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Abstract
This paper defends a conceptualistic version of structuralism as the most convincing way 
of elaborating a philosophical understanding of structuralism in line with the classical tra-
dition. The argument begins with a revision of the tradition of “conceptual mathematics”, 
incarnated in key figures of the period 1850 to 1940 like Riemann, Dedekind, Hilbert or 
Noether, showing how it led to a structuralist methodology. Then the tension between the 
‘presuppositionless’ approach of those authors, and the platonism of some recent versions 
of philosophical structuralism, is presented. In order to resolve this tension, we argue for 
the idea of ‘logical objects’ as a form of minimalist realism, again in the tradition of classi-
cal authors including Peirce and Cassirer, and we introduce the basic tenets of conceptual 
structuralism. The remainder of the paper is devoted to an open discussion of the assump-
tions behind conceptual structuralism, and—most importantly—an argument to show how 
the objectivity of mathematics can be explained from the adopted standpoint. This includes 
the idea that advanced mathematics builds on hypothetical assumptions (Riemann, Peirce, 
and others), which is presented and discussed in some detail. Finally, the ensuing notion of 
objectivity is interpreted as a form of particularly robust intersubjectivity, and it is distin-
guished from fictional or social ontology.

Keywords Philosophical structuralism · Conceptual mathematics · Methodological 
structuralism · Minimal realism · Objectivity · Mathematical practice · Peirce · Hilbert · 
Dedekind · Riemann

In Memoriam Sol Feferman
« Die Mathematik ist so im allgemeinsten Sinne die

Wissenschaft der Verhältnisse» (Gauss in 1825).

Structuralism in the philosophy of mathematics explores the idea that what matters to a 
mathematical theory is not the inner nature of mathematical objects, be they numbers, 
points, functions, or spaces, but how those objects relate to each other. “In a sense, the 
thesis is that mathematical objects … simply have no intrinsic nature,” as Shapiro said 
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in the Internet Encyclopedia of Philosophy (Shapiro, 2008). Hellman writes that, in some 
sense to be clarified, the objects “serve only as relata of key relations, and their “individual 
nature” is of no mathematical concern, if one can even speak of such a nature” (Hellman, 
2005, 537).

In the practice of mathematics, structuralism is a methodology that has found more 
than one embodiment. Initially, around 1900, it was closely associated with axiomatics and 
set theory, a structure was a set of elements linked by a network of relations, which was 
specified in the axioms. Essentially, one can say that, in that sense, a structure is a rela-
tional framework (the language of set theory and the axiomatic method make it possible 
to describe it in detail). In the second half of the twentieth century, mathematicians took 
the next step, and attempted to characterize the structure of a mathematical “object” by its 
interrelations with other complex “objects”—this is called category-theoretic structural-
ism.1 In the philosophy of mathematics, a number of different interpretations of the struc-
tural approach to mathematical systems have been elaborated, with different implications for 
ontology and epistemology.

In practice, structuralism is based on conceptual work: to apprehend structures is to 
elaborate concepts of structure, that is to say, conceptions of relational frameworks, by 
means of axiom systems describing them.2 Indeed, it can be argued that mathematical work 
is conceptual work: Mathematics is conceptual, to work in mathematics means to study 
and clarify relations and relational systems—and, one step up, their interrelations. Yet in 
philosophical quarters the pursuit of structuralism has become entangled with platonistic 
assumptions, probably due to the philosophers’ understandable concern for the objectivity 
and independence of mathematical knowledge.

I aim to defend the thesis that philosophical structuralism can and should be elaborated 
along lines that preserve its original conceptualism and resist the lure of metaphysics. To 
do so, we shall explore the tension between the relationalism of the early structuralists, 
and the postulation of “objects” (or meta-objects) such as structures, which happens e.g. 
in Shapiro’s ante rem structuralism. If I am right, the form of conceptual structuralism that 
will be sketched here is closer to the classical forms of structuralism (as found in Dede-
kind, Hilbert or Noether) than either ante rem or in re structuralism.

