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attract wide range of insects with positive phototaxis (Wil-
liams 1939; Blanton et al. 1955; Hartstack et al. Jr 1968; 
Szentkirályi 2002) e.g. species of Lepidoptera (Baker and 
Sadovy 1978; Maelzer et al. 1996; Jonason et al. 2014; 
Tikoca et al. 2016), Coleoptera (Kádár and Szél 1995; Jár-
fás and Tóth 1977) and Trichoptera (Waringer 1989, 1991; 
Schmera 2003; Stanić-Koštroman et al. 2012; Larsson et al. 
2020). The order of Trichoptera is the most species rich taxa 
of primarily aquatic insects (Adler and Foottit 2017; Morse 
2017) and they play essential role in food webs both of 
freshwater and neighbouring terrestrial ecosystems provid-
ing food source for many predatory taxa (e.g., fish, crayfish, 
birds, bats) (Jackson and Resh 1989; Morse 2017). Consid-
ering these features, they are commonly used indicators of 
water quality, which are sensitive especially for high sedi-
ment and nutrient concentrations (Resh and Unzicker 1975; 
Lenat 1993; Resh 1993; Barbour et al. 1999; Dohet 2002; 
Jehamalar et al. 2010).

Depending on targeted insect taxa, aim of the given 
investigation and characteristics (e.g., climatic condi-
tions, habitat structure) of the sampling site, we can choose 
among plenty of trap types and light sources with different 
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Abstract
The artificial light sources are useful tools for sampling night active insects, however, they also possess potential environ-
mental risks in their habitats. To test their applicability and evaluate environmental risk for caddisflies (Trichoptera), the 
attractivity of different portable light traps working with LED, UV and mixed-white light sources was studied and com-
pared with attractivity of traditionally used mercury-vapour lamp (in Jermy-type light trap), which is tool of sampling and 
street-light. Analysing 1135 caught individuals of 19 species light sources emitting different wavelength spectra showed 
different attractivity and selectivity on caddisflies both on species and family levels. Attractivity of mercury-vapour lamp 
was generally lower than the other tested light sources. We found that the most attractive wavelength range for caddisflies 
is between 360 and 407  nm. One of the tested LED and mixed-white lamps together could cover this spectrum and a 
high and wide spectral peak of mixed-white light source between 375 and 391 nm resulted additional catches considering 
both species and number of individuals. Lamps emitting between 360 and 407 nm may be both a useful tool for sampling 
caddisflies and dangerous source of light pollution along lowland water courses where the sampled species are common 
and widespread.
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operating- and colour temperature and spectral distribution. 
There are quite a lot of data on the effects of weather (tem-
perature, wind strength, humidity, air pressure, etc.), moon 
phases and other environmental factors on the efficiency of 
light traps (Kiss 2002; Nowinszky 2003; Nowinszky et al. 
2014), while spectral distribution is one of the most impor-
tant parameters affecting the attractivity and selectivity of 
light sources (Nowinszky 2003). Light sources emitting 
relatively large amount of UV light generally perform bet-
ter in catching of night-active insects than others (Blomberg 
et al. 1976; Ashfaq et al. 2005; Cowan and Gries 2009), 
since beyond the visibility and the spectral distribution of 
the lamp, at least a minimal amounts of UV radiation are a 
crucial factor of the attractiveness (Barghini 2008, Barghini 
and Medeiros  2012).

The most widely used mercury-vapour lamp is an appro-
priate tool for attracting species of Lepidoptera (van Lan-
gevelde et al. 2011; Bates et al. 2013; Brehm 2017; Infusino 
et al. 2017), Coleoptera (Kádár and Szél 1995; Band et al. 
2019) and Trichoptera (Ward et al. 1996; Kiss 2002; Now-
inszky 2003; Blahnik and Holzenthal 2004; Calor and 
Mariano 2012) and even Hemiptera, Hymenoptera, Diptera 
and Neuroptera (Ramamurthy et al. 2010; van Grunsven 
et al. 2014). Mercury-vapour lamps attract more species 
and individuals of moths than the UV light alone probably 
since they have high peaks both in the UV and in the visible 
spectrum (Jonason et al. 2014; Tikoca et al. 2016; Brehm 
2017). In case of Lepidoptera blacklight (BL) tube (Belton 
and Kempster 1963; Mészáros 1966; Bhandari et al. 2017) 
and LED lights with wide spectra including UV radiation 
(Brehm 2017; Infusino et al. 2017) can be also effective. 
For attracting mosquitos, the incandescent lights, for agri-
cultural pests the green lights, and for some aquatic insects 
the cyalume lightsticks are the most commonly used light 
sources (Epsky et al. 2008).

