
Vol.:(0123456789)1 3

Journal of Insect Conservation (2022) 26:639–650 
https://doi.org/10.1007/s10841-022-00406-2

ORIGINAL PAPER

Forecasts of butterfly future richness change in the southwest 
Mediterranean. The role of sampling effort and non‑climatic variables

Enrique García‑Barros1   · Juan Pablo Cancela2,3   · Jorge M. Lobo4   · Miguel L. Munguira1   · Helena Romo1 

Received: 14 July 2021 / Accepted: 12 May 2022 / Published online: 9 June 2022 
© The Author(s) 2022

Abstract 
We estimated the potential impact of Global Warming on the species richness of Iberian butterflies. First, we determined the 
grid size that maximized the balance between geographic resolution, area coverage and environmental representativeness. 
Contemporary richness was modelled in several alternative ways that differed in how sampling effort was controlled for, and 
in whether the non-climatic variables (physiography, lithology, position) were incorporated. The results were extrapolated 
to four WorldClim scenarios. Richness loss is to be expected for at least 70% of the area, with forecasts from the combined 
models being only slightly more optimistic than those from the purely climatic ones. Overall, the most intense losses are 
predicted for areas of highest contemporary species richness, while the potential slightly positive or nearly neutral changes 
would most often concentrate in cells of low to moderate present richness. The environmental determinants of richness 
might not be uniform across the geographical range of sampling effort, suggesting the need of additional data from the least 
intensively surveyed areas.
Implications for insect conservation  Re-assessing richness and its environmental determinants in the area proves neces-
sary for more detailed forecasts of the climate-driven changes in butterfly species richness. The expected future conditions 
imply widespread losses of regional richness, even under the less severe scenarios. Since the negative impact of warming is 
expected to be extensive, long term conservation plans should concentrate in the present protected areas of highest richness 
as these are most likely to represent the last refuges for mountain species.

Keywords  Climate warming · Forecast · Lepidoptera · Portugal · Spain · Species numbers

Introduction

Global warming impacts the geographic range of organisms 
and their regional richness patterns (Díaz et al. 2019; Car-
doso et al. 2020; Wilson and Fox 2021), though to different 

extent across taxonomic groups and geographic areas (e.g., 
Aragón et al. 2010; Devictor et al. 2012; Outhwaite et al. 
2020). One of the ways to incorporate expected climate 
change effects to long term conservation plans is to geo-
graphically forecast the diversity and composition of species 
assemblages under future scenarios (e.g. Hannah et al. 2007; 
Schmitz et al. 2015; Fordham et al. 2016), hence forecasting 
methodologies represent an active research topic in the study 
of climate change consequences on biodiversity (e.g. Drew 
et al. 2011; Mouquet et al. 2015; Petchey et al. 2015; Urban 
et al. 2016; Lovejoy and Hannah 2019).

Climate-based expectations for future decades are nega-
tive for an important number of European butterflies (Lepi-
doptera, superfamily Papilionoidea) (Settele et al. 2008; 
Warren et al. 2021). Butterflies are good indicators of envi-
ronmental variation including that of climatic nature, so 
any mismatches in their interactions with their resources 
may rapidly translate to shifts in their spatial distribution 
(Wilson and Maclean 2011; Schweiger et al. 2012). In fact, 
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the negative expectations at the mid- to broad scale in the 
area are consistent with the negative population trends found 
for most species in the western Mediterranean Basin (Stefa-
nescu et al. 2011; Melero et al. 2016; Colom et al. 2020): a 
matter of concern, since the Mediterranean peninsulas host 
an important fraction of the European butterfly diversity 
(including the Iberian Peninsula, a biodiversity hotspot: 
Myers et al. 2000). How the described demographic trends 
would eventually translate to species richness and how such 
changes would distribute across this specific region, remains 
speculative. The mid-term (e.g., decades) responses of the 
geographic ranges to the expected climate warming has been 
modelled for a few Iberian species (e.g., at grid sizes of 
10 × 10 km: Romo et al. 2014; García-Gila 2019) to sug-
gest dominantly negative expectations, but an estimate of the 
magnitude and geographic distribution of the net expected 
change in species numbers (richness) is not yet available.

