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Abstract 
Clearing of woodlands is used by graziers to promote pasture production, even though understanding of impacts of clear-
ing on native fauna is lacking. We evaluate impacts of clearing on biodiversity by comparing invertebrates associated with 
ground-layer vegetation of cleared woodlands (grasslands) to that of nearby uncleared woodlands. Two replicates of grass-
lands consisting of pastures dominated by introduced grasses were compared with two woodlands at each of four locations. 
The adjacent riparian forest to each grassland and woodland site allowed evaluation of the effect of woodland clearing on the 
adjacent riparian zone. All habitats were grazed. Invertebrates of ground-layer vegetation were sampled using three suction 
subsamples of  1m2 at each site. Grasslands had significantly lower order richness and abundance of herbivores, pollinators 
and macroinvertebrates (food for birds) than the woodlands, whereas the riparian forests closely resembled each other in 
all metrics. Invertebrate assemblages of grasslands also differed significantly from those of the woodlands. BEST analysis 
showed that groundcover and leaf-litter percentage cover correlated strongest with invertebrate composition. This study has 
demonstrated that grazing management relying on clearing of fertile grassy woodlands of the rangelands of Central Queens-
land alters invertebrate diversity and assemblage. Thus, tree clearing not only leads to biodiversity losses in the canopy layer, 
but also in the ground-layer vegetation.
Implications for insect conservation Pastoralists have the capacity to improve outcomes for invertebrate biodiversity by 
maintaining groundcover (ground-layer vegetation and litter cover) above 80%, by encouraging native pastures over intro-
duced species such as Buffel Grass and by retaining native woodlands.

Keywords Clearing · Buffel grass · Cenchrus ciliaris · Rangeland management · Remnant woodland · Biodiversity · 
Conservation · Grassy woodlands · Invertebrates · Sustainable grazing practices

Introduction

Managed grazing of domestic livestock is the most extensive 
form of land use on the planet, occupying 25% of the global 
land surface (Asner et al. 2004). Graziers throughout the 
world traditionally manipulate the landscape to enhance pas-
ture production, primarily by clearing trees (and associated 
woody vegetation) or altering grazing pressure by varying 

stock numbers (Ash et al. 2011; Hall et al. 2016). Conse-
quently, it is important to understand the impacts of grazing 
management, including those associated with land clearing, 
on biodiversity of native fauna of woodlands.

Clearing of woodlands generally promotes grass growth 
(Walker et al. 1972, 1986), primarily by increasing insola-
tion to ground-layer vegetation (Specht and Morgan 1981). 
However, while there are typically substantial increases in 
pasture biomass in the short-term, longer-term studies sug-
gest that these gains may not be sustainable over longer time 
frames (> 20 years) due to nutrient rundown (Kaur et al. 
2005; Sangha et al. 2005a; Radford et al. 2007). These stud-
ies also point to other issues caused by tree clearance such 
as loss of biodiversity and land degradation (Rolfe 2002; 
Sangha et al. 2005b) and a reduction in soil nutrients and 
pasture quality (Jackson and Ash 1998). Besides altering 
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pasture biomass, several other changes to the ground-layer 
vegetation are associated with removal of the tree layer. The 
reduction in shading of the ground-layer vegetation may 
raise soil temperatures, possibly influencing soil moisture 
(Lal and Cummings 1979; Hashimoto and Suzuki 2004). 
Less rainfall may be retained (Thornton et al. 2007), causing 
more rapid leaching of salts (Cowie et al. 2007) and eleva-
tion of soil pH with reduced nutrient availability (Sangha 
et al. 2005a). There is a loss of input of leaf and woody 
litter altering the quality of litter available (Sangha et al. 
2006), potentially influencing food webs. Finally, there may 
be changes in plant dominance associated with colonisation 
by introduced pasture grasses or weeds, particularly where 
heavy grazing occurs (Dorrough et al. 2006; Dorrough and 
Scroggie 2008; Kutt and Fisher 2011; Hall et al. 2017).

In Australia, grazing is the dominant land use (40% of 
land mass) and in Queensland 80% of terrestrial land is 
classified as rangelands used for domestic livestock grazing 
(Department of Environment and Resource Management 
2011). In Queensland, Buffel Grass (Cenchrus ciliaris) is 
one of the most important pastoral species for cattle graz-
ing (Marshall et al. 2012). This species was introduced in 
the 1920s and is still widely sown. Although beneficial to 
graziers, Buffel Grass has the capacity to invade and expand 
its range into non-target habitats such as nearby woodlands 
(Eyre et al. 2009). Buffel Grass has been shown to reduce 
ground-layer plant diversity (Melzer et al. 2014; Fensham 
et al. 2015). Invasive grasses such as Buffel Grass have been 
found to affect the quantity and quality of the grass litter, 
altering invertebrate assemblages and diversity (Grigg 1999; 
Wolkovich et al. 2009).