I will be articulating a standpoint close to Feferman’s “conceptual structuralism”—a 
viewpoint that this great logician proposed years ago, recently elaborated in two papers 
(Feferman, 2009; 2014). Other authors have elaborated related views, prominent among 
them Parsons (2004); indeed my proposal could be presented as an attempt to synthesize 
and combine some viewpoints of Feferman and Parsons with my own ideas. But here we 
shall be emphasizing above all some points of connection with classical figures in modern 
structural mathematics.

Section 1 introduces the history of “conceptual mathematics” and how it evolved into 
forms of structuralism. In Sect. 2 I discuss the relationalism of the classical authors, and its 
tension with the platonism of some philosophical elaborations. Section 3 presents concep-
tual structuralism as the best option for capturing the classical spirit, and identifies the key 
requirement that this position ought to satisfy. This is objectivity, discussed in more detail 
in Sect. 4, articulating the basis for a convincing and robust account. Here, as in previous 

1 We shall not deal with category theory in this article. See Marquis (2020) and also Awodey (2004), 
Krömer (2007), Marquis (2009).
2 This can be substantiated in many ways, for instance through the nice presentation in Mac Lane (1996).
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authors, the motto could be: “objectivity without objects” (Kreisel, Putnam) or better still, 
“objectivity before objects.” But a motto is just a way of gesturing towards the detailed 
argument that ought to occupy its place.

1  From “Conceptual Mathematics” to Relational Systems

Modern structuralism, the twentieth-century variety, emerged historically from the tradi-
tion of conceptual mathematics, a.k.a. the “conceptual methodology” in mathematics. In 
the early twentieth-century this was closely connected with the mathematical tradition of 
Göttingen. Aleksandrov talked about “Begriffliche Mathematik” (in German in the Russian 
original) in his obituary of Emmy Noether; in this case the approach is clearly tied to the 
structuralist method as elaborated in modern algebra: reliance on set-theoretic methods and 
axiomatics in the presentation of relational systems, the role of isomorphism and homo-
morphism results.3 Noether herself used to emphasize the close similarities between her 
preferred methodology and the work of Dedekind (in particular his 1894 work on ideal 
theory), but the fact is that the denomination “conceptual mathematics” has both a previous 
history and later resonances.

The rubric has been associated with the names of some highly influential mathemati-
cians (as it happens most of them Germans), notably Dirichlet, Riemann, Dedekind, Hil-
bert and E. Noether.4 Their innovation consisted, initially, in reworking mathematical theo-
ries so as to base results more on far-reaching concepts than on extensive calculation,—as 
Dirichlet said, this was a tendency “to put thoughts in the place of calculations”—thus 
reconceiving previous theories and presenting the results in rather abstract terms. One of 
the outcomes was that the new “conceptual” theories admitted many instantiations of dif-
ferent kinds.

It may be argued that Riemann’s work in the 1850s was a turning point in this develop-
ment. His definition e.g. of analytic functions (in the context of complex analysis) was 
clearly more “conceptual” in comparison to other contemporary alternatives, an aspect of 
his work that Riemann himself compared with the method used by Dirichlet in his study of 
the representation of functions by means of Fourier series. But perhaps we can use as a key 
example another one, Riemann’s approach to the analysis of space-forms by means of man-
ifolds and differential geometry. Without getting into the technical details, the idea is that 
Riemann felt the need to illuminate the conception of “spatial magnitudes” by subsuming 
them under a more general “concept”, which turned out to be the idea of an n-dimensional 
manifold. The 3-dimensional space of the Euclidean tradition was to be conceived as a 
particular instance of an n-dimensional manifold, and to be analyzed by comparison with 
other possible instances (including the non-Euclidean space of Lobachevskii, but also other 
possibilities).

Roughly speaking, a manifold is just a point-set which forms a continuum of a certain 
dimensionality (those are topological properties), but Riemann focused especially on man-
ifolds for which a metric structure had been defined with the means of differential geom-
etry (these are called Riemannian manifolds). A typical (later) structuralist treatment of the 
notion would explain what a manifold is by presenting a group of axioms that determine its 

3 See Aleksandrov (1936, 101) and also Corry (1996), McLarty (2006).
4 See among others Ferreirós (2007, ch. 1), Laugwitz (1996), Goldstein (1989). A very valuable recent 
addition to the literature on early structuralism is Reck & Schiemer (2020).
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topological structure, and another group of axioms that characterize its metric properties. 
This is in essence the methodology that Hilbert made famous with his 1899 work Founda-
tions of geometry.