Our purpose here is to estimate the amount and the spatial 
distribution of the potential change in butterfly species rich-
ness under future climate scenarios in the Iberian Peninsula 
under a macroecological approach (that is, modelling spe-
cies richness, i.e., species counts per area unit, as a vari-
able: Whittaker et al. 2001; Pereira et al. 2013). Compared 
to stacking individual species models (S-SDMs) this is less 
computationally intensive far less sensitive to the problem 
of modelling the localized endemic species (e.g., Pineda and 
Lobo, 2012; for further argumentation on the relative mer-
its of these see e.g., Guisan and Rahbek 2011, Calabrese 
et al. 2014, Distler et al. 2015, Biber et al. 2019). However, 
forecasting distribution data to future climate scenarios 
requires a trained statistical model of contemporary richness 
whose performance is limited by a chain of methodological 
constraints and decisions including not only the statistical 
approach (e.g. Botkin et al. 2007; Guisan and Rahbek 2011; 
Calabrese et al. 2014; Mouquet et al. 2015) but also data 
quality (Hortal et al. 2007), their environmental representa-
tiveness (e.g. Hortal et al. 2008a; Sánchez-Fernández et al. 
2021) and the bearing of non-climatic factors whose effects 
could be mistaken with, or interact with the climate predic-
tors (Guisan and Thuiller 2005; Acevedo et al. 2017).

Among the items mentioned above, we shall concen-
trate in two that are merely relative to the basic information 
needed, i.e., the quality of the data (since this is not uniform 
across the study area, which constrains the geographic reso-
lution and determines the selection of area units, as detailed 
in the methods section), and the contribution of non-climatic 
variables. The last perspective is justified by the fact that 
a realistic forecast of future richness should rely on all its 
main drivers, including those that do not directly reflect cli-
mate conditions but that may interact or be correlated with 
them (Luoto and Heikkinen 2008; Titeux et al. 2009; Nieto-
Sánchez et al. 2015; Herrando et al. 2019). Some of those 
variables are temporally dynamic as the result of human 

activity and are difficult to use in forecasting due to the tem-
poral extent of the available data (but cf.: Bouwman et al. 
2006; Reidsma et al. 2006), while other are ‘static’ (i.e., vir-
tually constant along a period of decades, such as altitude or 
the geological substrate). Forecasting species richness using 
only climatic predictors may overestimate real changes, 
while using solely static non-climatic variables should 
render forecast patterns of constant richness. Thus, results 
from a combined model (climate plus static variables) might 
generate intermediate –and perhaps more realistic- alterna-
tives to the pure-climate based ones, largely depending on 
the magnitude of the interactions between the two types of 
variables. Moreover, the residuals or non-explained vari-
ability derived from these models may show a geographi-
cally distributed pattern which probably represents unknown 
predictors not accounted for by the model (e.g.: Birks 1996; 
Hawkins and Porter 2003; Hortal et al. 2004, 2008b). On this 
basis the spatial information may be incorporated as a part 
of the ‘static’ factors to, in the absence of other non-climatic 
predictors, provide a reasonable (though hypothetical) con-
trast of 'minimum change' to purely climate-based forecasts, 
helping to identify the potential range of expectations on 
richness change under the future climate scenarios.

Considering the sampling intensity carried out histori-
cally in the Iberian Peninsula, this study aims to provide 
different estimates of the range of expected change of but-
terfly species richness from projections to four future climate 
scenarios, based in models relying in different combinations 
of variables, both climatic and static. The intensity and the 
geographic distribution of the expected changes of butterfly 
species richness will be discussed in terms of the explana-
tory ability of the models fitted and their congruence with 
recent evidence from butterfly demographic trends, with 
emphasis in the sources of uncertainty of the forecasts that 
are of practical relevance.

