013; 
Slamova et al. 2013).

In addition, individual vegetation types undergo gradual 
changes in the phenology of their food resources throughout 
the season, and seldom provide a continuous food supply 
over time. However, different landscape elements can pro-
vide phenological complementarity in food resources that 
allows species to persist throughout the season by tracking 
seasonal patterns in resource availability (Bertrand et al. 
2019; Mallinger et al. 2016; Mandelik et al. 2012). Further-
more, structurally diverse landscapes provide shelter during 
adverse weather conditions and refuge from human distur-
bances (Dennis and Sparks 2005, 2006; Marini et al. 2009). 
By using refuges, species can remain active for longer peri-
ods and persist in areas that would otherwise be unsuitable 
under fluctuating environmental conditions (Dennis and 
Sparks 2005, 2006; Fartmann 2006). In this way, these ref-
uges boost the resilience of arthropod populations to global 
change (Fartmann et al. 2022; Selwood and Zimmer 2020).

Indigenous forest patches and forest edges can increase 
the structural and compositional complexity of open eco-
systems such as grasslands (Akeboshi et al. 2015). In many 
regions, grassland insect assemblages benefit from the pres-
ence of indigenous forest (Bergman et al. 2018; Marini et 
al. 2009; Öckinger et al. 2012), and in some cases, forests 
close to grassland can buffer the negative effects of habitat 
loss and fragmentation on grassland insects (Öckinger et al. 
2012). Supplementary food resources, shelter, and a diver-
sity of microclimates at forest edges, are often proposed as 
reasons for these positive effects (Habel et al. 2022; Lii-
vamägi et al. 2014; Toivonen et al. 2017).

In South Africa, indigenous forest patches embedded in 
grassland ecosystems have high conservation value, but are 
limited in extent, with the forest biome covering < 1% of 
land area in South Africa (Mucina and Rutherford 2006). 
Forest patches support specialist forest arthropods, and 
assemblages that complement those in grassland (Eckert et 
al. 2022; Gaigher et al. 2019; Yekwayo et al. 2017). For-
ests also influence insect assemblages in nearby grassland 
(Pryke and Samways 2012). This latter effect is especially 
evident for butterflies, which are responsive to amount and 
configuration of woody vegetation at the landscape scale 
(van Schalkwyk et al. 2021). In these systems, certain butter-
flies in grassland benefit from forest cover in the landscape, 
even in highly transformed landscapes, suggesting that they 
utilize the forests and/or their edges (Gaigher et al. 2021). 
However, the different ways in which these forests are used 

by grassland species have not been assessed in detail. As 
the influence of forests on grassland insects has important 
implications for insect species distribution and persistence, 
a more detailed understanding of the mechanisms behind 
these influences will enable us to predict the role that forests 
may play in changing landscapes.

Here, we evaluate the extent to which indigenous forest 
edges are utilized by grassland butterflies and investigate 
two potential benefits provided by forest edges: shelter from 
adverse weather conditions and complementary adult nec-
tar sources, both factors which can strongly influence but-
terfly distribution and behaviour (Dennis and Sparks 2005, 
2006; Evans et al. 2020; Fischer and Fiedler 2001). First, 
we assess patterns of butterfly diversity at forest edges and 
adjacent grassland. We expect species with different habi-
tat preferences to respond in different ways to forest edges 
and open grassland, and therefore we assess patterns for 
forest specialists, grassland specialists, and habitat general-
ist butterflies separately. High butterfly diversity at forest 
edges, especially of grassland specialists, would indicate 
the importance of forest edges for supporting species other 
than the expected forest-associated species. In addition to 
promoting biodiversity, certain landscape elements can be 
preferentially used for certain behaviours and can thus be 
important for population persistence (Crous et al. 2014; 
Evans et al. 2020; Pryke et al. 2012). We therefore also 
assess whether butterfly behaviour differs between forest 
edges and adjacent grassland. Furthermore, we compare 
single-species abundance patterns of the dominant butterfly 
species at forest edges and in grassland.

