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disturbance, clearing of semi-natural habitats (SNH), and 
high use of pesticides and fertilizers (Hallmann et al. 2017; 
Hochkirch 2016; Seibold et al. 2019; Wagner 2020). To 
counteract the negative impacts of agriculture on biodi-
versity, measures such as those under the European Green 
Deal, including the Farm to Fork Strategy, are intended to 
increase the proportion of organic farming in the upcoming 
years, as well as reducing the use of pesticides (European 
Commission 2019). Given the large environmental impacts 
of agriculture, it is important to thoroughly understand the 
effects of intensive crop management on organisms as well 
as the impacts of such measures.

In viticulture, where the use of pesticides, especially 
fungicides, is particularly high due to introduced fun-
gal diseases such as powdery and downy mildew, large 
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Abstract
Conservation measures such as those under the European Green Deal aim to counteract the biodiversity loss by increas-
ing the share of organic farming and reducing pesticide use, as well as increasing the proportion of semi-natural habitats 
(SNH) in agricultural landscapes. Given the large environmental impacts of agriculture, it is important to thoroughly 
understand effects of such measures on organisms to provide evidence-based and effective implications for conservation. 
In this study, we analysed how vineyard management, pesticide reduction, and landscape composition affect Orthoptera 
densities and species composition. Therefore, we sampled herb- and vine-dwelling orthopterans in a paired design of clas-
sic and fungus-resistant grape (FRG) varieties in conventionally and organically managed vineyards along a landscape 
heterogeneity gradient. Here, FRG varieties allowed us to study the effect of 44% reduced pesticide applications under 
real-world conditions. Total densities of herb-dwelling Orthoptera did not differ between grape varieties in conventional 
vineyards, but were 2.9 times higher in FRG varieties under organic management. In contrast, total densities of vine-
dwelling Orthoptera, mainly driven by the dominant species Phaneroptera falcata, were similar between grape varieties 
in organic vineyards, but tended to be 1.4 times higher in classic grapes under conventional management. Furthermore, 
the management system and SNH in a radius of 500 m in the surrounding landscape influenced species composition.

Implications for insect conservation
Our work shows that the cultivation of FRG varieties, at least in organic viticulture, clearly benefits some orthopteran 
species. It appears that the reduction of non-specific pesticides such as copper and sulfur is important to mitigate negative 
effects and promote Orthoptera in viticulture.
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non-target effects, e.g. on arthropods, can be expected (Per-
tot et al. 2017). While organic farming promotes biodiver-
sity in many cropping systems compared to conventional 
farming (Bengtsson et al. 2005; Hole et al. 2005; Tuck et 
al. 2014), the effect seems to be less clear in viticulture 
and vary between and even within organism groups (Brug-
gisser et al. 2010; Döring et al. 2019; Ostandie et al. 2021; 
Paiola et al. 2020; Schirmel et al. 2022, Kaczmarek et al. 
2023). Since the use of synthetic chemicals is prohibited 
in organic management, non-synthetic components such as 
copper and sulfur are used in high quantities in viticulture 
to control pests, which, however, can also negatively impact 
non-target organisms (Biondi et al. 2012; Nash et al. 2010; 
Vogelweith and Thiéry 2018). The copper accumulates in 
the soil and thus may have long-term risks on the environ-
ment (Komárek et al. 2010). Further, an increased number 
of pesticide applications in organic viticulture leads to more 
tractor passages, and may affect non-target organisms by 
higher disturbance of the ground vegetation and increased 
soil compaction (Bruggisser et al. 2010).