Data and methods

The data

The study area was the Iberian Peninsula (the continental 
territories of Spain and Portugal) and the taxon the super-
family Papilionoidea, represented in this area by six fami-
lies and 238 species. The butterfly data come from García-
Barros et al. (2004), updated to cover the period 1900–2019 
(mean year = 1990, SD 22, ca. 400,000 records) from the 
literature, collections, field observations and available Inter-
net repositories.
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Grid size selection and cell completeness

Sampling effort was evaluated at five grid resolutions 
(MGRS squares with sides of 10, 30, 50, 100 and 200 km), 
based on incidence data where the rows were the unique 
combinations of species x coordinates x date x observer. 
A rational function was fit to accumulative (randomized) 
relationship between species numbers and records (with 
the package KnowBR under RWizard: Guisande et al. 2014; 
Lobo et  al. 2018; Guisande and Lobo 2018). Sampling 
effort was measured as completeness (estimated as Sest/Sobs, 
where Sobs = number of species recorded and Sest = richness 
value at the curve's asymptote). The frequency of high com-
pleteness scores was poor at the highest resolution tested 
(10 km squares) where less than 10% of the cells reached 
90% completeness (Fig. S1). The coverage of well-surveyed 
cells increased with cell size, but only a very large cell size 
(100 × 100 km or more) ensured full coverage; the interme-
diate 50 × 50 km grid was selected as a reasonable balance 
between precision and resolution. At this grid size 17 cells 
were excluded for containing either less than 25 species, 
100 records or a records/species ratio lower than 3.0. The 
remaining 224 workable cells had completeness values of 
87.6% on average (SD 10.8), higher than 50% in more than 
90% of them and above 80% in 175 cells (though exceeding 
95% in only 69 units). The geographic distribution of com-
pleteness, observed species numbers, and estimated richness 
at this grid size are presented in Fig. S2.

We initially used the 80% threshold for completeness 
to select the ‘reliable’ cells for modelling (comparable to 
e.g., Pelayo-Villamil et al. 2018; Lobo et al. 2018). How-
ever, the area units selected for modelling should cover the 
range of the main environmental gradients, while collecting 
biases are frequent in chorological data sets (typically, more 
records from more species-rich areas: Hortal et al. 2008a; 
Sánchez-Fernández et al. 2021). This problem (which is 
likely to affect our data: Romo et al., 2006) would impose 
differential collecting intensity along at least one environ-
mental gradient to result in a part of that gradient being 
excluded from the training data set. Alternatives to solve this 
may include modelling on the whole data set while control-
ling for completeness, either weighting values proportionally 
to sampling intensity, or including sampling intensity as a 
covariate. Thus, we tested the three alternative procedures 
(‘good’ cells, case weighting, and entering completeness 
as a covariate) in combination with the remaining options 
described below.

Predictor variables and abbreviations

Contemporary (1970–2000) climate data were derived 
from the data from WorldClim version 2.1 (30’’ resolu-
tion: Fick and Hijmans 2017). Nearly all the WorldClim 

variables (BIO1-BIO18) are reciprocally correlated in the 
study area; after a preliminary selection we retained the 
following nine: mean yearly temperature (BIO1), maxi-
mum temperature, average and absolute maximum (both 
from BIO5), minimum temperature (mean and absolute 
minimum, both from BIO6), temperature annual range 
(BIO7), mean annual precipitation (BIO12), mean annual 
range of precipitation (the difference between BIO13 and 
BIO14, precipitations of the wettest and the driest month) 
and summer precipitation (the monthly precipitation in the 
warmest quarter, BIO18). The static variables included 
altitude (derived from ETOPO2v2: National Geophysical 
Data Center 2006), lithology (from the 1:200,000 geo-
logic chart by IGN, 2018), plus elementary distance or 
position metrics derived from the data coordinates: mean, 
minimum and maximum altitude and the altitudinal range; 
the percent coverage of acid rock, basic rock and clay / 
sediments, the lithological diversity (variance from the 
three former variables), the balance of acid / basic rock (on 
the scale 1 = 100% acid to 3 = 100% basic). Finally, Lati-
tude and Longitude (the cell centroids MGRS coordinates, 
transformed to decimal degrees), the shortest distance to 
the coast and the surface of the cell occupied by land (Also 
see Supplementary file S1).

Future scenarios

The data from future climate scenarios were gathered from 
WorldClim (Fick and Hijmans 2017; BCC-CSM2-MR 
General Circulation Model, 5' resolution; details in Gidden 
et al. 2019; https://​pcmdi.​llnl.​gov/​CMIP6/ and www.​carbo​
nbrief.​org) and averaged to the operative grid size. We 
selected a conservative and an extreme emission pathway 
(Shared Socioeconomic Pathways SSP1-2.6 and SSP5-8.5, 
respectively) and the periods 2041–2060 and 2061–2080 
(with medians = 2050 and 2070). For simplicity, these sce-
narios will be referred to as 2050–2.6, 2050–8.5, 2070–2.6 
and 2070–8.5.