We also test for the effect of season as a proxy for coarse-
scale climatic conditions, as the average conditions between 
the two sampling seasons of this study differ greatly, with 
summer having significantly higher wind speeds, air tem-
perature, insolation, and significantly lower relative humid-
ity than is the case in autumn. A mediating effect of season 
on the occurrence and behaviour patterns would indicate 
that prevailing weather conditions influence the relative 
importance of the forest edge as a component of butterfly 
habitat. This would help us to determine whether forest 
edges provide shelter from adverse conditions, which we 
expected in our high-wind and high-temperature study area. 
It would also help explain any species-level shifts in habitat 
use between seasons. Finally, we assess whether flowering 
plants that butterflies visit differ between forest edges and 
grassland, and between seasons, to determine whether the 
two biotopes support complementary adult food sources 
which may influence butterfly habitat use.
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Methods

Study design

The study area is located on the east coast of South Africa 
in the Maputaland-Pondoland-Albany biodiversity hotspot 
(Myers et al. 2000). The landscape is a flat, coastal plain 
which is dominated by two vegetation types that exist as 
an intricate mosaic: Maputaland Coastal Belt and Maputa-
land Wooded Grassland, which, in the study area, consists 
largely of dry and hygrophilous grassland with scattered 
shrubs and small trees. Grassland sites had an average of 
8.52% ± 1.53 S.E. shrub cover and an average of 3.98% ± 

0.89 S.E. tree cover. Small patches of Northern Coastal For-
est and Swamp Forest are embedded in the grassland matrix. 
These are medium-height, subtropical, coastal forests with 
high plant species richness (Mucina et al. 2006). The forest-
grassland edges are soft, consisting of transition vegetation, 
with the ecotones ranging from 2 to 20  m in width. For-
est edge sites had an average of 20.78% ± 3.31 S.E. shrub 
cover and an average of 36.56% ± 3.60  S.E. tree cover. 
Sixteen sites were selected where forest patches > 2.5  ha 
were next to open grassland (Fig. 1). Both indigenous for-
est types (Northern Coastal Forest: 11 sites, Swamp For-
est: 5 sites) and both grassland types (Maputaland Coastal 
Belt: 9 sites, Maputaland Wooded Grassland: 7 sites) were 

Fig. 1  Map of the study area in KwaZulu-Natal, South Africa, indicating the location of study sites in the forestry estate and adjacent protected area
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stayed in contact to avoid recording the same individual 
twice. In total, each transect lasted for 30 min (Kadlec et 
al. 2012), adding up to one hour of observations per tran-
sect per season, and was approximately 300 m long in total. 
We surveyed the ground vegetation layer, and if shrubs and 
trees were present at a site, we also surveyed the shrubs, and 
lower tree canopies. The behaviour of each butterfly when 
it was first sighted was recorded and classified as transient 
(high, fast flight), patrolling (low, slow, searching flight), 
settling behaviour (resting and basking), feeding, and inter- 
and intraspecific interactions (territorial and reproductive 
behaviour) (Dover 1989). For all feeding events, we identi-
fied the flowering plants visited using Pooley (1993; 1998). 
Butterflies that could not be identified in flight were cap-
tured for identification according to Pennington et al. (1978) 
and Woodhall (2005). Species were classified as forest spe-
cialists, grassland specialists, or habitat generalists, based 
on historical data on their occurrence in different vegetation 
types (Supplementary material, Table S2) (Mecenero et al. 
2013).

Statistical analysis

All records of the Boisduval tree nymph, Sevenia boisdu-
vali boisduvali, were removed from the dataset, as this spe-
cies shows periodic swarming behaviour in the study region 
(Mecenero et al. 2013) and there was great variation in its 
abundance among sites. An outlier site in the plantation 
estate was excluded from analysis due to elevated butter-
fly numbers caused by a mass-flowering event in summer 
(Zuur et al. 2010). All analyses were done in R version 4.2.0 
(R Core Team 2022). To assess sampling adequacy, indi-
vidual-based rarefaction and extrapolation sampling curves 
were made using the iNEXT package (Hsieh et al. 2016).