Regardless of conventional or organic vineyard man-
agement, the impact of pesticides on biodiversity can be 
reduced by cultivating fungus-resistant grape (FRG) variet-
ies, which are characterized by resistance traits to the major 
fungal diseases (Töpfer et al. 2011). While the first resistant 
grape varieties were developed in the late 19th and early 
20th centuries, the first cultivars with convincing wine qual-
ities were only developed by the end of the 20th century and 
nowadays, over 38 cultivars are available for winegrowers 
(Töpfer and Trapp 2022). However, despite that the resis-
tances can reduce the need for pesticides by up to 80% for 
some multi-resistant varieties and increase the sustainability 
of viticulture (Töpfer and Trapp 2022), only about 2.7% of 
the area under cultivation is planted with FRG varieties in 
our study region (Statistisches Bundesamt (Destatis) 2023). 
Positive effects of the cultivation of such varieties are 
recently reported to benefit non-target organisms, includ-
ing predatory mites and some spider families (Pennington 
et al. 2017, 2019; Reiff et al. 2021a, 2023), making the cul-
tivation of FRG varieties a promising approach to promote 
biodiversity in viticulture. While this is of importance in the 
context of, e.g., the European efforts to reduce pesticides, 
evidence is lacking as there are only few recent research 
studies on the effects of the cultivation of FRG varieties on 
biodiversity.

Although organisms are usually exposed to high levels 
of pesticides due to the intensive management in viticulture, 
vineyards can provide a suitable habitat for species through 
the vines themselves, but especially through the vegetation 
in the inter-rows. Improved ground vegetation management 
may promote biodiversity by higher vegetation cover and 
species-rich cover crops providing habitat especially for 

typical grassland species (Blaise et al. 2022; Ortis et al. 
2021; Paiola et al. 2020; Winter et al. 2018). In addition, 
biodiversity is usually enhanced by heterogeneous land-
scapes with a high proportion of SNH (Martin et al. 2019; 
Ostandie et al. 2021; Paiola et al. 2020). Forests, hedges, 
shrubs, and grasslands can provide habitat for shelter and 
overwintering as well as food and breeding resources for 
species for which such resources are not available in vine-
yards (Holland et al. 2017).

Orthopterans are an important arthropod group in ter-
restrial food webs and provide a food source for various 
predatory species (Belovsky and Slade 1993). However, 
agricultural land use intensification, including the use of 
pesticides, is considered one of the major threats to Orthop-
tera species (Zuna-Kratky et al. 2016). They may be highly 
exposed to pesticides through surface contact, their feed-
ing behavior, and the egg-laying substrate (Bundschuh et 
al. 2012; Ingrisch and Köhler 1998), making them sensitive 
to environmental changes caused by management practices. 
In viticulture, the orthopteran fauna is further determined 
by tillage, cover crop management, the presence of habitat 
structures in the surrounding area, and the location of the 
vineyard in the landscape context (Detzel 1998). In Cen-
tral Europe, vineyards can mainly be found in climatically 
favorable regions (Bruggisser et al. 2010) and can provide 
habitat for several Orthoptera species including both shrub-
dwelling orthopterans (mainly species of the order Ensifera) 
in the vines and herb-dwelling orthopterans (mainly of the 
order Caelifera) in the inter-row vegetation (Detzel 1998). 
Hence, Orthoptera are appropriate indicators of the effects 
of pest, soil, and cover crop management practices and 
landscape heterogeneity in viticulture as they meet many of 
the criteria for effective ecological indicators (Noss 1990). 
In addition, density and species composition can be easily 
measured (Gardiner et al. 2005), which is why orthopterans 
are widely used as indicator species in ecological studies 
(Alignan et al. 2018; Bazelet and Samways 2011; Dvořák 
et al. 2022).

To assess how organic vineyard management, pesticide 
reduction, and landscape heterogeneity affect orthopteran 
densities and species composition, we sampled herb- and 
vine-dwelling orthopterans using box quadrats and transect 
walks with song detection, respectively. For this purpose, 
we used a paired design with classic and FRG varieties in 
either conventionally or organically managed vineyards 
along a gradient of landscape heterogeneity. In particular, 
we expected that (1) orthopterans are promoted by organic 
compared to conventional farming and (2) that they benefit 
from the cultivation of FRG varieties. Lastly, we investi-
gated whether (3) SNH-rich compared to vineyard-domi-
nated landscapes favor orthopterans.
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Materials and methods

Study area and site selection

We conducted the study in the district Südliche Weinstraße 
and the district-free city Landau in der Pfalz (49.273280 
°N, 8.020602 °E / 49.147516 °N, 8.175736 °E). The area 
is located in the wine-growing region Palatinate in the 
south of Rhineland-Palatinate in southwestern Germany 
with a temperate climate with an average annual tempera-
ture of 11.1 °C and a total annual precipitation of 687.5 mm 

(Agrarmeteorologie Rheinland-Pfalz 2022; Beck et al. 
2018).