Riemann was explicit about methods and goals: he remarked that previous studies (e.g. 
of complex functions) were based on an expression for the function, which allowed to com-
pute every value; but his approach was to be independent of any definition by means of 
operations or analytical expressions. One starts from a general concept [Begriff] of a com-
plex (analytic) function, and adds to it only the characteristics [Merkmale] that are neces-
sary for determining the function—the analytical expressions will be obtained only as a 
result of the development of the theory (see Ferreirós, 2007, 30, which includes a quote).

The novel ideas and style of work of Riemann were very influential in the last third of 
the nineteenth century, leaving their mark on the work of mathematicians like Klein or 
Poincaré, and even on philosophers such as Frege and Husserl (“manifold” was a key term 
in Husserl’s reflections on mathematics). Riemann’s work was proposed as a methodologi-
cal model by Dedekind, Klein and Hilbert, all of them names linked to Göttingen.

Dedekind was another pivotal figure, particularly relevant for Noether; he was directly 
and heavily influenced by Dirichlet and Riemann. In 1895 he speaks about the “Riemann-
ian definition of functions by means of characteristic inner properties, from which the outer 
forms of representation arise with necessity” and says that his efforts in advanced number 
theory were oriented in just the same way—to base the investigation, “not on accidental 
forms of representation, but on simple basic concepts” (Ferreirós, 2007, 29). Hilbert in 
the Preface to his famous Zahlbericht, while considering some results of Kummer as the 
“highest peak” ever reached in number theory, goes on to say that he has tried to avoid the 
great calculational apparatus of Kummer, “so that also here the basic principle of Riemann 
can be realized, that one should produce the proofs not by calculation, but exclusively by 
means of thoughts” (Hilbert, 1897, vi).

We may offer a rather simple example of “basic concept” (or structure) from Dedekind’s 
work: the concept of a number-field. At some point around 1860, he started thinking about 
what is common to different systems of numbers, examples being the rationals Q, the reals 
R, the complex numbers C (but also systems of numbers of the form a + b√-5 with a, 
b ∈ Q, and so on indefinitely). Thus he became interested in a certain abstract “form” that 
was crucial for Galois theory, for algebraic number theory, indeed (he thought) for algebra 
in general. What Dedekind did was to introduce the name, Körper (corps, field) and to 
characterize the relevant kind of number system, as being so “closed and complete” that 
one can perform the ‘four species’ (sum, product, rest, division) unlimitedly.5

There are many different concrete instances of number-fields, in fact infinitely many. 
The smallest is Q, the largest is C. Some Körper are totally ordered (an example is Q), 
some are not (the complex numbers C); some have a dense ordering (say, the algebraic 
reals A) while some furthermore are continuous or complete (the reals R). These points 
were carefully discussed in Dedekind’s famous essay on the concept of continuity and the 
irrational numbers. Some Körper are substructures of others, in fact Dedekind realized that 
there is a whole lattice of fields in between Q and C. In 1871, he also presented the idea 
of isomorphism (but not under this name) when he discussed how a number-field A has a 
“conjugate field” B = Φ(A) obtained through a “substitution” Φ (what he later called an 

5 That is, the system has closure under the four basic operations (except division by 0); together with their 
usual laws including distributivity. This is equivalent to laying down axioms for some well-known algebraic 
relations between the elements of the number-field, as Hilbert later did.
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Abbildung, a mapping or function). He underscored the fact that the relation of conjugation 
is an equivalence relation: “two fields conjugate to a third are also conjugate of each other, 
and every field is a conjugate of itself” (quoted in Ferreirós, 2007, 92).6

Notice that we have started with the conceptual determination of a relational system, 
the kind of network-of-relations called a “number-field”, but then we have moved to inter-
relations among those systems (such as isomorphism). Naturally, concrete fields can be 
regarded as “objects” of a complex kind, and we go on to analyzing relations between 
them, and so on. Mathematical thought is always iterative, from the basic level of the natu-
ral numbers, all the way up.