We performed generalized linear mixed models using the 
glmmTMB package (Brooks et al. 2017) to test for the effect 
of location in the landscape (forest edge or grassland), sea-
son (summer or autumn), and their interaction on species 
richness and abundance of the overall assemblage, and that 
of forest specialists, grassland specialists, and habitat gen-
eralists. Poisson distribution was used for species richness 
models, and negative binomial distribution for abundance 
models (Bolker et al. 2009). In all models, location, sea-
son, and their interaction were included as fixed factors. We 
also included area (protected area or plantation estate) as 
a fixed factor to assess possible effects of the larger land-
scape setting and transect as a random factor to account for 
repeated measurements at the same location (Bolker et al. 
2009). Model selection and averaging were used to iden-
tify the most influential set of variables for each response 
variable (Burnham and Anderson 2001). Models consisting 
of all possible combinations of variables, including the null 

included (Scott-Shaw and Escott, 2011). Eight of the sites 
were in large-scale conservation corridors in a forestry 
plantation estate owned by SiyaQhubeka Forestry and man-
aged by Mondi Group. The production areas of the planta-
tions are planted monocultures of Eucalyptus with limited 
understory vegetation. Another eight sites were in the adja-
cent protected area, iSimangaliso Wetland Park, east of the 
plantations. Distances between sites ranged from 600 m to 
11 km. The grassland in the protected area and the conserva-
tion corridors undergo similar fire regimes, with prescribed 
burns every 2–5 years to mimic natural fire disturbances 
(SANBI 2014). Grazing between the areas is also similar, 
as the border between them is unfenced, which allows wild 
megaherbivores to move freely and graze the vegetation in 
both areas. Coarse vegetation structure and composition 
during the study period was similar between grasslands of 
the two areas (Gaigher et al. 2021).

Sampling methods

Butterflies were sampled twice at each site, once during 
19–25 January 2017 (summer) and once during 27 April-5 
May 2017 (autumn). Both seasons are periods of high 
activity for subtropical butterflies in the region (Woodhall 
2005). To characterise the weather conditions in the two 
study periods, hourly weather data on solar radiation and 
rainfall were obtained from a weather station close to the 
study area (28˚21’08.56”S, 32˚14’46.42”E) and hourly data 
on wind speed, air temperature, and relative humidity were 
obtained from the ERA5 global weather dataset, and were 
derived from a point close to the study area (28˚15’00.01”S, 
32˚14’59.97”E) (Hersbach et al. 2020). Linear models were 
performed in lme4 (Bates et al. 2014) to test whether these 
measures differed significantly between the two study peri-
ods. Wind speed, air temperature and solar radiation were 
significantly higher in summer, whereas relative humidity 
was higher in autumn, and rainfall did not differ between 
seasons (Supplementary material, Table S1).

We sampled butterflies between 08h00 and 15h00 and 
avoided overcast, rainy, and very windy conditions (wind 
speeds of > 10 m/s), although it was not possible to avoid 
windy conditions altogether. At each site, butterflies were 
recorded along two transects. One transect was along the 
forest edge in the transition zone which consisted of a mix 
of grassland and forest vegetation, and one transect was 
in the adjacent grassland between 50 and 150 m from the 
forest edge. Sampling in the forest interiors was not pos-
sible due to safety restrictions in these areas with free-
roaming wild megaherbivores. Each transect consisted of 
two observers simultaneously walking along a slow, mean-
dering route, recording all butterflies in a 5 m radius along 
the transect. Observers walked in opposite directions and 
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differed between forest edges and grassland, and between 
seasons. The model included location, season, their interac-
tion, and area as fixed factors. The response matrix consisted 
of the number of butterfly visitations per visited flowering 
plant species per site. We did not include all flowering plant 
species present at the sites, but only those that were vis-
ited, because we could confirm that they were utilized by 
butterflies.