Sampling effort and dominant environmental 
gradients

The representativeness of the grid cells in terms of the 
main environmental gradients was assessed from the first 
two factors from independent PCA analyses applied to the 
full set of cell values for the variables describing contem-
porary climate, physiography, and geographic position. 
The factors values were classified into 10 equal intervals 
and the cell scores were plotted against the cell’s com-
pleteness for visual inspection.

https://pcmdi.llnl.gov/CMIP6/
http://www.carbonbrief.org
http://www.carbonbrief.org
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Shared explanation in the test variables

Variance Partitioning (e.g., Peres-Neto et al. 2006) was used 
to identify the a priori proportion of shared effects of the 
climate, physiography and position variables on richness 
variation as well as to explore some of the modelling results 
was calculated with SAM (Rangel et al. 2010).

Model fitting

The explanatory variables were standardized. Generalized 
Linear Models (GLM) were applied assuming a Poisson dis-
tribution of richness and a log link function with package 
'car' (Fox and Weisberg 2019) under R vers. 3.6.1 (www: 
cran.r-project.org). The variables were tested in descending 
order of their bivariate correlation with richness (Table S1). 
Variable selection was done manually on a forward–back-
ward stepwise sequence. Deviance and autocorrelation were 
checked at each step. Autocorrelation was measured via the 
variance inflation factor (VIF: Fox and Monette 1992) with 
a threshold VIF > 3. Backward selection was performed after 
any new variable was added, and at that point any redundant 
variables or those inducing VIF values above the threshold 
were eliminated. To account for curvilinear relations, the 
quadratic terms of the variables were tested and added if 
the linear monomial of the same variable remained in the 
model. Model fit was measured by adjusted deviance reduc-
tion (D2

adj: Guisan and Zimmermann 2000). Validation was 
done through the Mean Square Error (MSE) from the 'leave-
one-out' cross-validation procedure (package 'boot': Canty 
and Ripley 2020) with 45 cells of completeness higher than 
97% as the validation set.

After each model was fit, the spatial structure remain-
ing in the residuals was measured with Global Moran's I 
(Diniz-Filho et al. 2003) at distance lags of 50 km (with 
package 'ape': Paradis and Schliep 2018) as well as perform-
ing a Trend Surface Analysis (TSA: Legendre and Legendre, 
2012). Any other calculations were done with Statistica 
(StatSoft Inc. 2004).

Alternative models

18 models were tested, differing in the choices: (i) cli-
mate-only models vs. climate plus non-climatic variables 
models; (ii) how sampling effort was incorporated into the 
models, and (iii) alternative selection of climate variables. 
The combinations defining each model were abbreviated 
with three capital letters in the order (i–ii–iii). More in 
detail: (i) Climate vs. climate + static variables, A/C/K 
where: A = any of the available variables was selected, 
C = only the climate variables were tested and K = like 
A but with the highest possible proportion of the vari-
ance attributed climate. To do this, all the static variables 

were regressed onto the climate variables entered in each 
model and their residuals taken. These residuals (repre-
senting information not included in the C models and lin-
early independent from the climatic variables) were tested 
sequentially and added to the former C models if their 
effects were significant.

(ii) Incorporating cell completeness as a measure of real-
ized sampling effort in either one of three ways (S/W/C): 
S = only the cells where completeness > 79.9% were ana-
lyzed (n = 175). W = the estimated sampling effort was used 
to weight the cases. Since both the slope of the accumulation 
curves and completeness equally describe the accuracy of 
Sest and these were inter-correlated (r =  − 0.89, P < 0.001) 
we calculated their geometric average [((1-slope)·(comple
teness))^0.5] and re-scaled the result to the range 0.1–0.9; 
these values were incorporated as weights to the cases in 
weighted regression. And C = Completeness was entered as 
a co-variable in the models. (iii) Including or not summer 
precipitation (a/b). a = models were fitted with no restric-
tions on the climatic variables, or b = summer precipitation 
was omitted. This derived from the finding that in some cells 
under future climate scenarios (namely 2070–2.6) summer 
precipitation might increase despite of a decrease of the total 
rainfall (Fig. S3). The sense of this change is unprecedented 
and might unveil summer precipitation as an equivocal 
predictor of future richness, because in the contemporary 
estimates the total precipitation and summer rainfall are cor-
related all over the area.