Being thus equipped, Dedekind could also realize that the system of algebraic functions 
has the Körper (field) structure, at which point the new methodology was becoming the 
source of significant mathematical advances.7 The analogue of an ideal theory here was 
the basis for a totally new way of grounding results on algebraic functions, culminating in 
a new algebraic proof of the Riemann–Roch theorem (in joint work of Dedekind & Weber, 
1882). This is a beautiful, and mathematically highly productive, example of the feature 
that we discussed at the beginning, namely that the new theories of “conceptual mathemat-
ics” admitted many different instantiations.

Let us take stock. To apprehend structures is to elaborate concepts of structure, general 
notions of relational frameworks, by means of axiom systems describing or characterizing 
them (which also requires the selection of primitive concepts and the corresponding sym-
bolism). Such was the notion of a differentiable manifold which emerged from Riemann’s 
work, or the different notions of space (Archimedian, non-Archimedian, Euclidean, non-
Euclidean) that Hilbert presented in his famous work on the foundations of geometry.

Hilbert, by the way, often expressed himself saying that the axioms, which in our par-
lance characterize a structure, make precise a mathematical concept.8 This again under-
scores the importance of the tradition of “conceptual methodology” in mathematics.

What about mathematical objects in this tradition? As Shapiro said, what matters to 
mathematics from this standpoint is not the inner nature of mathematical objects, but how 
those objects relate to each other. As Hellman underscored, in some sense the objects serve 
only as relata of key relations, and their “individual nature” is of no mathematical concern, 
if one can even speak of such a nature. The example of Dedekind’s treatment of the natural 
numbers is well known: numbers are not singular objects as in Frege,9 but just “the abstract 
elements” of a simply infinite system; ordinal numbers, the ordinal relations among num-
bers (determined by the successor function) are the key; even in our intuitive arithmetical 
development, “the concept five is only reached via the concept four” (letter to Weber, Janu-
ary 1888; Ewald, 1996, II, 835).

Dedekind insisted that mathematical objects are “free creations” of the human mind, but 
understood this to mean that they are thought-objects (Dinge, elements of the Gedanken-
welt) whose existence is legitimized by the general laws of logic. The creation is free but 

6 Following along those lines, Dedekind introduced more advanced ideas such as the set-theoretic notion 
of an ideal (a certain kind of subset of the ring of integers in a given number-field), which became the basis 
for his solution to the general problem of the number theory of algebraic integers.
7 This is not a number-field, but a more general kind of instance with the same “form”.
8 See Ferreirós, 2009, 56–57.
9 Frege was interested in characterizing each number as a uniquely specified object (the Caesar problem). 
See Reck, 2003 and Ferreirós, 2017 for some more subtle issues about Dedekind’s structuralist approach 
that I skip here. See also Reck’s chapter in Reck & Schiemer (2020) for Cassirer’s relational and structural-
ist views and his reaction to Dedekind.
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strictly bounded by the laws of logic.10 This is how the irrational numbers are introduced 
as new objects, but it also applies to space and its continuity, as Dedekind explains in an 
interesting passage:

If space has a real existence at all it is not necessary for it to be continuous; many of 
its properties would remain the same even if it were discontinuous.11 And if we knew 
for certain that space were discontinuous there would be nothing to prevent us, in 
case we so desired, from filling up its gaps in thought and thus making it continuous; 
this filling up would consist in a creation of new point-individuals and would have to 
be carried out in accordance with the above principle. (1872, 772, Sect. 3)

Interestingly, this is exactly parallel to the way Hilbert handles the problem of the infi-
nite in his well-known paper of 1925. First Hilbert discusses the results of physics at the 
time, arguing that there is no evidence of the physical existence of the infinite, either in 
the extremely large (cosmology) or the extremely small (quantum physics). But then, he 
claims that the infinite may have a well-justified place “in our thinking” and the role of “an 
indispensable concept” (Hilbert, 1926, 372), the reality of mathematics being quite unlike 
‘existence’ in the naïve sense. In the paper he goes on to introduce the ideas of metamath-
ematics by highlighting the central role of ideal elements, as distinct from contentual ele-
ments and relations, and ultimately he lays out the plan for justifying the infinite as an idea 
(almost in the Kantian sense, 1926, 392), a basic ideal element, justified by metamathemat-
ics and proof theory. In Hilbert’s approach, the cornerstone is a consistency proof, which 
plays a role parallel to Dedekind’s “logical proof of existence”.