We chose 16 different landscapes along a gradient of 
landscape heterogeneity in the study region that differed 
in their proportion of SNH in the surrounding landscape 
(Fig. 1). In each landscape, we sampled in two vineyards 
planted with a FRG and a classic grape variety, respectively, 
while the management system was organic in half of the 
pairs of vineyards and conventional in the other half. Of the 
vineyards studied, those managed conventionally had 10 
pesticide applications in classic grape varieties (SD = ± 2) 

Fig. 1  Locations of the 16 landscapes in the south of Rhineland-Palatinate, Germany, with organic (red) and conventional (blue) management and 
fungus-resistant (FRG, brighter) and classic grape varieties (darker). Basic map data by © GeoBasis-DE/LVermGeoRP (2022)
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We used an information-theoretic approach to multi-
model inference (Burnham and Anderson 2002) to analyze 
the effects of vineyard management and vegetation and 
landscape parameters on Orthoptera densities. We con-
ducted linear mixed models (R command ‘lmer’ in the R 
package lme4, Bates et al. 2015) and used total density of 
herb-dwelling Orthoptera, total density of vine-dwelling 
Orthoptera, and densities of the three most frequent herb- 
and vine-dwelling Orthoptera, respectively, as dependent 
variables. In order to meet model assumptions, densities 
were log (x + 1) transformed. We standardized the regres-
sion predictors using the ‘standardize’ function (R package 
arm, Gelman and Su 2016). As explanatory variables we 
included vineyard management (factor with the two levels 
‘organic’ and ‘conventional’), grape variety (factor with 
the two levels ‘FRG’ and ‘classic’), vegetation cover (con-
tinuous), vegetation height (continuous), and the amount 
of SNH in the surrounding landscape (continuous) in the 
full models. To assess whether the effect of grape variety 
differs among organic and conventional vineyards, we fur-
ther included their interaction in the models. Due to our 
paired design, we included the site ID as a random effect 
in the models. For automated model selection, we used the 
‘dredge’ function (R package MuMln, Bartoń 2020) and 
selected those top-ranked models within Δ AICc < 4. We 
used the AICc for small sample sizes. Conditional averaged 
parameter estimates from this top set of models were then 
produced using the ‘model.avg’ function. To check for cor-
relations among the explanatory variables we calculated the 
variation inflation factors (VIF). In cases where an explana-
tory variable had a VIF > 2 (which was either vegetation 
height or vegetation cover), we excluded this variable in 
the full model which resulted in VIF < 2 of all remaining 
variables.

The species composition of Orthoptera was analyzed 
using redundancy analysis (command ‘rda’ in package 
vegan, Oksanen et al. 2020). For the multivariate analysis, 
we used binary data (presence / absence) because densities 
of herb- and vine-dwelling Orthoptera are not comparable 
due to the differently used sampling methods. We used the 
same explanatory variables as in the univariate models.

Results

General results

With the box quadrat, we sampled 271 adult individuals 
of five herb-dwelling Orthoptera species (Table S2). Most 
frequent species were Chorthippus brunneus (Thunberg, 
1815; 126 individuals) followed by C. biguttulus (Linnaeus, 
1758; 91 individuals) and Pseudochorthippus parallelus 

and 7 in FRG varieties (SD = ± 3), while those managed 
organically had 13 pesticide applications in classic grape 
varieties (SD = ± 1) and 6 in FRG varieties (SD = ± 3; Table 
S1).

Sampling of herb-dwelling Orthoptera

In mid-August 2021, during dry and warm weather with 
temperatures ranging from 20 to 30 °C, a 40 m section was 
sampled in two randomly selected inter-rows in the center 
of each vineyard using a 1.96 m2 box quadrat to assess the 
density of herb-dwelling Orthoptera. We sampled in two 
adjacent, differently tilled inter-rows and placed the isola-
tion square on the ground seven times per inter-row. We 
identified orthopterans within the box quadrat (according 
to Fischer et al. 2020) and released individuals afterwards. 
Only adult individuals were analyzed.