While tree clearing will have obvious impacts on inver-
tebrate fauna associated with the canopy layer of woodlands 
such as invertebrates dependent on foliage or bark of trees, 
impacts on those associated with the ground-layer vegeta-
tion are less obvious (Dorrough et al. 2012). However, stud-
ies have shown that clearing generally leads to a decline in 
invertebrate biodiversity associated with ground-layer veg-
etation (Green and Catterall 1998; Bromham et al. 1999; 
Vasconcelos 1999; Mathieu et al. 2005; Houston et al. 2015; 
Majer et al. 2021). Clearing may also impact on the adja-
cent habitat by disrupting dispersal patterns and altering the 
intensity of ecological processes (e.g. predation) leading to 
changes in faunal assemblages of adjacent vegetation (Craig 
et al. 2015).

Invertebrates are key components of any ecosystem but 
particularly for soils where they contribute to soil health 
by improving aeration and water infiltration and turnover 
of nutrients (Stork and Eggleton 1992). They also contrib-
ute to other important ecosystem services such as pollina-
tion, detritivory, herbivory and control of weed species, as 
well as providing food for larger animals such as birds and 
other vertebrates (Hallmann et al. 2017; Neilly et al. 2020). 

Diets of woodland and ground-foraging insectivorous birds 
in Australia are typically dominated by a few prey groups 
including beetles, ants, spiders, bugs, flies, grasshoppers, 
caterpillars and lacewings (Major 1991; Gamez-Virues et al. 
2007; Razeng and Watson 2012; Lindsay et al. 2014).

The objective of the study was to evaluate the influence 
of tree clearing on invertebrate assemblages associated 
with ground-layer vegetation by comparing them to nearby 
uncleared remnant woodlands on grazed land of the same 
soil type. Long-cleared sites (i.e. > 20 years) were selected to 
ensure that the effects of clearing had sufficient time to alter 
ground-layer vegetation. As cleared sites in this region were 
dominated by Buffel Grass, changes to the ground-layer veg-
etation may reflect both clearing and Buffel Grass colonisa-
tion. We compared remnant and cleared woodland in terms 
of biodiversity: order richness and invertebrate assemblage 
composition and abundance metrics: trophic structure (abun-
dance of detritivores, herbivores and predators), food avail-
ability for insectivorous vertebrates (combined abundance 
of invertebrate macrofauna) and pollinator abundance. We 
also assess the influence of habitat structure on arthropod 
assemblages.

Methods

Study area

The study area straddles the Tropic of Capricorn and 
lies ~ 100 km from the coast to the west of Rockhampton 
between latitudes 22°48′ and 23°35′ south (spanning a dis-
tance of ~ 80 km) and longitudes 149°11′ and 150°02′ east 
(also ~ 80 km). Four cattle grazing properties representative 
of the grazing management in the region and at least 20 
km apart were selected: Isaac/Connors Rivers (IC); Mac-
kenzie River (MK); Melaleuca Creek (FM), a tributary of 
the Fitzroy River and the Fitzroy River (FR). The climate 
is typified by long, hot summers and mild winters (Hutch-
inson et al. 2005). Annual rainfall averages 653 mm at the 
nearest rainfall station (Riverslea TM, Australian Bureau of 
Meteorology), with the three summer months (December, 
January and February) accounting for almost half the annual 
rainfall. Annual pan evaporation rates in the region are high, 
approximately 2100 mm per year (DES 2020).

Remnant vegetation consisted of sclerophyll woodlands 
and forests including riparian forests (> 30% canopy foliage 
projective cover (FPC)) along river edges dominated by For-
est Red Gum (Eucalyptus tereticornis) and River She-oak 
(Casuarina cunninghamiana). Bordering the riparian for-
ests, at slightly higher elevations, were woodlands (10–30% 
FPC) associated with gently sloping alluvial terraces. Domi-
nant species of the terrace woodlands were Coolibah (Euca-
lyptus coolabah), Forest Red Gum and Brigalow (Acacia 
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harpophylla). However, while a strip of riparian forest was 
retained along the river margins, most of the woodlands of 
the adjacent alluvial terraces were cleared. Typically these 
were well grassed and dominated in cover by an introduced 
pasture species, Buffel Grass.