Those ideas were perceptively understood by some philosophers, most notably per-
haps Cassirer in Substance and Function (1910).12 In this work he offers an interesting 
philosophical exegesis of some early structuralist contributions in math, for instance of 
Dedekind’s views. About his analysis of natural numbers Cassirer writes that everything 
depends on the structure of a progression, i.e. what Dedekind called a simply infinite sys-
tem. And he goes on:

What is here expressed is just this: that there is a system of ideal objects whose 
whole content is exhausted in their mutual relations. The ‘essence’ of the numbers is 
completely expressed in their positions. (Cassirer, 1910, 39)

At several places he explains that the “things”, the “ideal objects” that are spoken of, are 
not assumed as independent existences anterior to any relation, but gain their whole being 
in and with the relations which are predicated of them (Cassirer, 1910, 36). The whole 
‘certitude’ or ‘solidity’ (Bestand) of numbers “rests upon the relations, the interrelations 

10 Without a “logical proof of existence”, it would always remain dubious whether the assumption of such 
objects may not involve contradictions (letter to Keferstein, February 1890). For, as he had said already 
long time before (letter to Lipschitz, July 1876), “nothing is more dangerous in mathematics than to assume 
existence without sufficient proof”.
11 In a letter (to Lipschitz, July 1876), he explained that “the concept of space is totally independent, com-
pletely separable from the representation of continuity, and property (C) serves only to select, starting from 
the general concept of space, the special one of continuous space.” Property (C) is continuity as defined by 
Dedekind’s cut principle (1872, sec. 3).
12 See the corresponding chapter in Reck & Schiemer, 2020. Cassirer does not employ the term ‘structure’, 
nor talk of structuralism, but it is quite natural to elucidate his views using this word.
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between themselves, and not upon any relation to an outer objective reality” (Cassirer, 
1910, 38). Cassirer went so far as to say that the reality of those ideal objects does not 
depend on physical reality (the outer world) nor on mental reality (the inner world).

To some extent, that is reminiscent of Hilbert. It is worthwhile to remind the reader that 
in 1927 Hilbert would state that “mathematics is a presuppositionless science”:

To found it I do not need God, as does Kronecker, or the assumption of a special fac-
ulty of our understanding attuned to the principle of mathematical induction, as does 
Poincaré, or the primal intuition of Brouwer, or, finally, as do Russell and Whitehead, 
axioms of infinity, reducibility, or completeness... (Hilbert, 1927, 479)

As one can see, the reality  of mathematical objects is independent from metaphysi-
cal considerations. Math is presuppositionless, its requirements are minimal—pure logic 
according to Dedekind, the intuition of symbols or finitary objects, plus logic, in the case 
of Hilbert. The classical variants of structuralism thus emphasized how this “conceptual 
methodology” discharges any kind of external consideration of ‘real existence’ in the naïve 
sense of these words.13

2  Two Interpretations: Platonism and Relationalism

So much for history. Let us now turn to philosophical structuralism. It is well known that 
the structuralist methodology can be interpreted philosophically in many different ways. 
Here I would like to emphasize two significant and very different interpretations: one of 
them is platonistic, the other builds on a form of relationalism. The two seem to pull in 
opposite directions. But it is the last interpretation that seems to be in line with the spirit of 
the structuralist viewpoint, at least in its early decades.

Let us call the first interpretation p-structuralism, for platonist structuralism. Shapiro 
has written (2008, Sect. 2):

the ante rem structuralist holds that, say, the natural number structure and the Euclid-
ean space structure exist objectively, independent of the mathematician, her form of 
life, and so forth, and also independent of whether the structures are exemplified in 
the non-mathematical realm. That is what makes them ante rem.

This is certainly unlike Dedekind’s “free” human creations.14 Notice the characteristic 
insistence on absolute independence from the mathematician, “her form of life, and so 
forth,” which is what leads this philosophical line into heavyweight forms of platonism.15 
I will argue that this move is not only unconvincing, but also unnecessary to ground the 
relevant independence and objectivity.