Richness change in future scenarios

The values of the future climate variables were transformed 
using the means and standard deviations of the correspond-
ing contemporary data and then used to forecast from the 
models selected. Richness changes were measured as the 
absolute differences (future–present) between the cell fore-
casts and the contemporary values, the latter being repre-
sented both by the estimated ones (Sfor − Sest) and by the 
model predictions (Sfor − Spred). The 'certainty' of the rich-
ness shifts per cell was measured as a/b for the difference 
(Sfor − Sest) and as a/(bc) for (Sfor − Spred), where a = the varia-
tion from model averaging (s.d. within one scenario), b = the 
error associated to present estimates of richness (measured 
as Sobs/Spred, which is completeness), and c = the raw cell 
residuals from the regressions.

The set of cell forecasts was compared by one-way ANO-
VAs with the model types and climate scenarios as factors. 
The same data were submitted to a PCA analysis from which 
the two first factors facilitated a graphic comparison of the 
relationships between the model types and the cell results.

The data set is available from DRYAD (https://​doi.​org/​
10.​5061/​dryad.​n02v6​wwxq).

https://doi.org/10.5061/dryad.n02v6wwxq
https://doi.org/10.5061/dryad.n02v6wwxq
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Results

Sampling effort, cell completeness and dominant 
environmental gradients

The variance accounted for by the first two components 
from each of the three subsets of variables (PCA) was 
98.5% (position), 65.3% (physiography) and 75.2% (cli-
mate). Within these limits at least one cell with complete-
ness > 90% was present in each section of the ranges of 
any component (Fig. S4, Tables S2 and S3). Richness 
was significantly correlated with temperatute (mean tem-
perature, r = 0.78), maximum altitude (r = 0.74), summer 
precipitation (r = 0.71) and less so with the lithological 
nature of the substrate. Completeness was significantly 
correlated (r = 0.20 to 0.40) with species richness and 
with several predictor variables including those already 
mentioned (details in Table S1). Variance partitioning 
showed a good explanatory capacity by a combination of 
the candidate variables but a low 'pure' contribution by 
each subset (less than 1% in the case of climate variables: 
Tables S3, S4 and S5).

Models selected

The models combining climatic and static variables 
offered the best fit in terms of Deviance (D2), followed by 
K models (climatic variables with residual effects attrib-
uted to the static variables); climate-only models had the 
lowest performance (full details in Supplementary Tables 
S6, S7 and S8). In the combined models, the shared pro-
portion of the explained variance was meaningful (30% to 
47%) and only in two of them (Table S7: ACa, ASb) the 
'pure' climatic part of the explanation exceeded 40%. At 
least one measurement of temperature and one of precipi-
tation tended to enter in every model (though temperature 
was replaced by elevation in ASa and AWa). Omission 
of summer precipitation resulted in the selection of the 
minimum temperature rather than e.g., the average pre-
cipitation. A comparison of all the models (through PCA 
analysis on the whole set of forecasted richness values: 
Fig. S5) suggested two slight general trends: 'climate-
only' to 'all variables' models, and ‘with- to without sum-
mer precipitation’ ones.

The spatial structure of model residuals (Moran's I, 
TSA) tended to be small (less so in the climate-only mod-
els). Between 64 and 94% of the initial values (I = 0.231, 
P < 0.001) was accounted for in the results (except for 
model CSb: Table S6). Interestingly, the lowest remaining 
spatial effects occurred when completeness was included 
as a covariate.

Richness change in future scenarios

The average cell expectations for species richness change 
are shown in Fig. 1 (after discarding models with complete-
ness as covariate, given the correlation between complete-
ness and other explanatory variables). Figure 2 shows that 
the magnitude of the estimated species richness change was 
proportional to the intensity of change in the climatic scenar-
ios selected (i.e., from most moderate in 2070_2.6 to larger 
in 2070_8.5) and summarizes the direction of the changes 
imposed by the model building choices (further details are 
provided in Supplementary file 1: Tables S9, S10, S11 and 
S12 and Fig. S7; and detailed results by cell and scenario in 
Supplementary file 2).