While grazing regime varied between properties and pad-
docks, when cattle numbers were annualised, all paddocks 
were grazed at levels typical of the commercial stocking 
rates in the region, which range from 0.1 to 0.3 cattle/ha 
(Kaur et al. 2005). Overall, riparian paddocks were stocked 
at slightly lower levels of grazing than the adjacent alluvial 
terraces.

Sites and study design

At each of the four locations, four sites, separated by at 
least a kilometre to ensure independence, were established 
along 10–15 km of riverbank. Two sites were in patches with 
remnant terrace woodland present (TW) and two in patches 
where terrace woodlands had been cleared, the terrace grass-
lands (TP) (Fig. 1a). In addition, on the riverbank adjacent 
to each site, sites were established in the riparian forest: 
RFp if adjacent to the terrace grassland or RFw if adjacent 
to the terrace woodland (Fig. 1b). To avoid edge effects, ter-
race sites were located at least 150 m from the edge of the 
riparian zone. This gave four habitat types in all, with two 
replicates of each at each location: terrace woodland, ter-
race grassland, and the adjoining riparian vegetation, either 
RFw or RFp. Before clearing, terrace grasslands had similar 
vegetation to the terrace woodlands. The two terrace habitats 
(grassland or woodland) in each set had similar stocking 
rates, as did the two riparian habitats.

The comparison between the terrace grassland and the 
terrace woodland was the main interest of the study and 
provided the basis for establishing the influence of clearing 
on ground-layer invertebrates. The riparian habitats were 
included to evaluate the effect of woodland clearing on the 
adjacent riparian zone and were analysed separately.

Sampling

Surveys were undertaken in Autumn (April–May) 2007. A 
200 m transect aligned parallel to the river was established 
at each site. Habitat attributes were measured within a 10 
m radius of each of three points (0, 100 and 200 m) along 
the transect. Percentage projective cover of ground-layer 
vegetation was visually estimated for grass (including intro-
duced grasses), leaf litter, total litter (includes both leaves 
and woody debris), ground-layer vegetation (combined 
grass, forbs and foliage of low shrubs < 0.5 m height) and 
groundcover (combined ground-layer vegetation and litter). 
Percentage projective cover of important introduced species 
such as Buffel Grass, Green Panic (Megathyrsus maximus 

var. pubiglumis) and total invasive species cover (i.e. com-
bined Buffel, Green Panic and invasive forbs such as Parthe-
nium hysterophorus) were also recorded. Grass height was 
estimated from a measure of the height of tallest ground-
cover vegetation (cm) at 30 points spaced at 1m intervals 
along 3 radii of 10 m at each point. The number of native 
species of ground-layer plants was also recorded in each of 
the three circles of 10m radius.

To allow for the quantitative assessment of the abundance 
of invertebrates (numbers/m2) (King and Hutchinson 2007), 
soil surface, litter and grass-associated invertebrates were 
sampled using an MTD leaf blower acting as a suction sam-
pler. The maximum air-flow velocity of this model (~ 70 
 ms–1) exceeded the minimum (45.6  ms–1) recommended 
for samplers of this type (Stewart and Wright 1995). The 
sampler was passed repeatedly over the vegetation and 
groundcover for 30 s within a randomly located 1  m2 quadrat 

Fig. 1  a Example of the typical site plan showing 4 sites arrayed 
along the riverbank at one location, two in uncleared terrace wood-
lands (red transects, TW) and two in grasslands on cleared terrace 
woodlands (yellow transects, TP); and b detail of the same location 
showing the pairs of sites in the riparian forest and adjacent terrace 
habitats—TW (terrace woodland, red transect), RFw (riparian forest 
adjacent to woodland, white transect) and TP (terrace grassland, yel-
low transect), RFp (riparian forest adjacent to grassland, pink tran-
sect)
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(Cagnolo et al. 2002) at each of 3 points along the 200 m 
transect (0, 100 and 200m). To avoid damage, invertebrates 
were collected in a fine-meshed bag placed in the mouth of 
the suction device.

Samples were washed through a fine meshed sieve (150 
µ), sorted to Order (Naumann 1991) and enumerated. The 
three samples from each site were averaged to provide a 
sample estimate for each site. Exceptions to the order-level 
of classification were a few groups sorted to class, Chilop-
oda (centipedes), Diplopoda (millipedes) and Gastropoda 
(snails); and Hymenoptera was split into family Formici-
dae (ants) and Other Hymenoptera (wasps and bees). Col-
lembola (springtails) were categorised as elongate-bodied 
(orders Poduromorpha and Entomobryomorpha) or globular 
springtails (order Symphypleona).