Results

We sampled a total of 2 572 butterflies in 65 species (Sup-
plementary material, Table S2). From this, 846 butterflies 
in 48 species were sampled in summer and 1726 butterflies 
in 52 species were sampled in autumn. In total, 20 species 
were forest specialists, 14 were grassland specialists, and 
31 were habitat generalists. The rarefaction curve for forest 
edge sampling approaches an asymptote, whereas the curve 
for grassland sites still increases, indicating that additional 
species would be recorded with further sampling (Supple-
mentary material, Fig. S1).

For the overall assemblage, butterfly species richness and 
abundance were significantly higher at the forest edges than 
in grassland and were significantly higher in autumn than 
in summer (Table  1; Fig.  2A-B). Species richness of for-
est specialists was higher at the forest edges than in grass-
land (Table 1; Fig. 2C). The abundance of forest specialists 
showed an interaction between location and season, with 
lower abundance in grassland than at forest edges in summer 
(estimate: -1.66, S.E.: 0.35, 95% C.I.: -2.39, -0.94), but not 
in autumn (null model performed best) (Table 1; Fig. 2D). 
Grassland specialists and habitat generalists were equally 
species rich and abundant at forest edges and in grassland, 
with both groups more species rich and abundant in autumn 
than in summer (Table 1; Fig. 2E-H). Area did not have a 
significant effect on any of the butterfly responses (Table 1).

For the overall butterfly assemblage, the number of set-
tling behavioural events was similar between forest edges 
and grassland but was significantly higher in summer 
than in autumn (Table  2; Fig.  3). There were more feed-
ing behavioural events in the open grassland than at forest 
edges (Table 2; Fig. 3). There were more intra- and interspe-
cific interactions at the forest edges than in grassland, and 
more in summer than in autumn (Table 2; Fig. 3). Patrol-
ling was more frequent at the forest edges than in grassland 
and was more frequent in autumn than in summer (Table 2; 
Fig. 3). There were more transient behavioural events in the 
grassland than at forest edges, and more in summer than in 
autumn (Table 2; Fig. 3). There were no significant interac-
tions between location and season, and no effect of area on 
any of the behavioural categories. Trends in behaviour of 

model, were ranked based on AICc in the MuMIn package 
(Barton 2022). All models within 2 AICc of the top model 
were averaged and estimates from conditional model aver-
aging are reported. Effects were considered significant if 
the 95% confidence intervals of the estimate did not include 
zero (Burnham and Anderson 2001). Significant interactions 
were further assessed by testing for the effect of location 
or season on the responses separated by season or location, 
respectively.

To assess differences in behaviours between locations 
and seasons, we converted the number of occurrences per 
behavioural category to a proportion of the total number 
of behavioural occurrences per transect and used this as 
response variable in models. This was done because the 
absolute number of behavioural occurrences is dependent 
on the number of butterfly individuals recorded. The same 
modelling procedure was used as above, except that we 
used linear mixed models because the proportions were 
continuous, non-binomial data and best fitted a Gaussian 
distribution (Bolker et al. 2009; Warton and Hui 2011). This 
procedure was done for the overall butterfly assemblage, 
and for forest specialists, grassland specialists, and general-
ists separately.

The same modelling procedure as above was used to 
assess abundance patterns of dominant species (here defined 
as species that were observed more than ten times per sea-
son) between locations and seasons. We used negative bino-
mial distribution for these abundance models (Bolker et al. 
2009). For all models, we checked for overdispersion, and 
assessed the model fit of alternative models by visualizing 
the model residuals using the DHARMa package (Hartig 
2020). We confirmed there was no spatial autocorrelation in 
the model residuals by assessing correlograms using the ncf 
package (Bjornstad and Cai 2020).