The high attractivity of the mercury-vapour lamp for 
caddisflies (Mikkola 1972; Blomberg 1976; Walker and 
Galbreath 1979) and the role of its UV spectra were also 
proven (e.g., Chernyshev 1961; Calor and Mariano 2012; 
Pohe et al. 2017), thus this trap type and black light lamps 
became the most widely used standard light source types 
in caddisfly sampling (Blahnik and Holzenthal 2004; Calor 
and Mariano 2012). According to Mikkola (1972) the eyes 
of Trichoptera are similar to Lepidoptera and sensitive for 
350–600 nm wavelength, with a maximum around 550 nm, 
but the effect of spectral distribution of light sources on cad-
disflies is poorly known.

Although it is one of the most effective tools for sampling 
many taxa mercury-vapour lamps have been phased out in 
Europe since April 2005 as per EU Regulation 245/2009, 
which favours more cost-effective and energy-efficient LED 
technology (van Grunsven et al. 2014; Donatello et al. 2019; 

Haddock et al. 2019). Furthermore, the manufacturing and 
trade of mercury lamps have been gradually prohibited 
worldwide since 2020 by Minamata Convention Agreement 
(www.mercuryconvention.org), thus it should be replaced 
also in entomological studies.

Here we compared the efficiency and selectivity of dif-
ferent light sources to find the most appropriate method and 
tool for the caddisfly sampling and establish the most attrac-
tive wavelength range for them using mercury vapour lamp 
as kind of “traditional control method”. Beyond that we pro-
vided recommendations on use of different artificial lights 
considering conservation of caddisfly fauna. Finally large 
amount of distribution data of caddisfly species was also 
collected in a mainly unknown underinvestigated region of 
the Carpathian Lowland (Transcarpathia, W Ukraine).

Materials and methods

Sampling site

The samplings were carried out in the Velyka Dobron’ 
Game Reserve, in the eastern part of the Bereg Plain (West 
Ukraine) (Fig.  1). The Bereg Plain belongs to the Upper 
Tisza Region on the northeastern part of the Pannonian 
Lowland. This area has cool, humid continental climate 
strongly affected by the nearby Carpathians (Simon 1953).

The study area was the margin of the former Szernye 
Marsh thus it is still water-logged and wet despite the drain-
age (Szanyi et al. 2015). The Szernye Canal constructed 
during the drainage of the marsh and the Latorca River 
flow through the study area. On the floodplain, these water-
courses provide a permanent water supply with a maximum 
in spring. Beyond that, the reserve is surrounded by many 
artificial canals containing water periodically, and ephem-
eral ponds and puddles.

The light traps were placed on the banks of the Szernye 
Canal, near to the Latorca River in order that samplings rep-
resents both artificial and natural waterflows of the region.

Sampling method

Between 11th August and 9th September 2018 14 samplings 
were made with six portable light traps and one Jermy-type 
light-trap. The Jermy-type light trap worked with a mercury-
vapour bulb (80 W Hg), while the portable light traps con-
tained different light sources: one mixed-white light tube, 2 
types of LED and 3 types of UV light tubes with different 
spectral distribution. The spectral distribution of the tested 
light sources were measured with a Red Tide spectropho-
tometer working with a linear silicon CCD (Charge Coupled 
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Device) detector. It gives the wavelengths in nanometres 
and describes the intensity with counts (Fig. 2).

The mercury-vapour lamp (MV) had many peak wave-
lengths in a wide range (around 366, 405, 408, 436, 492, 
547, 578, 594, 621, 697  nm-s). The mixed-white light 
source (W) had high peaks both in the visible (around 405, 
436, 546 nm-s) and in the UV spectrum (around 370 nm). 
The UV1 and UV2 light sources were similar, and they 
showed only minor peaks in the visible compared to the UV 
spectrum. Their main peaks were similar with those of W 
light source (around 370 nm), but narrower. The peaks of 
the UV1 were higher in the UV range, while the peaks of 
the UV2 were higher in the visible spectrum. UV3 covered 
almost the whole UV-A spectrum, but only with low intensity 
without high peaks. The two tested LED light sources had 
similar peaks in the blue spectrum range (around 395 nm), 
although the peak of the L2 light source was slightly wider 
(Fig. 2).