To evaluate trophic structure, invertebrate taxa with rela-
tively uniform feeding habits and dominated by one trophic 
category were placed in one of three groups—detritivores 
(mites, springtails, book-lice, cockroaches and termites); 
herbivores (bugs, grasshoppers, stick insects, thrips, butter-
flies and moths) and predators (spiders, pseudoscorpions, 
mantids, lacewings and wasps) (Naumann 1991; Houston 
and Melzer 2018). Due to a broad range of feeding habits, 
some taxa could not be assigned to a single trophic category 
(ants, beetles and flies). In addition, taxa comprising the 
macrofauna were summed to provide a measure of the avail-
able food for birds and other vertebrates. Macrofauna com-
prise invertebrates > 2 mm and include most taxa sampled 
except those comprising the mesofauna (i.e. invertebrates < 2 
mm; mites, springtails and pseudoscorpions). In the same 
way, pollinating taxa: wasps and bees, flies, butterflies and 
moths, beetles and thrips were summed to provide a measure 
of pollinator capacity (Thien et al. 2000).

Analysis

To evaluate the effect of clearing on terrace woodlands, a 
two-way analysis of variance (ANOVA) was used to test the 
influence of location (four properties) and habitat (two types: 
terrace woodland or terrace grassland) on habitat attributes 
and arthropod metrics: order richness, total invertebrate 
abundance, abundance of each trophic category (detritivore, 
herbivore and predator), macrofauna, mesofauna and pol-
linators. A log10 (x + 1) transformation was used on abun-
dance data to normalize distribution. Where applicable, a 
posteriori Tukey tests (for multiple pairwise comparisons) 
were used to identify significant differences between loca-
tions (Quinn and Keough 2002). To determine if clearing 
influenced bordering remnant habitat, the two riparian habi-
tats (either adjacent to cleared or uncleared woodland) were 
analysed using the same ANOVA design.

Non-metric multidimensional scaling (nMDS) ordination 
was used to examine relationships between samples based on 

the order-level invertebrate assemblages. To reduce the influ-
ence of abundant taxa, data were square root transformed 
and sites were compared by applying the Bray–Curtis simi-
larity index (Clarke and Warwick 2001). Ordinations were 
visualised in two-dimensional space, whereby sites closer 
together have a more similar assemblage than those further 
apart.

To evaluate influence of location and habitat on order 
assemblages, a permutational ANOVA was applied (PER-
MANOVA, PRIMER-e, v7) (Anderson et al. 2008). Pairwise 
tests were used to identify significant differences in inverte-
brate assemblages between locations. Since this test is sensi-
tive to data dispersion and may confound differences among 
groups with differences in scatter within groups, a multivari-
ate homogeneity of dispersion test (PERMDISP, PRIMER-e, 
v7) was also applied (Anderson 2001). For all analyses, a 
p-value threshold of 0.05 was considered significant.

To ascertain which aspect of habitat structure (i.e., grass 
height, grass cover, ground-layer vegetation cover, leaf litter 
cover, total litter cover, groundcover, and invasive species 
cover) correlated with changes in invertebrate assemblage 
composition, a BEST analysis was applied (PRIMER-e v7) 
(Clarke and Warwick 2001) on all four habitats. The BEST 
routine seeks to choose explanatory (e.g. environmental) 
variables which ‘best explain’ the multivariate pattern in 
the response (e.g. assemblage) variables, by calculating a 
rank correlation coefficient (Spearman’s) between all the 
elements of their respective similarity matrices. Habitat 
attributes were normalized to correct for the different scales 
of measurement and Euclidean distance applied as the simi-
larity measure. Because Buffel Grass and Green Panic were 
associated mainly with either terrace zones or riparian zones 
respectively, they were not included individually but as a 
component of the invasive species cover.