Changes in butterfly assemblage composition due to dif-
ferences in species phenology between seasons may have 
influenced the abovementioned occurrence and behavioural 
patterns between forest edges and grassland. To evalu-
ate this possibility, we assessed differences in the butterfly 
assemblages occurring in summer and autumn using the 
manyglm function in mvabund (Wang et al. 2012). This 
model-based procedure fits generalized linear models sepa-
rately to the abundance of each species and was used due to 
its greater power properties compared to more commonly 
used distance-based approaches (Wang et al. 2012; Warton 
et al. 2012). The multivariate model included season as 
fixed effect and was fitted using a negative binomial dis-
tribution, assuming quadratic mean-variance. Test statistics 
were calculated based on the ‘PIT-trap’ resampling method 
with 999 permutations (Wang et al. 2012).

We used the same multivariate procedure to test whether 
the flowering plant assemblages visited by butterflies 
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Fig. 2  Butterfly species richness and abundance at forest edges and 
in grassland in summer and autumn for A-B) the overall assemblage, 
C-D) forest specialists, E-F) grassland specialists and G-H) habitat 
generalists. Horizontal brackets indicate significant main effects of 
location, vertical brackets indicate significant main effects of season. 
For the significant interaction in D, means with letters in common are 

not significantly different. Letters in roman relate to the comparison 
between locations in autumn, and letters in italics relate to the compar-
ison between locations in summer. The boxplots represent the median 
(central horizontal line), inter-quantile range (boxes), minimum and 
maximum values (whiskers) and outliers (points)

 

1 3

33



Journal of Insect Conservation (2024) 28:27–41

the other butterfly groups, and forest specialists showed 
fewer overall settling and feeding behavioural events than 
the other butterfly groups (Supplementary material, Figure 
S2).

the three butterfly groupings in the different locations and 
seasons were similar to the overall assemblage, except that 
the grassland specialists showed fewer overall transient 
behaviours, but more settling and feeding behaviours than 

Table 2  Model-averaged estimates, standard errors, and confidence intervals from generalized linear mixed models explaining proportions of the 
different behaviours. Predictors with significant effects are in bold. RI = relative importance of a predictor, calculated as the sum of Akaike weights 
over all models in which the variable was included. The reference levels in the calculation of the coefficients are as follows: Location = forest edge, 
Season = Summer, Area = forestry estate
Responses Predictors Estimate SE Lower CI Upper CI RI
Settling Location -0.04 0.02 -0.08 0.00 0.81

Season -0.06 0.02 -0.10 -0.02 1.00
Location x Season 0.04 0.03 -0.04 0.10 0.38
Area -0.02 0.02 -0.04 0.02 0.25

Feeding Location 0.05 0.02 0.01 0.09 1.00
Area -0.02 0.02 -0.06 0.03 0.28

Interactions Location -0.05 0.02 -0.09 -0.01 1.00
Season -0.05 0.02 -0.08 -0.02 1.00
Location x Season 0.03 0.03 -0.03 0.08 0.24
Area 0.02 0.02 -0.02 0.05 0.26

Patrolling Location -0.12 0.04 -0.19 -0.05 1.00
Season 0.19 0.04 0.12 0.27 1.00
Location x Season 0.05 0.06 -0.07 0.17 0.30

Transient Location 0.15 0.04 0.08 0.23 1.00
Season -0.08 0.04 -0.06 -0.01 1.00
Location x Season -0.07 0.06 -0.19 0.04 0.40

Fig. 3  Different butterfly behaviours, expressed as proportion of total behavioural incidences, at forest edges and in adjacent grassland in summer 
and autumn. (ForEdgeS = forest edge summer, GrassS = grassland summer, ForEdgeA = forest edge autumn, GrassA = grassland autumn)
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Discussion

We found that indigenous forest edges are important habi-
tat components for butterflies, supporting rich butterfly 
assemblages consisting of a mix of forest specialists, habitat 
generalists, and grassland specialists. Certain behaviours 
indicative of habitat use, such as territory defence and court-
ship behaviour, were more prevalent at forest edges than in 
grassland. Furthermore, certain species preferentially used 
forest edges, especially during hotter and windier summer 
conditions. Forest edges therefore appear to increase habitat 
complexity and provide refuge for butterflies in the study 
region.