Location of the mercury-vapour lamps are limited by 
available grid power, or they can work with a generator. 
The small portable light traps can be easily located at dif-
ferent habitats, since they work with 12 V batteries. These 
portable light traps were placed about 100 m distance from 

each other along the banks of the Szernye Canal. To elimi-
nate the effect of sampling sites they were relocated site by 
site in each sampling time. Portable light traps were smaller 
versions of the Robinson-type light trap (Upton and Mantle 
2010). The light tubes were mounted vertically with the top 
of a large funnel and have three radiating baffles around it. 
The funnel fitted on a plastic bucket, and had a transparent 
cover mounted above it to keep the rain out. The structure of 
the Jermy-type light trap is described in Szentkirályi (2002).

The collected insects were stored in 70 V/V% ethanol till 
identification carried out in laboratory.

Data analyses

The caught caddisflies were identified based on the keys 
of Malicky (2004). The nomenclature of Nógrádi and 
Uherkovich (2002) was followed. In case of Hydropsyche 
spp. males were identified at species level, while females 
were identified only at genera level since the extreme simi-
larity of the female genitalia of different species.

The fauna was characterised with checklist and relative 
frequencies of the caught species and families. To character-
ise efficiency and selectivity of the tested light sources the 

Fig. 1  Map of the sampling sites with location of the Jermy-type light trap with mercury-vapour lamp (A; empty triangle) and portable light traps 
(B; empty circle) with different light sources in the surroundings of Velyka Dobron’. black: rivers, channels, and other water bodies; dark grey: 
forests; middle grey: semi-natural grasslands; light grey: arable lands
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Results

Totally 1135 individuals of 19 caddisfly species belonging 
to six families were caught by the tested light traps. The 
most species rich family were the Hydropsychidae with 6 
species. Leptoceridae family showed similarly large species 
richness, however the abundances of species were especially 
low. The most abundant family was also the Hydropsychi-
dae followed by Limnephilidae. Based on male catches the 
most abundant Hydropsychidae species was Hydropsyche 
modesta followed Hydropsyche contubernalis and Hydro-
psyche bulgaromanorum. Among Limnephilidae Glyphot-
aelius pellucidus was dominant. Only one or two species 
belonging to Psychomyiidae, Ecnomidae and Phryganeidae 
families was caught only with low abundances (Table 1).

Traps caught both sexes with near 1:1 ratio, since the 
mean percentage of males was 45.5 (± 18.3) % (Table 1). 
Species showed different sex ratios. Ecnomus tenellus and 

total and mean number of species and individuals (species/ 
and individuals/sample) were calculated, and the number 
of unique species (species attracted only by a given light 
source) also was provided by light sources. The mean num-
ber of caught individuals (individual/samples) was also cal-
culated both for caddisfly families and species. To evaluate 
how different light sources sample diversity Shannon-Wie-
ner and Hill’s diversity indices were calculated and com-
pared by different methods. For calculation of indices an 
online diversity calculator developed by Young T. M. was 
used (alyoung.com/labs/biodiversity_calculator.html).

Light sources were compared using the above variables. 
For comparisons Kruskal-Wallis test was used since data 
didn’t fulfil the assumptions of parametric tests. If the test 
showed significant differences the pairwise comparison was 
made with Mann-Whitney U-test using Statistica 7 program.

Fig. 2  The spectral distribution of the light sources used for caddisfly samplings in Velyka Dobron’ Game Reserve (W Ukraine). MV: mercury-
vapour lamp; W: mixed-white light tube; L1, L2: LED lights; UV1, UV2, UV3: UV light tubes
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but mercury-vapour lamp showed the largest values fol-
lowed by mixed-white light source. In this point of view 
LED and UV lamps were less effective (Table 3).

The number of individuals attracted by tested light 
sources differed between a smaller range (127–183) and 
the mean number of caught individuals also did not show 
significant differences (KW: H(6;98) = 2.6317, p = 0.8534) 
(Table 2).