Results

Ground‑layer attributes of the four habitats

Grasslands on cleared terrace woodlands had more grass 
but less leaf and woody litter than the terrace woodlands, 
resulting in significantly lower groundcover (76% compared 
with 83%; Table 1, Fig 2). Terrace grasslands also differed 
in being dominated by introduced species such as Buffel 
Grass with an average of 40% cover compared with 14% in 
terrace woodlands. Terrace grasslands had fewer native plant 
species than the terrace woodlands (18 ± standard error 2 
compared with 25 ± 2 in woodlands). There were some prop-
erty differences as well, mainly due to IC terrace vegetation 
having less grass (including Buffel Grass) and more leaf and 
woody litter than the other sites.
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In contrast to the terrace habitats, the two riparian forest 
habitats, irrespective of whether adjacent to woodlands or 
grasslands on the adjoining terrace, resembled each other in 
all ground-layer habitat attributes (Fig. 2), being relatively 
well vegetated with grass cover above 50% and more than 
90% groundcover due to the combination of ground-layer 
vegetation (mainly grass but also forbs and low shrubs in 
the ground-layer), leaf and woody litter. Buffel Grass was 
present but comprised less than 1% of groundcover. Grass 
was relatively taller than in the terrace habitats (averaging 
30 cm compared with 15–18 cm), partly reflecting the domi-
nance by tall, introduced grasses such as Green Panic which 
averaged 15–18% cover. Native plant species richness was 
similar to the terrace woodland (22–23 ± 3).

Invertebrate biodiversity & trophic metrics

Over 20,000 invertebrates from 24 taxa were captured 
during the study. Eleven taxa comprised almost 98% of 
the catch, with representatives of all trophic categories 
– detritivorous: mites (23.5%), globular springtails (9.6%), 
elongate-bodied springtails (5.9%) and book-lice (5.2%); 
herbivorous: thrips (16.9%) and bugs (11.0%); predatory: 
spiders (11.5%) and wasps (3.6%) and mixed: flies (4.2%), 
beetles (3.5%) and ants (2.8%). Remaining taxa were in low 
abundance (i.e. < 1% of the catch) and included grasshoppers 
and crickets, cockroaches, moths and butterflies, mayflies, 
lacewings, praying mantids, pseudoscorpions, millipedes, 
isopods, phasmids, termites, silverfish and dragonflies.

Analysis of the biodiversity data (order richness) 
showed that terrace grasslands had significantly fewer 
invertebrate orders than the terrace woodlands (an aver-
age of 14 orders/site compared with 17), although there 

was a significant interaction with location and only two 
of the four locations, IC and MK, had pronounced lower 
order richness than the nearby terrace woodlands (Table 1, 
Fig. 3).

Detritivorous invertebrates accounted for 45% of the 
overall catch, herbivores 29%, predators 15% and 11% unas-
signed (i.e. those orders with mixed feeding habits). Three 
of the four habitats had the expected abundance pattern with 
detritivores > herbivores > predators (Fig. 4). Terrace grass-
lands were the exception having similar numbers of herbi-
vores and predators. Abundance of detritivores was similar 
across the four habitats.

Analysis of abundance and trophic data showed that ter-
race grasslands had significantly fewer herbivores than the 
terrace woodlands (Table 1). This pattern was consistent 
at all four locations. The same pattern was observed in all 
herbivorous taxa, Thysanoptera (thrips), Hemiptera (bugs), 
Orthoptera (grasshoppers) and Lepidoptera (caterpillars) 
indicating that it was a universal trend in this group. Preda-
tor abundance was also relatively low in terrace grasslands 
but not significantly lower than in terrace woodlands. These 
trends are illustrated for the most abundant taxa in each 
trophic group (Fig. 5).

Terrace grasslands had significantly fewer macrofauna 
than the terrace woodlands (Table 1, Fig. 6), showing that 
food availability for insectivorous vertebrates was reduced 
following clearing. Numbers of pollinators showed a simi-
lar pattern with significantly fewer pollinators in the terrace 
grasslands than the terrace woodlands (Fig. 6). There were 
also differences in location with more pollinators at IC than 
FM.

Although there were some differences by location, the 
two riparian habitats resembled each other in all invertebrate 

Fig. 2  Mean ground-layer 
attributes of the four habitat 
types (RFw riparian forest 
adjacent to remnant woodland; 
RFp riparian forest adjacent to 
cleared woodland; TW: remnant 
woodland on an alluvial terrace; 
TP: cleared woodland (grass-
land) on an alluvial terrace) 
(standard error bars shown)
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abundance and biodiversity metrics (Table 1, Figs. 3, 4, 5, 
6).