Importance of forest edges for maintaining 
high butterfly diversity and supporting certain 
behaviours

Edges between forests and open habitats often sup-
port diverse arthropod assemblages (Schmitt et al. 2020; 
Yekwayo et al. 2016), and this was also observed here. The 
high diversity at forest edges was driven largely by high 
numbers of forest specialists. Yet, grassland specialists and 
habitat generalists were equally species rich and abundant 
at the forest edges compared to grassland. Although certain 
grassland butterflies favour expansive unwooded grasslands 
(Gaigher et al. 2021; Schmitt and Seitz 2000), our results 
show that a significant component of the overall local but-
terfly assemblage utilizes forest edges.

Edges between forests and open areas often benefit 
arthropods, as they provide easy access to resources from 
both adjacent biotopes (Ries et al. 2004) and have gradi-
ents of solar radiation, temperature, and moisture that pro-
vide varied microhabitats supporting species with different 
microclimatic needs (Liivamägi et al. 2014; Schultz et al. 
2012). In addition, these ecotones can provide rich floral 
resources (Bergman et al. 2018), dense larval host plants 
(Habel et al. 2022), and protection from adverse weather 
such as strong winds (Toivonen et al. 2017) and extreme 
temperatures (van Halder et al. 2011). In this high-wind and 
hot environment, we expected shelter from harsh weather 
to strongly influence butterfly distribution and behaviour. 
Such a sheltering effect would have been evident if butter-
fly species richness and abundance patterns in the different 
landscape locations were mediated by the effect of season, 
or if settling behaviours were more frequent at forest edges 
than in grassland. Such patterns have been demonstrated 
for butterflies and grasshoppers that shift in their microsite 
selection according to shifting weather conditions (Dennis 
and Sparks 2006; Dover et al. 1997; Matenaar et al. 2014).

We did not observe these effects, but instead saw simi-
lar butterfly patterns between summer and autumn for all 

Of the dominant forest specialist species, the novice, 
Amauris ochlea ochlea, and the mocker swallowtail, Papilio 
dardanus cenea, were significantly more abundant at forest 
edges than in grassland across both seasons (Table 3; Sup-
plementary material, Table S3). The layman, Amauris albi-
maculata albimaculata, was significantly more abundant at 
forest edges than in grassland in summer (estimate: -3.32, 
S.E.: 1.61, 95% C.I.: -6.48, -0.16), but did not differ between 
locations in autumn (estimate: -0.43, S.E.: 0.45, 95% C.I.: 
-1.16, 0.30) (Table  3; Supplementary material, Table S3). 
The small orange Acraea, Hyalites eponina, was not influ-
enced by location (Table 3; Supplementary material, Table 
S3). Of the dominant grassland specialists, the spotted joker, 
Byblia ilithyia, was significantly more abundant at forest 
edges than in grassland in both seasons (Table 3; Supple-
mentary material, Table S3). Neither the common grass yel-
low, Eurema hecabe solifera, nor the broad-bordered grass 
yellow, Eurema brigitta brigitta, were influenced by loca-
tion (Table 3; Supplementary material, Table S3). The abun-
dance of the blue pansy, Junonia oenone oenone, was not 
influenced by any of the predictors (Table 3; Supplementary 
material, Table S3). Of the dominant habitat generalists, 
the citrus swallowtail, Papilio demodicus demodicus, was 
significantly more abundant at forest edges than in grass-
land in summer (estimate: -1.40, S.E.: 0.40, 95% C.I.: -2.27, 
-0.54), but its abundance did not differ between locations in 
autumn (estimate: -0.36, S.E.: 0.23, 95% C.I.: -0.85, 0.12) 
(Table 3; Supplementary material, Table S3). The window 
Acraea, Acraea oncaea, was influenced only by area, being 
significantly more abundant in grassland sites on the planta-
tion estate (Table 3; Supplementary material, Table S3). The 
abundance of the four remaining habitat generalists, Bark-
er’s smoky blue, Euchrysops barkeri, African monarch, 
Danaus chrysippus aegyptius, African migrant, Catopsilia 
florella, and African common white, Belenois creona sev-
erina, were not influenced by any of the predictors (Table 3; 
Supplementary material, Table S3).