During the study only three species showed light source 
specific presence (Table 2). Two especially rare Hydropsyche 
species (H. ornatula and H. pellucidula) were attracted only 
with the mixed-white light source (W), while the also rare 
O. furva was attracted only with L1 light. Beyond that, spec-
imens of Mystacides azureus were caught only with mixed-
white (W) and UV1 traps while individuals of S. punctatus 

Hydropsyche spp. showed 1:4 and 1:3, contrary Agrypnia 
varia and Limnephilus flavicornis showed 3:1 and 3:2 ratios. 
Ratios of other species were average (Table 1).

Although mixed-white light (W) attracted almost all the 
species registered during the study (17/19, except Setodes 
punctatus and Oecetis furva) and the number of caught spe-
cies varied between 9 and 17, but the efficiency provided 
by mean number of caught species per sample did not dif-
fer (KW: H(6;98) = 4.8261, p = 0.5663). Considering species 
number, the less efficient light sources were the UV1 and 
the mercury-vapour lamps (Table 2). Using diversity indices 
different pattern was found. Based on mean value of Shan-
non-Wiener and Hill’s diversity indexes of samples there 
were no significant differences between the tested sampling 
methods (KW: H(6;98) = 2.8543–4.489, p = 0.6108–0.8911), 

Table 1  List of the caught caddisfly species with their number of individuals (Ntotal) and relative frequencies (RF%), ratio of males (male%; 
where Ntotal > 10) and their appearance in different light traps
Species Ntotal RF% male% W MV L1 L2 U1 U2 U3
Psychomyiidae 11 1.0
Ecnomidae 48 4.2
Phryganeidae 70 6.2
Limnephilidae 351 30.9
Leptoceridae 30 2.6
Hydropsychidae 622 54.8
Psychomyiidae
Lype phaeopa (Stephens, 1836) 4 0.4 + + +
Psychomyia pusilla (Fabricius, 1781) 7 0.6 + + +
Ecnomidae
Ecnomus tenellus (Rambur, 1842) 48 4.2 16.7 + + + + + + +
Phryganeidae + + + + + + +
Agrypnia varia (Fabricius, 1793) 22 1.9 72.7 + + + + + + +
Trichostegia minor (Curtis, 1834) 48 4.2 41.7 + + + + + +
Limnephilidae
Limnephilus flavicornis (Fabricius, 1787) 25 2.2 60.0 + + + + + +
Grammotaulius nigropunctatus (Retzius, 1783) 16 1.4 50.0 + + + + +
Glyphotaelius pellucidus (Retzius, 1783) 313 27.6 55.3 + + + + + + +
Leptoceridae
Ceraclea dissimilis (Stephens, 1836) 9 0.8 + + + + +
Mystacides azureus (Linnaeus, 1761) 2 0.2 + +
Oecetis furva (Rambur, 1842) 1 0.1 +
Oecetis notata (Rambur, 1842) 14 1.2 42.9 + + + + +
Setodes punctatus (Fabricius, 1793) 4 0.4 + + +
Hydropsychidae
Cheumatopsyche lepida (Pictet, 1834) 6 0.5 + + + +
Hydropsyche bulgaromanorum Malicky, 1977 11 1.0 + + + + +
Hydropsyche contubernalis McLachlan, 1865 42 3.7 + + + + + + +
Hydropsyche modesta Navàs, 1925 99 8.7 + + + + + + +
Hydropsyche ornatula McLachlan, 1878 1 0.1 +
Hydropsyche pellucidula (Curtis, 1834) 1 0.1 +
Hydropsyche spp. female 462 40.7
Hydropsyche spp. total 616 54.3 25.0
Sum 1135 17 10 12 11 9 11 12
Mean ± SD 45.5 ± 18.3
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individuals than others. Contrary, in case of Oecetis notata 
mercury-vapour light bulb attracted significantly more indi-
viduals than other light sources from which L1, UV1 and 
UV3 bulbs did not attract any individuals (Table 4). In case 
of the other seven species obvious specificity could not be 
detected.