Sampling of vine-dwelling Orthoptera

In early September 2021, after sunset and during dry 
weather with temperatures above 10 °C, we walked through 
two randomly selected inter-rows in the center of each vine-
yard to assess the density of vine-dwelling Orthoptera in 
the adjacent rows of grape vines. We detected individuals 
by their species-specific songs (according to Orthoptera.ch 
2021) and additionally used a bat detector (Observer 2 HD², 
CIEL-electronique) to make calls in the high frequency 
range audible. We calculated the number of individuals per 
100 m inter-row.

Vegetation and landscape parameters

We measured the vegetation height in two randomly 
selected inter-rows per vineyard by using a cardboard-disc 
with a diameter of 30 cm and a measuring stick. Further, 
we visually assessed the proportion of ground covered 
by vegetation in the two whole inter-rows. A mean value 
for vegetation height and cover was calculated out of all 
measurements for each vineyard (Table S1). For each land-
scape, we calculated the mean proportion of SNH, which we 
defined as forests, hedges, shrubs, and grassland, within a 
radius of 500 m of each vineyard using ATKIS data (Basis-
DLM by ©GeoBasis-DE/BKG (2013)) with intersection of 
spatial data in an Oracle database 12c (Oracle 2017).

Data analysis

We used R 4.0.5 (R Core Team 2021) for statistical analy-
ses and the R package ggplot2 (Wickham 2016) for creating 
figures.
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(Zetterstedt, 1821; 50 individuals). Only one Ensifera indi-
vidual of Roeseliana roeselii (Hagenbach, 1822) was found 
while all others belonged to Caelifera.

With the sound detection, we sampled 270 individuals of 
four vine-dwelling species (Table S3). By far the most fre-
quent species was Phaneroptera falcata (Poda, 1761; 209 
individuals) followed by Leptophyes punctatissima (Bosc, 
1792; 31 individuals) and Tettigonia viridissima (Linnaeus, 
1758; 23 individuals).

Effects of vineyard management, grape variety, and 
local and landscape parameters

Total density of herb-dwelling Orthoptera was significantly 
affected by grape variety and the interaction of manage-
ment system and grape variety (Table  1). This indicates 
that total densities were not different between classic and 
FRG varieties in conventional vineyards, but were almost 
3 times higher in FRG varieties under organic management 
(Fig. 2A). Management, vegetation cover, and the amount of 
SNH in the surrounding were included in the final model of 
total density of herb-dwelling Orthoptera but had no signifi-
cant effects (Table 1). The two most common herb-dwell-
ing species C. brunneus and C. biguttulus showed similar 
responses: Both species had higher densities in FRG variet-
ies under organic management, while no such differences 
were observed in conventional vineyards. Furthermore, C. 
brunneus densities significantly increased with increasing 
vegetation height (Fig. 2B and C). Management, grape vari-
ety, and the amount of SNH in the surrounding were all not 
significantly related to densities of C. brunneus and C. big-
uttulus (Table 1). For P. parallelus we found a significant 
influence of the grape variety while all other parameters had 
no significant effect (Table  1). Densities were on average 
about two times higher in FRG compared to classic varieties 
(organic vineyards: three times higher, conventional vine-
yards: 1.7 times higher; Fig. 2D).

As a trend, total density of vine-dwelling Orthoptera was 
affected by the interaction of management and grape variety 
(Table 2). Densities were similar between classic and FRG 
varieties in organic vineyards, but 1.4 times higher in classic 
grapes under conventional management (Fig. 3A). Further, 
their density tended to increase with increasing vegetation 
cover. All other parameters included in the final model of 
total density of vine-dwelling Orthoptera had no signifi-
cant effects (Table 2). For the density of the most frequent 
vine-dwelling Orthoptera P. falcata, we found no significant 
effects of the explanatory variables (Table  2). P. falcata 
densities were higher in conventional than in organic vine-
yards, but this pattern was statistically not significant and 
driven by two extreme values in classic and FRG varieties, 
respectively (Fig.  3B; Table 2). Organic management had 
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vineyard (Table 3). However, it was not affected by the grape 
variety. Species related to conventional vineyards were T. 
viridissima and C. biguttulus, while L. punctatissima were 
more common in organic vineyards (Fig. 4). L. punctatis-
sima was also related to vineyards with a higher amount 
of SNH in the surrounding landscape, while P. falcata was 
more common in vineyards with less SNH (Fig. 4).