Invertebrate assemblage

Although some terrace grasslands were relatively closely 
associated with other habitats (e.g. at FM and FR), seven 
of the eight grassland sites were to the right of the ordina-
tion while most sites comprising the other habitats were to 
the left or middle, indicating that terrace grasslands had the 
most distinctive invertebrate assemblage of the four habi-
tats (Fig. 7a). PERMANOVA on square root transformed 

abundance data showed that the terrace grassland assem-
blage differed significantly from the terrace woodland 
assemblage (Table 1). In contrast, riparian forests closely 
resembled each other in invertebrate composition; con-
firming that clearing has led to changes in ground-layer 
invertebrate assemblages but has not altered invertebrate 
assemblages associated with the adjacent riparian vegeta-
tion. Habitats had similar levels of dispersion (PERMDISP, 
homogeneity of dispersion, terrace habitats:  F1,14 = 1.301, 
P = 0.328; riparian habitats:  F1,14 = 2.130, P = 0.171), indi-
cating that differences in taxa composition between habitats 

Table 1  Results of two-way 
ANOVA (location x habitat) 
on ground-layer attributes and 
invertebrate metrics testing 
effects of clearing (terrace sites) 
and whether clearing affects 
adjacent remnant vegetation 
(riparian sites)—results of 
ANOVA on riparian habitat 
attributes were all non-
significant with P values > 0.6 
and are not shown

Significant results at 0.05 shown in bold

Metric Location Habitat Location xHabi-
tat

F3,8 P F1,8 P F3,8 P

Habitat attributes—terrace
 Grass height (cm) 1.213 0.366 0.438 0.527 0.595 0.636
 Grass % cover 35.931 0.000 20.065 0.002 0.881 0.491
 Total ground-layer vegetative % cover 10.692 0.004 26.567 0.001 3.471 0.071
 Leaf litter % cover 6.630 0.015 79.750 0.000 13.788 0.002
 Total litter % cover 7.991 0.009 67.708 0.000 8.783 0.007
 Groundcover % 5.546 0.024 10.979 0.011 1.497 0.288
 Total invasive species % cover 1.526 0.281 11.968 0.009 0.175 0.910
 No. native plant species 4.465 0.040 16.884 0.003 1.504 0.286
 Buffel Grass % cover* 7.365 0.011 26.620 0.001 1.396 0.313
 Green Panic % cover* 0.956 0.459 0.867 0.379 1.044 0.424

Invertebrates
Terrace
 Order richness 0.800 0.528 10.800 0.011 4.489 0.040
 Total abundance (no./m2) 0.877 0.492 1.873 0.208 0.257 0.854
 Detritivore abundance (no./m2) 0.696 0.580 0.341 0.575 0.224 0.877
 Herbivore abundance (no./m2) 0.323 0.809 28.381 0.001 2.003 0.192
 Predator abundance (no./m2) 2.488 0.135 4.159 0.076 1.493 0.289
 Macrofauna abundance (no./m2) 3.010 0.095 27.878 0.001 2.994 0.096
 Mesofauna abundance (no./m2) 0.824 0.516 0.639 0.447 0.299 0.826
 Pollinator abundance (no./m2) 4.793 0.034 9.679 0.014 3.351 0.076

Permanova
 Order-level assemblage (998 permutations) 1.780 0.042 3.571 0.006 1.371 0.150
 Riparian
 Order richness 0.634 0.613 0.806 0.395 3.387 0.074
 Total abundance (no./m2) 2.384 0.145 0.047 0.834 2.329 0.151
 Detritivore abundance (no./m2) 1.479 0.292 0.079 0.785 1.270 0.348
 Herbivore abundance (no./m2) 2.059 0.184 0.021 0.888 3.331 0.077
 Predator abundance (no./m2) 3.421 0.073 0.112 0.747 1.592 0.266
 Macrofauna abundance (no./m2) 4.119 0.049 0.004 0.952 3.397 0.074
 Mesofauna abundance (no./m2) 3.451 0.072 0.067 0.803 1.583 0.268
 Pollinator abundance (no./m2) 7.976 0.009 0.775 0.404 4.659 0.036
 Permanova
 Order-level assemblage (998 permutations) 1.821 0.049 0.504 0.790 1.667 0.137
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obtained with PERMANOVA were not due to differences in 
dispersion.

The BEST routine using the seven selected habitat attrib-
utes indicated that groundcover (Spearmans rs = 0.306) had the 
highest correlation with changes in invertebrate assemblage 
composition, the remaining attributes being < 0.3. The highest 
correlation was achieved with two attributes – groundcover 
and leaf litter cover (Spearmans rs = 0.402). The four terrace 
grasslands with the most distinct invertebrate assemblage to 
the right-hand side of the ordination were characterised by a 
combination of relatively low percentage groundcover (< 78%, 
Fig. 7b) and leaf litter cover (< 10%).