Discussion

In the present investigation the mercury-vapour lamp 
(MV) seems to be less effective than the other studied light 
sources. It attracted the least number of individuals and 
less species than the most UV, LED and mixed-white light 
sources. Additionally, 9 species: Cheumatopsyche lepida, 
Hydropsyche ornatula, Psychomyia pusilla, Grammotau-
lius nigropunctatus, Mystacides azureus, Hydropsyche pel-
lucidula, Lype phaeopa, Trichostegia minor and Oecetis 
furva were collected only with alternative light sources and 
the last 4 of them have not been caught formerly, during the 
3-year samplings with mercury-vapour lamp. (Szanyi and 
Szanyi 2018, 2019). Researchers generally use mercury-
vapour lamps and black light lamps for collecting caddis-
flies and also moths (Blahnik and Holzenthal 2004; Calor 
and Mariano 2012) since the attraction of caddisflies to 
near-ultraviolet radiation has been known for a long time 
(Chernyshev 1961; Mikkola 1972; Blomberg 1976; Walker 
and Galbreath 1979; Pohe et al. 2017). Although between 
them mercury-vapour lamps are seen more efficient (Mik-
kola 1972; Blomberg 1976; Walker and Galbreath 1979), 
but shorter wavelength light sources generally attract higher 

were caught only with mercury-vapour (MV) and UV2 light 
sources. Other species were attracted with at least three 
types of tested light sources.

Considering the number of caught individuals the selec-
tivity of light sources could be detected both on family and 
species level. The mercury-vapour light source attracted 
significantly more individuals of Leptoceridae than other 
light sources except mixed-white light bulb, but the differ-
ence was conspicuous also in this case. Contrary, in case 
of Limnephilidae, Phryganeidae and Psychomyiidae fami-
lies mercury-vapour light source attracted less individuals 
than the other light sources. In case of Limnephilidae the 
differences were significant in all comparisons. In case of 
Phryganeidae mercury-vapour lamp attracted significantly 
less individuals than mixed-white and UV (UV1-3) lights, 
while the differences were not significant in case of L1 and 
L2 lights. Considering Psychomyiidae UV3 light source 
attracted the most individuals, and the differences were sig-
nificant in case of UV1, UV2 and mercury-vapour lights. 
In case of Ecnomidae and Hydropsychidae there were no 
remarkable differences between the selectivity of the tested 
light sources (Fig. 3).

Among 19 caught species, 10 were caught with more 
than 10 individuals. Considering mean number of caught 
individuals three of them were differently attracted by dif-
ferent light sources. UV1 light attracted the most T. minor 
individuals. Traps with UV1, UV2 and mixed-white lights 
caught significantly more individuals than traps with mer-
cury-vapour bulb that did not catch any individuals. Indi-
viduals of G. pellucidus attracted by all tested light sources 
except mercury-vapour bulb, that attracted significantly less 

Table 3  Mean values (± SE) of Shannon-Wiener (SW) and Hill’s diversity (Hr0−2) of samples and its value calculated for the whole samples by 
tested light sources

Mean diversity values (± SE) of samples Diversity values of the whole 
sample

SW Hr0 Hr1 Hr2 SW Hr0 Hr1 Hr2
W 0.72(0.14) 2.50 (0.47) 2.10 (0.39) 1.87 (0.35) 1.88 17 6.57 3.40
MV 0.78(0.13) 2.57 (0.39) 2.27 (0.37) 2.16 (0.36) 2.11 10 8.22 7.40
L1 0.95(0.16) 3.57 (0.59) 2.86 (0.48) 2.48 (0.42) 1.58 12 4.90 3.16
L2 0.72(0.18) 2.36 (0.60) 2.15 (0.55) 1.97 (0.51) 1.58 11 4.85 3.01
UV1 0.66(0.19) 2.36 (0.68) 2.03 (0.59) 1.85 (0.55) 1.76 9 5.82 4.18
UV2 0.72(0.15) 2.64 (0.59) 2.18 (0.46) 1.90 (0.38) 1.68 11 5.40 3.57
UV3 0.86(0.14) 3.00 (0.47) 2.42 (0.38) 2.11 (0.34) 1.71 12 5.55 3.26

Stotal Ntotal Smean(± SE) Nmean(± SE) Suniq

W 17 183 3.7 (0.5) 13.1 (2.0) 2
MV 10 127 2.7 (0.5) 9.1 (1.7) 0
L1 12 171 2.6 (0.4) 12.2 (2.3) 1
L2 11 174 2.6 (0.6) 12.4 (2.9) 0
UV1 9 164 2.8 (0.5) 11.7 (2.1) 0
UV2 11 181 3.2 (0.4) 12.9 (2.7) 0
UV3 12 135 2.6 (0.4) 9.6 (2.0) 0