a significant negative effect on T. viridissima and densities 
were on average three times higher in conventional than in 
organic vineyards (Table 2; Fig. 3C). The amount of SNH 
in the surrounding landscape, grape variety, and its inter-
action with management as well as vegetation height had 
all no significant influence on the density of T. viridissima 
(Table 2). L. punctatissima densities increased significantly 
with increasing amount of SNH while no other explanatory 
variable had a significant effect (Table 2; Fig. 3D).

The Orthoptera species composition, based on presence-
absence data, was significantly influenced by vineyard man-
agement and the amount of SNH in the surrounding of the 

Fig. 2  Densities (mean ± SE and raw data points) of herb-dwelling Orthoptera (total and the three most common species) for classic and fungus-
resistant grape (FRG) varieties under conventional and organic management
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Discussion

We assessed how organic and conventional viticulture, 
reduced pesticide application by using FRG varieties, and 
the proportion of SNH in the landscape around vineyards 
affected the density and species composition of herb- and 
vine-dwelling Orthoptera. Our main findings were that 
total densities of herb-dwelling Orthoptera were greatly 
enhanced in FRG varieties under organic management, 
while total densities of vine-dwelling Orthoptera tended to 
be higher in classic grapes under conventional management. 
Further, the management system and SNH in the surround-
ing landscape influenced species composition.

In contrast to our first hypothesis, we did not find any 
general effects of organic viticulture on total densities of 
Orthoptera. The only species where we found an effect 
was T. viridissima, being even three times less abundant in 
organically managed vineyards than in conventional ones. 
Thus, a conversion from conventional to organic viticul-
ture, such as that aimed for by the European Green Deal to 
counteract the loss of biodiversity (European Commission 
2019), does not seem to increase Orthoptera densities in our 
study. However, it is important to note that the diversity and 
conservation value of orthopterans that we found was rather 
low compared to some areas with different soil and relief, 
such as in the Middle Rhine valley (Wersebeckmann et al. 
2023). Similarly, other studies showed that general effects of 
organic farming in viticulture on biodiversity are less clear 
then in other cropping systems, where both positive and 
negative effects were reported (Bengtsson et al. 2005; Brug-
gisser et al. 2010; Ostandie et al. 2021; Paiola et al. 2020). 
In organic viticulture, non-synthetic compounds (mainly 
copper and sulfur) are used instead of synthetic chemicals, 
but they can have strong effects on non-target organisms, 
too (Biondi et al. 2012; Nash et al. 2010; Vogelweith and 
Thiéry 2018). Möth et al. (2021) found higher toxicity levels 
in organic vineyards, where high concentrations of copper 
accumulate in the soil (Mackie et al. 2012). The effects of 
management and fungicide reduction observed in our study 
could have been weakened by pesticide drift from neigh-
boring fields (Druart et al. 2011), because vineyards of our 
region are often small and adjacent vineyards are frequently 
managed differently. However, the observed differences in 
species abundances and species composition confirm that 
our study design was suitable to detect local management 
effects on Orthoptera. Vineyard management influenced 
species and taxonomic groups differently, and thus, may 
affect species interactions (Caprio et al. 2015; Ostandie 
et al. 2021; Pedneault and Provost 2016; Vogelweith and 
Thiéry 2018). Further research is needed to determine the 
extent to which species relevant to nature conservation or 
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Table 3  Effect of vineyard management (conventional, organic), grape varieties (classic, fungus-resistant), vegetation height and cover, and the 
proportion of semi-natural habitats in the surrounding landscape on the species composition of Orthoptera in vineyards analyzed using redundancy 
analysis on presence-absence data. Indicated are the F-value (F) and P-value (p). Significant P-values are in bold
Predictor F p
Management 2.576 0.009
Grape variety 1.265 0.267
Vegetation height 1.463 0.159
Vegetation cover 1.615 0.122
Semi-natural habitats 2.177 0.028
Management:Grape variety 0.708 0.670