Although many of the same butterfly species occurred in 
both seasons (Table S2), there was a significant difference 
in butterfly assemblage composition between summer and 
autumn (Deviance = 375.1, P = 0.001).

In total, 201 flower visitations to 48 flowering plant spe-
cies were recorded. In summer, there were 56 visitations to 
21 flowering plant species, and in autumn there were 145 
visitations to 36 flowering plant species. The flowering 
plants visited were a mix of herbaceous and woody plants 
(Supplementary material, Table S3). The plant assemblage 
visited did not differ between forest edges and grassland 
(Wald χ2 = 2.52, P = 0.47), between seasons (Wald χ2 = 2.73, 
P = 0.68), or between the protected area and plantation 
estate (Wald χ2 = 3.30, P = 0.49), and there was no interac-
tion between location and season (Wald χ2 = 0.72, P = 0.41).
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three butterfly groups. A possible reason for this may be that 
our use of the average seasonal conditions was too coarse 
to detect effects of weather conditions which can vary over 
shorter time scales. Furthermore, butterfly assemblage com-
position differed between seasons, and varying climatologi-
cal preferences of different species occurring in the different 
seasons may have partly masked the occurrence and behav-
ioural patterns at the assemblage level. Nonetheless, the sin-
gle species patterns provided an indication that forest edges 
provide refuge for certain species. For example, A. albimac-
ulata albimaculata and P. demodicus demodicus, preferred 
forest edges over grassland during summer, whereas they 
utilized forest edges and grassland equally during autumn. 
These are both mobile strong-flying butterflies which may 
benefit from the ability to actively seek out sheltered areas 
during harsher periods to avoid the effects of the wind, such 
as convective heat loss and mechanical disturbance (Bar-
ton 2014; Matenaar et al. 2014), or to prevent overheating 
from high (> 30 °C) temperatures (van Halder et al. 2011). 
Open areas are then used more frequently during calmer 
conditions and moderate temperatures, which has also been 
shown for butterflies in other landscapes comprised of habi-
tats that vary in structure (Dennis and Sparks 2006). These 
results suggest that forest edges provide important refuge 
opportunities, at least for certain butterfly species.

We also investigated whether forest edges provide abun-
dant or complementary nectar sources to grassland, which 
benefits grassland butterflies in other regions (Bergman et 
al. 2018). However, we recorded more feeding behaviours 
in grasslands than at forest edges for grassland special-
ists and habitat generalists in both seasons. Few nectaring 
events were observed for forest specialists overall. A pos-
sible reason for the higher feeding activity in grassland may 
be higher floral abundance in grassland, which we did not 
measure directly in this study. Furthermore, we found no 
evidence of complementarity in the nectar sources between 
grassland and forest edges, as similar flower species were 
visited in both locations. This is contrary to other studies 
showing complementarity in pollinator food sources among 
different biotopes (Bertrand et al. 2019; Mallinger et al. 
2016). It is therefore unlikely that adult nectar sources at 
forest edges are a reason for the edges being so highly uti-
lized, at least in the lower vegetation layers. We were unable 
to survey flower visitations in the upper tree canopies, which 
may provide additional food sources.