Table 2  Total and mean number (per 
sample) of caught caddisfly species 
(S) and individuals (N) and number 
of unique species (Suniq; caught only 
by a given light source) by tested light 
sources in the Velyka Dobron’ Game 
Reserve in 2018. W: mixed-white light 
tube, MV: mercury-vapour lamp, L1-2: 
LED light sources, UV1-3: UV light 
sources
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it was the less effective one. Individuals of Psychomyiidae 
were highly attracted by UV3 light while UV1, UV2 and 
mercury-vapour lamps were totally inefficient. Cherny-
shev (1961) reported different attractivity of light sources. 
In their experiment the black light blue lamp was highly 
attractive for specimens of Hydroptilidae, Limnephilidae 
and Psychomyiidae families and in contrast to our results 
mercury-vapour lamp showed higher attractivity for fam-
ily of Hydropsychidae. Mikkola (1972) also observed, that 
the yellow radiation was highly attractive for species of 
Leptoceridae family. In our investigation, only two light 
sources (mercury-vapour and mixed-white lights) emitted 
in the range of yellow radiation and the individuals of Lep-
toceridae family attracted with higher number exclusively 
to these light sources. The importance of the green-yellow 
light was also proved for moths e.g. Pandemis dumetanai 
Tr. and Pandemis heparana Den. et Schiff. (Járfás 1977; 
Nowinszky 2013). Laboratory measurements showed two 

number of species and higher abundance (van Langevelde 
et al. 2011; Barghini and Medeiros 2012; Kadlec et al. 2016; 
Brehm 2017). The tested alternative light sources emitted 
in this shorter wavelength spectra which can explain their 
higher efficiency and lower selectivity for different caddis-
fly species. Regarding diversity indexes the samples taken 
with mercury-vapour lamp showed the highest diversity, 
that can explain the wide use of this type of light source. 
The differences might be caused by the attractivity of the 
other light sources for Limnephilidae species that appeared 
in their samples with high abundances decreasing the value 
of diversity indices despite of the higher species diversity 
of samples.

Considering number of caught individuals belong to 
Ecnomidae and Hydropsychidae families there were no dif-
ferences between attractivity of different light sources. In 
case of Leptoceridae mercury-vapour lamp was the most 
efficient, while in case of Limnephilidae and Phryganeidae 

Fig. 3  The attraction of the caddisfly families to different light sources based on the number of caught individuals (individuals/sample). Small let-
ters indicate significant differences between light sources based on Mann-Whitney U-test, P < 0.05. MV: mercury-vapour lamp; W: mixed-white 
light tube; L1, L2: LED lights; UV1, UV2, UV3: UV light tubes
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evaluated since the especially low number of caught indi-
viduals (N = 4).

The wavelength range of the L1 and mixed-white 
(W) light sources together cover the whole spectrum that 
attracted all the collected caddisfly species. This spectrum 
and light sources provide the most appropriate wavelength 
range and tool for caddisfly sampling and parallelly cause 
largest risk of light pollution for caddisflies when they are 
used in public lighting.

Since the habitat loss and fragmentation and water pol-
lution endanger caddisflies and other aquatic insects, we 
should reveal all other threatening factors and should pro-
vide solution for them. Caddisfly species trapped in the 
study area were all common and widespread in small water-
courses of the Carpathian lowlands. Along these wetlands 
use of the tested light sources and any light sources emit 
between 360 and 407  nm should avoid and lamps work 
in different wavelength range are suggested. On the other 
hand, we can collect valuable data for monitoring and con-
servation planning with use the most effective light sources.

Acknowledgements  The work of Kálmán Szanyi was supported by 
International Visegrad Fund (Scholarship number: 52010905) 2020.

Authors’ contributions  SK, NA and SS designed the experiment and 
analysed the data, all authors contributed to writing of the manuscript.

Funding  The study was supported by International Visegrad Fund: 
Visegrad Scholarship Program (2020) (Serial Number: 52010905).

Open access funding provided by University of Debrecen.

Data availability  Not applicable.

Code availability  During the analysis SynTax 2000, and IndVal 2.0 

major peaks in the spectral sensitivity of moth species, 
one UV range between 360 and 365 nm and another in the 
green-yellow range between 515 and 575 nm (Agee 1973; 
McFarlane and Eaton 1973; Teel et al. 1976; Pappas and 
Eaton 1977; Eguchi et al. 1982).