Fig. 3  Densities (mean ± SE and raw data points) of vine-dwelling Orthoptera (total and the three most common species) for classic and fungus-
resistant grape (FRG) varieties under conventional and organic management
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in the soil (Ingrisch and Köhler 1998), the eggs and hatch-
ing larvae, respectively, may be comparatively affected by 
accumulating copper in the topsoil (Karimi et al. 2021), 
which could explain the stronger negative effect. Fur-
thermore, orthopterans can be exposed to copper through 
surface contact and their feeding behavior (Ingrisch and 
Köhler 1998). In a microcosm experiment, however, Karimi 
et al. (2021) have determined that the effects of copper on 
soil biodiversity are only measurable at annual concentra-
tions far above those authorized by the European commis-
sion, while in toxicity tests, Duque et al. (2023) found that 

beneficial insects are harmed or benefited by conversion to 
organic viticulture.

Herb-dwelling orthopterans were, in accordance with 
our second hypothesis, more common in FRG varieties with 
fewer pesticide applications compared to classic grape vari-
eties. However, a positive effect of reduced pesticide appli-
cation, with the exception of P. parallelus, was only present 
in organically managed vineyards, where copper and sulfur 
are used for plant protection. Since both the herb-dwell-
ing Orthoptera and T. viridissima, which was affected by 
organic management as we discussed before, lay their eggs 

Fig. 4  Biplot based on redundancy analysis (presence-absence data) 
of the species composition of Orthoptera in vineyards. Species com-
position was significantly affected by vineyard management (organic, 

conventional) and the proportion of semi-natural habitats in the sur-
rounding landscape. For statistics see Table 3
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could benefit from increased pesticide use if their predators or 
competitors are affected negatively. Further research would be 
needed to substantiate such possible indirect effects. Regard-
less of the exact mechanisms, our results highlight how the use 
of pesticides can affect species abundance differently and how 
these differential effects can alter species composition.

While a strong positive effect of landscape heterogeneity 
on biodiversity has been reported in various studies (Barbaro 
et al. 2021; Kolb et al. 2020; Martin et al. 2019; Schmidt et 
al. 2005), the influence of landscape is comparatively low in 
our study. One reason for this rather low positive effect on 
Orthoptera could be that orthopterans tend to be sedentary spe-
cies with a small range of action and the entire life cycle of 
the observed herb- and vine-dwelling species can take place 
in the vineyards or the immediate surroundings (Detzel 1998; 
Ingrisch and Köhler 1998). Only the species L. punctatissima 
occurs more frequently with a higher proportion of SNH. L. 
punctatissima prefers forest edges and is dependent on woody 
structures with adjacent grass and herbaceous areas (Detzel 
1998; Schlumprecht 2003), so a higher abundance is expected 
here, as a higher proportion of SNH in our study is often associ-
ated with a higher proportion of forest in the surrounding area 
and thus a shorter distance to forest edges (Fig. S1).

Biodiversity is usually influenced by local practices besides 
pesticide use, such as tillage and cover crop management 
(Blaise et al. 2022; Ostandie et al. 2021; Reiff et al. 2021b). In 
line with this, we found that vegetation positively affected C. 
brunneus, which became more abundant with increasing veg-
etation height. Additionally, the total density of vine-dwelling 
Orthoptera tended to increase with higher ground vegetation 
cover, possibly being influenced by the inter-row vegetation 
during larval stages that live in the herb layer (Detzel 1998). 
Increased densities of Orthoptera with increasing vegetation 
height and vegetation cover might be linked to higher food sup-
ply, suitable microclimate, and the provision of hiding places. 
Further, more intensive tillage may harm egg pods develop-
ment (Detzel 1998). Adapted management of vineyard inter-
rows, such as grazing or less intensive mowing and tillage, can 
thus be another effective measure to promote the biodiversity 
of herb-dwelling species, in addition to the measures previ-
ously discussed (Blaise et al. 2022; Bosco et al. 2022; Detzel 
1998).