13 Also Cantor with his “immanent” reality of mathematical objects (and disregard of “transient” or meta-
physical considerations, see Cantor (1883, Sect. 8).
14 For an interpretation of Dedekind’s idea, along Kantian lines that emphasize the productivity and auton-
omy of the understanding, see Ferreirós & Lassalle-Casanave (2022).
15 Linnebo defines “Mathematical platonism” as the conjunction of three theses: Existence: There are 
mathematical objects; Abstractness: Mathematical objects are abstract; Independence: Mathematical 
objects are independent of intelligent agents and their language, thought, and practices (Linnebo, 2013, sec. 
1).
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Many authors have presented a rather different understanding of structuralism and its 
philosophical impact. Call this second interpretation r-structuralism, where r stands for 
relational. Their viewpoint is often intuitive and less elaborate than the previous one, and 
promotes the idea that mathematical structuralism actually reduces the platonistic implica-
tions of mathematics.

Let me present an early example that I find highly relevant, not only for the early date 
but also because of its author. Already in 1825, Gauss wrote that “mathematics is, in the 
most general sense, the science of relations, insofar as one abstracts from any content of the 
relations;”16 this was left unpublished, but it can be interpreted to point the way towards a 
structuralist understanding. Gauss did publish in an influential paper the following:

The mathematician abstracts entirely from the quality of the objects and the content 
of their relations; he just occupies himself with counting and comparing their rela-
tions to each other. (Gauss, 1831, 175-176)

It is well known that Poincaré expressed similar ideas many years later, in Science and 
Hypothesis (1902) and other places: the mathematician does not study objects, but rela-
tions between the objects; what is important is the relations considered, the objects can be 
replaced at will. Interestingly, the context of his statement was a discussion of Dedekind’s 
work, in particular his ideas about the continuum and the real numbers (see Poincaré, 1902, 
20).

Gauss’s pronouncement implies that, unlike physics or chemistry, mathematics is not 
devoted to the study of some particular kind or kinds of objects. The mathematician com-
pares relations and considers their interconnections, and in the process he (or she) abstracts 
entirely from the nature of the relata and even the content of the relations, paying attention 
only to formal features. We are left with an extremely abstract science that finds applica-
tion (potentially at least) in any possible area of human experience: relations and interrela-
tions can be found in any field. The mathematician relies on her own peculiar objects (e.g. 
complex numbers) to develop the analysis, but “mathematics is, in the most general sense, 
the science of relations”. Could it be that the mathematical objects make “no substantial 
demand on the world”, above and beyond the presence of relations?17

When Dedekind characterizes the natural number system, in § 6 of Was sind und was 
sollen die Zahlen? (1888, 809), he requires that we “disregard entirely the peculiar nature 
of the elements” (of whatever simply infinite system is being taken as a basis), retaining 
only that those elements are distinct, and that we “take into account only the relations to 
one another in which they are placed by the ordering mapping” (the successor function). 
This is a very explicit early example of the structuralist viewpoint, especially because 
Dedekind underscores the isomorphism of all simply infinite systems, the fact that the 
same “relations or laws” are valid for each and every one of them. Notice also that the 
emphasis is wholly on a system of relations, regardless of the nature of the relata and the 
concrete content of the relations. We are on similar grounds as with Gauss, and the impli-
cation seems to be, once again, that the objects of mathematics come in an “easy” way, free 
from metaphysical implications or presuppositions.18

16 In Gauss (1917, 396).
17 The phrase is from the introduction to Linnebo (2018), a work that can be linked with this line of 
thought. See also Thomasson (2014) on the idea of ‘easy ontology’.
18 Incidentally, Dedekind’s idea (1888, 791) that all of pure mathematics is based “solely” on the notion of 
a mapping or Abbildung (representation, correspondence, functional relation) seems to clearly point in the 
direction of relationalism. On this topic, see Ferreirós (2017).
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Numbers enter into scientific thinking as essential means to express and describe cer-
tain relations, patterns and structures. If one wanted to be specific about the metaphysi-
cal counterpart of numbers and number relations, the answer is not some ‘objects’ in the 
world, but some kinds of relations, more or less complex patterns, or relational intercon-
nections. To this, of course, the mathematical ideal picture of the natural number structure 
adds the important element of idealization, insofar as it disregards feasibility and considers 
the structure as actually or potentially infinite (see Sect. 5)