Overall, species richness shifts were highest in the less 
thoroughly surveyed cells (r =  − 0.346, P < 0.001) and 
for cells with the highest raw model residuals (r = 0.519, 
P < 0.001), as in fact the raw residuals and completeness 
were negatively correlated (r =  − 0.327, P < 0.001) (Figs. 
S5, S8). In other words, the most favorable forecasts tended 
to correspond to the less thoroughly surveyed cells and are 
associated to comparatively poor model fit for those cells.

Discussion

Data quality, geographic and environmental 
coverage

Despite a long history of Iberian butterfly faunistic studies 
(see summary in García-Barros et al. 2004) our data did 
not provide a dense coverage of well-surveyed cells at a 
reasonably high resolution such as 10 km cells. The loss 
of resolution was compensated by the high coverage of the 
environmental gradients by the well-surveyed cells, suggest-
ing that extrapolation from heavily inaccurate species rich-
ness values was avoided (as emphasized by e.g., Hortal et al. 
2007 and Rocchini et al. 2011). Our relatively poor results 
on completeness show that Iberian butterflies faunistics still 
have a way to go. Moreover, the historical accumulated but-
terfly data probably reflect a degree of collecting bias (Romo 
et al. 2006) as shown from other European countries (Dennis 
and Thomas 2000). Considering the rapidly evolving envi-
ronment and the limited resources devoted to the collec-
tion of primary data, a planned recording scheme is needed 
(as already pointed out by e.g., Sastre and Lobo 2009 and 
Sánchez-Fernández et al. 2022).

Incorporating sampling intensity to the modelling 
process

Judging from the best-fit statistics, trusting the best-
surveyed cells was the best alternative to deal with 
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completeness, at the cost of shortening sample size. 
Adopting sampling effort as a covariate was less efficient 
and, in our specific case, led to less reliable predictions 
because of the correlation between completeness and 
other predictor variables. Weighted regression offered the 
poorest D2 scores. We might simply conclude that rely-
ing on the best-known cells is the evident choice (e.g.: 
Pelayo-Villamil et al. 2018; Ronquillo et al. 2020), but a 

cautionary note is pertinent here: if the recording patterns 
behind our data base are biased towards the most species-
rich areas in coincidence with some of the environmental 
gradients ultimately explaining butterfly richness, best-fit 
models may be not completely realistic (further discussion 
below) even when there is a priori evidence for full cover-
age of the main environmental gradients.

Fig. 1   Mean expected difference 
in richness (future–present) by 
reference to present estimated 
values (from accumulation 
curves, left column) and to pre-
sent predicted values (predicted 
by the models, right column). 
The values shown in the legend 
are the limits of the ranges used 
for colour labelling. Certainty 
(see text) is represented by 
black dots. All values aver-
aged from the 12 models where 
Completeness was not used as a 
covariable (details in Tables S4, 
S5 and S6). The cells marked 
with white circles are those 
without sufficient information 
to calculate estimated richness; 
this was replaced by their know 
species numbers (Sobs) for 
graphic presentation only, their 
values may be not reliable
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Good correlations and false cognates

Regarding the performance of the alternative subsets of vari-
ables to model contemporary species richness, the combina-
tions of climatic with the non-climatic variables rendered 
the best model statistics. However, the small 'pure' contri-
bution of each subset of variables indicates that identifying 
the causality of richness from our data set is not straightfor-
ward (Lobo et al. 2002 and discussion therein; Legendre and 
Legendre 2012). The risks of forecasting temporal changes 
from spatial variation (Kerr et al. 2011) increase if the future 
spatial and temporal relations between the variables vary 
beyond the range tested (Araújo and Rahbek 2006; Dormann 
et al. 2012). For instance, replacement of summer precipita-
tion by alternative candidate variables increased model fit, 
despite the initially highest correlation between that variable 
and species richness. Including or not this variable imposed 
the most significant differences among model predictions: 
omitting it increased model fit and resulted in more nega-
tive expected richness shifts. Most of the Iberian Peninsula 
is dominated by a Mediterranean climate featured by spring 
and autumn rain periods combined with summer drought 
(Aschmann 1973; Belda et al. 2014). An inverted ratio of 
summer to yearly precipitation is expected, but it is unlikely 
that an increased summer rainfall combined with an over-
all yearly water shortage would enhance the potential for 
richness of Mediterranean-adapted organisms. However, 

butterfly richness is positively correlated to summer precipi-
tation in the area (perhaps via its correlation with productiv-
ity and ultimately with actual evapotranspiration: Hawkins 
et al. 2003; Hawkins and Porter 2003; Aragón et al. 2019), 
which makes this variable a misleading predictor of future 
richness.