In addition to flower visitations, the prevalence of other 
behaviours also varied between forest edges and grass-
lands. We observed proportionally more inter- and intra-
species interactions at the forest edges than in grassland, 
which included territorial behaviours (aerial contests such 
as aggressive spiral flights and chases indicative of territory 
defence), courtship behaviours (slow, spiral flights between 
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forest butterfly diversity, which aligns with previous work 
on other taxonomic groups (Kotze and Samways 1999; 
Yekwayo et al. 2016).

Conservation implications

Indigenous forest edges are ecologically significant features 
for butterflies in these landscapes. They not only support 
a high diversity of forest-associated species, but also ben-
efit butterflies in the broader grassland matrix. By provid-
ing shelter and varied microclimatic conditions, these forest 
edges increase opportunities for butterflies to satisfy their 
ecological and behavioural needs, which may become 
increasingly important under changing environmental con-
ditions. Indeed, the maintenance of microhabitat diversity 
is identified as a primary management strategy towards 
buffering insect populations against global change (Harvey 
et al. 2022; Samways et al. 2020). Future research on the 
importance of forest patches and other landscape elements 
to long-term insect population persistence would help guide 
conservation planning in the study region. Furthermore, an 
understanding of the level of landscape heterogeneity that 
maximizes biodiversity would help fine-tune conservation 
action. Overall, our results indicate that the continued con-
servation of indigenous forest patches, along with the main-
tenance of a high-quality grassland matrix will be important 
for safeguarding overall butterfly diversity in these systems 
and in similar areas threatened by land-use change.
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conspecifics), and mating. These patterns were consistent 
for all butterfly groups in both seasons. The high number 
of interactions at the forest edges may be because wooded 
habitats in predominantly open landscapes are clearly vis-
ible landmarks, which are often needed for visually cued 
butterfly behaviours like mate location and territory defence 
(Merckx and van Dyck 2005). Also, the heterogeneous con-
ditions at forest edges increases an individual’s likelihood 
of locating a suitable microclimate. As microclimate is a 
crucial component of habitat quality for butterflies (Stuhl-
dreher and Fartmann 2018), edges likely represent valuable 
territories for many species. By promoting these behaviours 
related to reproduction, forest edges may play an impor-
tant role in preventing population decline and influencing 
the spatial distribution of subsequent butterfly generations 
(Dennis and Sparks 2006; Habel et al. 2022).

We also observed more patrolling (slow flight with high 
returning frequency) at the forest edges than in grassland, 
for all butterfly groups in both seasons. Although the moti-
vation for patrolling varies between butterfly species, it 
generally relates to foraging, mate-location, and searching 
for shelter (Van Dyck and Baguette 2005) in habitats that 
are perceived as favourable (Evans et al. 2020; Schultz et 
al. 2012). Considering that proportions of total behaviours 
were analysed, the high frequency of nectar feeding in the 
grassland may partly explain why certain other behaviours 
were more frequent at forest edges. Nonetheless, the behav-
ioural results show that the diversity of butterflies at the for-
est edges is not just due to passive mixing or accumulation 
at the edges (Ries et al. 2004), but that different butterfly 
groups are intentionally using forest edges as an important 
habitat element.

An additional factor which may have influenced butterfly 
occurrence at forest edges, is larval host plant distribution, 
which can strongly influence adult habitat selection (Habel 
et al. 2022; Krauss et al. 2005). This was not included in 
this assemblage-level study due to the huge diversity of host 
plants used by the various species (Woodhall 2005). Future 
work focused on single-species habitat use would be valu-
able to determine the role that host plant distribution plays 
in the observed butterfly occurrence patterns.

Importantly, although forest specialists were most abun-
dant at forest edges, they also frequently utilized the grass-
land, mostly for transient behaviour (fast, directed flight 
associated with displacement) and patrolling, especially 
during the more moderate conditions in autumn. High-
quality grassland remnants are important as habitat and as 
movement conduits for grassland butterflies in transformed 
landscapes (Pryke and Samways 2001), and our results 
suggest that they are also important for forest-associated 
butterflies. Conserving the integrity of the grassland sur-
rounding forest patches is therefore crucial for maintaining 
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