Discussion

This study has demonstrated that grazing management rely-
ing on clearing of fertile grassy woodlands of the rangelands 
of Central Queensland leads to a reduction in biodiversity 
(i.e. order richness) of invertebrates associated with the 
ground-layer vegetation and a change in invertebrate assem-
blage composition. In addition, terrace grasslands had fewer 
herbivorous invertebrates, food available for insectivorous 
vertebrates and pollinating insects compared to uncleared 
nearby woodlands and these differences were consistent at 
all four properties studied. Thus, clearing not only leads to 
biodiversity losses in the canopy layer of vegetation and 
associated fauna (Dorrough et al. 2012), but also in the 

Fig. 3  Mean order richness of 
the 4 habitat types at each of the 
4 sampling locations (see Fig. 2 
for habitat label descriptions; 
locations—IC: Isaac/Connors 
Rivers; MK Mackenzie River; 
FM Melaleuca Creek, a tribu-
tary of the Fitzroy River and 
FR: Fitzroy River) (standard 
error bars shown)
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biodiversity and resource base of the invertebrate fauna 
associated with the ground-layer vegetation. Implications for 
sustainability of such changes need to be considered within 
the wider context that has identified rundown of pasture pro-
ductivity following clearing over longer time frames (Kaur 
et al. 2005; Radford et al. 2007).

However, while clearing led to changes in ground-layer 
invertebrate assemblages, there was no apparent change in 
invertebrate assemblages associated with the adjacent ripar-
ian vegetation. This suggests that fauna of adjacent riparian 
vegetation remains relatively intact following clearing and 
that retention of even thin strips of remnant riparian forest 
helps sustain biodiversity on farm properties.

Soil and ground-layer vegetation invertebrates are 
known to have important roles in supporting grazing pro-
duction systems (Stork and Eggleton 1992). In particular, 
greater biodiversity of invertebrates has been shown to be 
associated with improved soil health and enhancing nutri-
ent availability (Kemmers et al. 2013), indirectly support-
ing grass and cattle production. Lower diversity of inverte-
brate fauna was implicated in slower rates of litter decay in 
pastures compared with nearby woodlands (Grigg 1999).

Retention of woodland patches in the landscape matrix 
provides ecosystem functional benefits by promoting the 
abundance of macrofaunal invertebrates and pollinators. 
These provide a number of ecosystem services such as pol-
lination, biocontrol of insect pests of pastures and weed 

Fig. 5  Mean abundance of the 
most abundant orders in the 
herbivore and predator trophic 
groups shown for each of the 
4 habitat types (see Fig. 2 for 
habitat label descriptions) 
(standard error bars shown)
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outbreaks, benefitting both graziers and any crops grown in 
the vicinity (Potts et al. 2006; Holland et al. 2017; St. Clair 
et al. 2022). In addition, by enhancing the food available for 
insectivorous vertebrates, woodlands help support food webs 
and birds, which indirectly also benefit agricultural systems 
through predation on insect pests of crops and pastures, and 
controlling pest outbreaks (Gamez-Virues et al. 2007; Peng 
et al. 2020).

Reasons why clearing has led to a grassland that sup-
ports a reduced number of herbivorous invertebrates have 
not been determined. Another study, also using suction 
samplers, found no effect of clearing on biodiversity (order 
richness), total abundance, abundance of trophic groups 

or composition of invertebrate assemblages (Houston and 
Melzer 2018). However, that study took place in recently 
cleared paddocks (< 5 years) with native pastures of compa-
rable biomass that resembled the composition of the ground-
layer vegetation of the original woodlands (Hall et al. 2016). 
In contrast, clearing in the current study had occurred many 
years ago (> 20 years) and grasslands were dominated by 
introduced pasture grasses such as Buffel Grass. Thus, it 
appears that tree clearing per se does not necessarily lead to 
changes in associated ground-layer invertebrates; but relate 
to further changes associated with the consequences of the 
clearing.

Fig. 7  Nonmetric multidi-
mensional scaling (nMDS) 
ordination, using Bray–Curtis 
similarities on square-root 
transformed data, comparison 
of invertebrate assemblages 
based on order-level abundance 
from pitfall traps a Ordination 
of sites and b bubble plot with 
bubbles proportional to percent-
age groundcover (see Fig. 3 for 
location label descriptions)
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One possible explanation for the observed changes in 
biodiversity, trophic structure and invertebrate composi-
tion may relate to the relatively greater dominance by 
Buffel Grass in the terrace grasslands than the uncleared 
terrace woodlands in the current study—40% cover com-
pared with 14% in terrace woodlands and 1% in riparian 
forests. Another study also reported lower invertebrate 
diversity in Buffel Grass pastures (Grigg 1999). A North 
American study of rangelands colonised by Buffel Grass 
found that the invaded paddocks had less invertebrates, 
particularly ants, beetles and spiders than native grass-
lands (Flanders et al. 2006). Most Australian studies were 
focussed on ant functional groups with mixed results, 
some ant groups declining, some increasing and others 
showing no change (Smyth et al. 2009; Williams et al. 
2012; Bonney et al. 2017).