Conclusion

According to our results, organic viticulture had no general 
positive effect on Orthoptera. Rather, reducing the number of 
pesticide applications and associated tractor passages, at least 
in organic viticulture, is important and shows a clear benefit 
to some orthopterans. Effects of the proportion of semi-nat-
ural habitats in the surrounding landscape on Orthoptera in 

concentrations also found in regional vineyards could have 
lethal effects on earthworms. However, Karimi et al. (2021) 
also point out that there is still a lack of field experiments 
that provide information on community dynamics under in 
situ conditions. In addition to the negative effects of cop-
per, the use of dusting sulfur, which is used particularly in 
organic viticulture as fungicide but acts as a broad-spectrum 
pesticide, may also negatively affect non-target organisms 
in the inter-rows, potentially leading to a positive effect of 
reduced plant protection on herb-dwelling orthopterans. A 
negative effect of sulfur on non-target organisms such as 
parasitoids, predatory thrips and mites, and grapevine moths 
has been shown in earlier studies (Hanna et al. 1997; Jep-
sen et al. 2007; Tacoli et al. 2020). In addition to negative 
effects of pesticides in organic and conventional viticulture, 
the fact that P. parallelus is similarly affected by the culti-
vation of FRG varieties in both organic and conventional 
management may be also due to a lower overall workload in 
those vineyards. A reduced number of pesticide applications 
leads to less tractor traffic, resulting in less disturbance of 
the ground vegetation and reduced soil compaction likely 
enhancing orthopterans (Bruggisser et al. 2010). This could 
be particularly relevant in flightless species such as P. paral-
lelus. Less intensive tillage may also be beneficial for egg 
pods development (Detzel 1998).

Vine-dwelling Orthoptera had similar densities in organic 
managed vineyards, but tended to be 1.4 times more abundant 
in classic than in FRG varieties in conventional managed vine-
yards. However, the total density of vine-dwelling Orthoptera 
was driven by high densities of P. falcata. T. viridissima seems 
to be more affected by pesticides used under organic manage-
ment, where it occurs generally less common compared to con-
ventional management. This may be because the larval stage 
lives in the herb layer (Detzel 1998), where it may come into 
contact with copper more intensively. Although copper also 
accumulates in the leaves of grapevines throughout the season 
(Angelova et al. 1999), species appear to be less affected here. 
One reason for this could be that copper on leaves is washed 
off by precipitation (Angelova et al. 1999). Furthermore, the 
use of sulfur as a widely used pesticide in organic viticulture 
may play a role here, too. Thus, reducing high toxicity levels 
in organic viticulture by cultivating FRG varieties can have 
a particularly large effect on promoting such affected species 
and may be a promising approach to reduce the pressure of 
intensified agriculture on biodiversity, as it was also reported 
to have positive effects on mites, spiders, and certain insects 
(Pennington et al. 2017, 2019; Reiff et al. 2021a, 2023; Kacz-
marek et al. 2023). Furthermore, the trend for higher densities 
of vine-dwelling Orthoptera in classic grape varieties com-
pared to FRG varieties in conventionally managed vineyards, 
driven by P. falcata, could possibly be explained by changes 
in species composition. For example, vine-dwelling Orthoptera 
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fcosc.2022.837551
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vineyard management on biodiversity at three trophic lev-
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biocon.2010.03.034
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ticide drift adversely affect grasshoppers (Orthoptera: Saltatoria) 
in field margins? A case study combining laboratory acute tox-
icity testing with field monitoring data. Environ Toxicol Chem 
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vineyards were weak, while other studies showed strong posi-
tive effects for other taxonomic groups of insects as well as for 
spiders and birds. We conclude that under organic viticulture, 
reducing the use of non-specific pesticides is important to pro-
mote biodiversity and that the cultivation of fungus-resistant 
grape varieties can have a significant part to this progress.
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