The UV1, UV2 and L1 lights together caught all species 
(10) attracted with mercury-vapour lamp. The wavelength 
range of these light sources is between 360 and 407  nm 
(Fig. 1), thus in case of mercury-vapour lamp these wave-
length range can be seen attractive to caddisflies while light 
above 407 nm is inefficient. The mixed-white light source 
(W) attracted almost all collected species (17 from 19). The 
spectral distribution of this light source extends from 360 
to 577 nm. Above the wavelength of 391 nm, its spectral 
peaks are smaller, narrower, and similar to those that the 
mercury-vapour lamp showed (Fig. 1). It suggests that the 
high efficiency of the W light source due to its peaks below 
391  nm. Differences between UV1, UV2 and L1 lights, 
which together perform as mercury-vapour lamps, and 
mixed-white light could be found between 375 and 391 nm. 
In this range mixed-white light have wider and higher spec-
tral peak, that might result in its higher attractivity. Sum-
marily the 360–391 nm wavelength range attracted most of 
the collected caddisfly species. It supports result of Mikkola 
(1972), who found that the eyes of caddisflies are sensitive 
in the spectrum of 350–600 nm.

The only two species did not attract with mixed-white 
light tube were O. furva and S. punctatus. First of them was 
attracted only with L1 light tube with wavelength range of 
388–407  nm. Despite of the wavelength range of mixed-
white tube covers the spectral distribution of UV2 light, S. 
punctatus was attracted only with UV2 and mercury-vapour 
lamps. The wavelength preference of S. punctatus can’t be 

 H. bulbifera H. contubernalis H. modesta E. tenellus A. varia
Ntotal 11 42 99 48 22
W 0.67 ± 0.67 0.64 ± 0.24 0.70 ± 0.26 0.67 ± 0.23 0.57 ± 0.30
MV 1.33 ± 0.33 0.82 ± 0.30 0.70 ± 0.26 0.83 ± 0.32 0.14 ± 0.14
L1 0.00 ± 0.00 0.27 ± 0.20 1.90 ± 0.57 0.67 ± 0.28 0.29 ± 0.18
L2 0.67 ± 0.67 0.64 ± 0.31 1.50 ± 0.54 0.67 ± 0.40 0.14 ± 0.14
UV1 0.33 ± 0.33 0.82 ± 0.38 1.90 ± 0.84 0.33 ± 0.26 0.71 ± 0.36
UV2 0.00 ± 0.00 0.36 ± 0.20 2.10 ± 0.99 0.50 ± 0.23 0.57 ± 0.30
UV3 0.67 ± 0.67 0.27 ± 0.20 1.10 ± 0.41 0.33 ± 0.19 0.71 ± 0.36

T. minor L. flavicornis G. 
nigropunctatus

G. pellucidus O. notata

Ntotal 48 25 16 313 14
W 0.77 ± 0.20 b 0.58 ± 0.36 0.50 ± 0.29 4.57 ± 1.55 b 0.17 ± 0.17 b
MV 0.00 ± 0.00 a 0.08 ± 0.08 0.00 ± 0.00 0.43 ± 0.20 a 1.83 ± 0.70 a
L1 0.31 ± 0.24 ab 0.17 ± 0.11 0.25 ± 0.25 3.14 ± 0.74 b 0.00 ± 0.00 b
L2 0.54 ± 0.24 ab 0.33 ± 0.19 0.00 ± 0.00 4.07 ± 1.81 b 0.17 ± 0.17 b
UV1 0.62 ± 0.21 b 0.58 ± 0.23 1.20 ± 0.58 3.14 ± 1.04 b 0.00 ± 0.00 b
UV2 1.00 ± 0.34 b 0.33 ± 0.19 1.25 ± 0.63 3.86 ± 1.57 b 0.17 ± 0.17 b
UV3 0.46 ± 0.18 ab 0.00 ± 0.00 0.50 ± 0.29 3.14 ± 1.44 b 0.00 ± 0.00 b

Table 4  The attraction of the caddisfly 
species caught with more than 10 indi-
viduals to different light sources based 
on the number of caught individuals 
(individuals/sample). Small letters 
indicate significant differences between 
light sources based on Mann-Whitney 
U-test, P < 0.05
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