Consistent with other studies, Buffel Grass was 
found to be associated with lower native plant diversity 
in pastures (Melzer et al. 2014; Fensham et al. 2015). 
It is possible that this may have flow-on consequences 
for dependent fauna such as herbivores with specialist 
feeding preferences. A study of minesite rehabilitation 
pointed to such an impact. Corresponding with lower 
plant diversity than nearby native woodlands, there were 
fewer species of plant-feeding insects such as Hemiptera 
(bugs) in the rehabilitated habitat (Moir et al. 2010; Orabi 
et  al. 2010). Further, it is possible that Buffel Grass, 
as an invasive non-native species, has relatively fewer 
endemic herbivorous insect species feeding on it com-
pared to native grasses (Cappuccino and Carpenter 2005), 
although further studies are needed to evaluate this.

Other explanations for the reduced numbers of her-
bivorous invertebrates in cleared woodlands compared 
to uncleared woodlands may relate to the quality of the 
grass. Graziers in northeastern Australia have long been 
aware of issues of “nutrient tie-up” in Buffel Grass pas-
tures where productivity typically declines over time 
from the ‘tying-up’ of plant available nitrogen in the 
crowns, roots and organic matter of old grasses, resulting 
in reduced carrying capacity for cattle production (Peck 
et al. 2011; Clewett et al. 2021). Further, long-cleared 
pastures are prone to reduced nutrient availability and 
impacts on grass productivity and quality (Jackson and 
Ash 1998; Kaur et al. 2005, 2007; Sangha et al. 2005a). 
Irrespective of the cause, as well as impacts on cattle 
production, pasture rundown is likely to lead to less nutri-
tious pasture grasses for herbivorous insects.

Differences in biodiversity and invertebrate assemblage 
of terrace grasslands and terrace woodlands were most 
pronounced in the two properties that used traditional 
grazing management approaches (i.e. continuous or long 
session grazing). In contrast, the two properties in which 
the terrace grasslands resembled the terrace woodlands 

in biodiversity attributes employed more modern graz-
ing management approaches such as rotational grazing 
that improved grass productivity (Eaton et al. 2011). It is 
possible that the style of grazing management may have 
positive impacts on biodiversity outcomes, although more 
detailed studies are needed (McCosker 2000; Dorrough 
et al. 2002; Lindsay and Cunningham 2009; Eaton et al. 
2011).

Management applications

Our results show there is a link between retaining more 
groundcover and enhanced invertebrate biodiversity. 
Thus, pastoralists have the capacity to improve outcomes 
for invertebrate biodiversity by maintaining groundcover 
above 80%. In general, greater levels of ground-layer cover 
are recommended as a way to enhance sustainability of 
rangeland cattle production systems (Beutel et al. 2021). 
In another study in Northern Australia, heavy grazing 
reduced grass cover and land condition, leading to lower 
profitability and reptile diversity compared with mod-
erately grazed paddocks (Neilly et al. 2018). Rotational 
grazing practices that typically involve resting of paddocks 
from cattle grazing for part of the year may also promote 
conservation of biodiversity (Dorrough et al. 2002; Eaton 
et al. 2011; Houston et al. 2013; Houston and Black 2016) 
and profitability (Neilly et al. 2018), although not always 
(Dorrough et al. 2012).

Graziers interested in improving biodiversity on their 
property should consider encouraging native pastures over 
introduced species such as Buffel Grass. Most likely this 
would only be possible on a small scale due to the known 
capacity of Buffel Grass to colonise disturbed habitats.

Maintaining woodlands rather than clearing is another 
option, particularly where the benefits in grass and cattle 
production are ambiguous as suggested by longer-term 
studies in some vegetation types (Jackson and Ash 1998; 
Kaur et al. 2005; Sangha et al. 2005a; Radford et al. 2007). 
The terrace woodlands of this study had greater biodiver-
sity, more pollinators and macroinvertebrates, and a more 
natural assemblage and trophic structure (i.e. comparable 
to the riparian forests) than the terrace grasslands. Reten-
tion of woodlands in the landscape enhances ecosystem 
services such as pollination, pest and weed control, includ-
ing indirectly by supporting insectivorous birds and other 
vertebrates (Crisol-Martínez et al. 2016). Graziers could 
consider retaining a matrix of intact woodlands and cleared 
patches as a way of promoting biodiversity benefits and cat-
tle productivity.
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