The intensity and geographic distribution 
of expected richness changes

The species richness changes expected under the future cli-
mate conditions tested were negative overall, more severely 
under the most extreme climate scenarios (consistently 
with the increasing temperature and decreasing precipita-
tion expectations in the Mediterranean: Giorgi and Lionello 
2008; Hertig and Jacobeit 2008). This makes sense because 
in this area butterfly richness is positively associated with 
altitude and precipitation and negatively with temperature 
(Romo et al. 2006; and our results). The shifts (future–pre-
sent) are best understood if the comparisons with contem-
porary richness represented by model-predicted values are 
considered first (Fig. 1, right column; compare with Fig. S2). 
The results indicate generalized losses (94% to 98% nega-
tive cell values, average losses above 11 species per cell), 
with only a small area in the central Pyrenean mountains 
(1 to 3 cells depending on the emission scenario) showing 
neutral or slightly positive changes. The heaviest richness 

Fig. 2   Summary of the effects of the main sources of variation in 
model building (climate scenario, type of treatment of Completeness, 
relevance of climate variables and subset of variables included) on 
the richness forecasts (future scenarios), and on the expected differ-
ences in species richness, both by reference to the present estimates 

and to those predicted by each model. The data show Least Square 
means (details in Supplementary Table S5) with 95% confidence lim-
its. All the differences between means within each of the four factors 
are significant (p < 0.01, post-hoc Fisher tests) except for the pairs 
connected by dashed lines and labelled ‘n.s.’
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loss should concentrate in the inland eastern areas in the 
shortest term, proceeding to profound negative changes in 
the central-eastern sectors or virtually across the peninsula 
(depending on the emission scenario), with comparatively 
moderated effects (though still negative) along a 50–100 km 
stripe along the Atlantic coasts (N, NW and SW). The 
expected variation is slightly more benign by reference to 
the estimated values (Sest), though still indicating a mean 
loss of 10–28 species per cell and negative values in 71% to 
87% of the area. Under this comparison (Fig. 1, left column) 
the dominant negative values are again combined with less 
severe losses and even some positive values; these spread 
along the northern and western coasts but also occur in scat-
tered inland cells, more frequently in the SE half of the pen-
insula under the less intense emission scenarios (2050–2.6, 
2070–2.6). A few of the ‘positive inland spots’ persist under 
the most adverse 2050–8.5 and 2070–8.5 conditions.

Relevance of the standards for contemporary 
richness in incompletely surveyed areas

The finding that the forecasts included some positive cell 
values -opposite to the negative average trend- is remark-
able. The forecasts differed markedly depending on whether 
contemporary species richness was represented by the 
model predictions or by the values derived from accumula-
tion curves. This must reflect environmental variation not 
accounted for by the models and is likely to result from 
overpredicted contemporary richness in species-poor cells 
(also see Hortal and Lobo 2011; Calabrese et al. 2014; Biber 
et al. 2019). This is consistent with our results (complete-
ness is positively correlated with richness and negatively 
with the model residuals) and explains why forecasts for 
areas of modest richness often led to positive richness shifts 
only by reference to the fitted values. Two complementary 
interpretations are possible. The first is that some sources 
of environmental variation were not represented by our 
predictor variables and are correlated with species richness 
and sampling intensity. The second is that, with descriptors 
for human-driven effects missing among our variables, the 
inflated richness values for some cells do in fact represent 
the contemporary effects of human activity, hence an extinc-
tion debt (Malanson 2008; Figueiredo et al. 2019).

An optimistic interpretation of these results (i.e., the 
expectation for real local increases of richness) is not 
straightforward. Our forecasts must be interpreted in 
macroecological terms, and from this point they fit the 
expectations in terms of the relationship between richness 
and the water-energy balance or productivity (Hawkins 
and Porter, 2003; Hawkins et al. 2003; Whittaker et al. 
2007). In this context, positive cell forecasts represent an 
enhanced potential for richness from species similar to 
those from which the richness patterns were modelled; 

this might be realized, or not. Most of the ‘positive’ cells 
are coastal ones or stay outside the mountain ranges, while 
contemporary richness maxima occur in the mountain 
ranges. Range spreading of the mountain-adapted species 
is unlikely in a scenario dominated by raising temperature, 
and northward immigration from North Africa is largely 
prevented by the Mediterranean Sea. So, richness gains 
would most likely result from the spreading ranges of 
one part of the current moderately widespread and resil-
ient species (cf. Melero et al. 2016); in other words, via 
changes of the geographic turnover of species composition 
and perhaps implying a degree of faunal homogenization 
(as recently reported from French bird communities: Rigal 
et al. 2022).

Potential role of the static variables

The forecasts derived from our climate plus static vari-
ables models deserve a comment. We are aware that cli-
mate variation represents only one part of the changes 
expected to impact biodiversity along the next decades, 
but that no dynamic variables other than the climatic ones 
were explicitly modelled. Instead, we kept the constant 
effects of non-climatic and positional variables in the fore-
casts to attenuate the warming effects (for instance, recall 
that spatial position by itself alone provided a reasonable 
explanation of richness). Although the results were in the 
direction predicted, the intensity was small or negligible. 
Our results may partly cover the potential buffering effect 
of topographic heterogeneity to warming conditions for 
butterflies (Oliver et al. 2014; Suggitt et al. 2018), because 
topographic variation strongly co-varies with altitude in 
the Iberian Peninsula. There is room for suspecting that if 
any variables not dealt with here have a bearing on rich-
ness, are correlated with physiography or have a spatial 
structure and are likely to change in the near future, rich-
ness shifts should be stronger than indicated by our results 
and most likely negative. Recent evidence from butterflies 
in Spain demonstrates changes in demography, species 
composition and altitudinal ranges running parallel with 
warming, land management changes, or both (Wilson et al. 
2007; Herrando et al. 2016; Ubach et al. 2019; Mingarro 
et al. 2021; Warren et al. 2021). Land use in the study 
area has undergone profound changes along the last cen-
tury in parallel to warming, both probably affecting syn-
ergistically butterfly demography (as stated by Stefanescu 
et al. 2011) to complicate the identification of the relative 
impacts of both types of change. In fact, on the wide geo-
graphic scope, impacts to Mediterranean biodiversity are 
expected not just from warming but from a combination 
of threats of which human land use changes outcome the 
relevance of climatic variation (Sala et al. 2000).
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Iberian trends of butterfly richness and the chances 
for preservation

To conclude, our results on butterfly species richness are 
broadly consistent with the range contractions predicted 
for an important number of species in SW Europe (Settele 
et al. 2008; Romo et al. 2014) which would be the ultimate 
result of the widespread specific negative local demographic 
trends already documented: the climatic perspectives for the 
Iberian butterfly fauna within the next 50 years are nega-
tive through most of the area. Moreover, compensation of 
the negative impact of warming by non-climate variables 
may be limited unless these come from variables completely 
uncorrelated with the ones tested here.

The present network of protected areas appears to be effi-
cient for hosting virtually the full set of Iberian butterfly spe-
cies including the endemic ones (Romo et al. 2007; Rosso 
et al. 2018). However, as a rule, protected areas have been 
reasonably surveyed for butterfly diversity and tend to be 
species-rich: with few exceptions, these are just the areas 
where climate change will impact more severely after our 
results. Although no precise indications can be extracted 
from our coarse resolution maps, special attention should 
be paid to improve the potential for butterfly richness of 
the highest diversity areas within the present network of 
preserved sites, as some of these may ultimately act as the 
last refuges for some Iberian populations of mountain but-
terflies. Concern on the limited efficiency of the available 
corridors between the Iberian protected areas (Mingarro and 
Lobo 2018, 2021) is more than justified for the butterfly 
fauna because of the unfeasibility of interconnecting moun-
tain areas. Efforts to re-assess the contemporary drivers of 
butterfly richness at a finer scale and a short-term planned 
recording scheme to complement the existing distribution 
data are needed before the expected impacts of change on a 
finer geographic resolution prove necessary.
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