Let us come back to recent work. If I understand his views correctly, also Hellman is 
motivated by seeing structuralism as a perspective on mathematics that is primarily con-
ceptual and displaces interest from objects to relational systems. He writes:

… it is characteristic of a thoroughgoing structuralism to treat even these [non-alge-
braic, monomorphic]19 systems as like the more “abstract” ones, in that the “objects” 
involved serve only to mark “positions” in a relational system; and the “axioms” gov-
erning these objects are thought of not as asserting definite truths, but as defining a 
type of structure of mathematical interest. (Hellman, 2005, 536)

Similar considerations are easy to find in the writings of almost all philosophical structur-
alists, the main differences being due to secondary considerations, which guide the choice 
of a preferred theoretical approach. I mean considerations about semantics, realism or anti-
realism, about grounds for objectivity, modal considerations, and so on.

The question is how best to articulate these vague ideas that are shared by all, and how 
to navigate the details of the theoretical account. Assuming that we are interested in a rela-
tionalist (not a platonist) understanding of structuralism, my thesis will be that conceptual-
ism is the best approach. In Sect. 4 we shall see its outlines and some of the reasons why it 
has not been articulated and proposed before.

A form of “conceptual structuralism” was proposed by Sol Feferman (2009; 2014), who 
contends that the basic objects of mathematics “exist only as thought-objects or mental 
conceptions,” though their source lies ultimately in everyday practices. Feferman was, by 
his own admission, a philosopher “by temperament” and his ideas on this topic seem to 
have been elaborated over decades, by considering many different inputs. His first presen-
tation of glimpses of such a view was in a 1977 paper given at Columbia University, which 
however remained unpublished.20 The basic conceptions of mathematics are “of certain 
kinds of relatively simple ideal-world pictures,” and Feferman insists that such basic con-
ceptions “are communicated and understood prior to any axiomatics, indeed prior to any 
systematic logical development” (Feferman, 2014, 4–5).21 Does his lapse into “mental con-
ceptions” throw us into psychologism and relativism? Does it compromise the independ-
ence and objectivity of math?

This kind of conceptual structuralism is clearly in line with the second interpretation, 
r-structuralism. Thus Feferman is explicit in rejecting any form of heavyweight platonism, 

19 On monomorphic (categorically determined) structures, see Sect. 5 below.
20 The title was ‘Mathematics as objective subjectivity’, see the FOM entry mentioned below; later he 
talked about ’intersubjectivity’. I believe that Feferman’s thinking was influenced by mainstream ideas con-
cerning structuralism, by philosophers such as Tait and others, but also (and strongly) by reflections on the 
practice of mathematics inspired by constructivist authors such as Weyl, Kreisel, etc.
21 Interested readers should consult the ten theses that Feferman proposes, in both papers mentioned in the 
main text; albeit very interesting and suggestive, I find them too cursory to provide a solid understanding of 
his approach.
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saying that his viewpoint “is an ontologically non-realist philosophy of mathematics” 
(Feferman, 2014, 4). But essentially the same standpoint can be presented without a plain 
rejection of abstract objects. In the next section I argue that structuralism does not require a 
rejection of the reality of mathematical objects altogether, although it rejects heavyweight 
platonism.

3  Logical Objects

The “mental conceptions” of mathematics are better described as thought-objects  
[Gedankendinge], an expression employed by Hilbert, the crucial point being that such 
logical objects can be described and specified by theoretical means. E. g., the natural num-
bers can be described or characterized by means of the Dedekind-Peano axioms in weak 
second-order logic, and the set theoretic universe (or universes) by the Zermelo-Fraenkel 
axioms in first-order logic.

We have said that numbers enter scientific thinking as essential means to express and 
describe certain relations, sometimes complex patterns of interrelations. How come, then, 
that mathematical language features numbers as objects?

Reification or hypostasis is a basic logico-linguistic phenomenon, and I venture to say 
that we should not ascribe a profound metaphysical significance to it. Whenever we formu-
late a theory about some subject matter (whether it is massive bodies or real numbers), the 
natural way is to refer to the relevant ‘things’ and their properties and interrelations, using 
the framework of basic first-order logic. In doing so, we come to talk about objects (like 
number π), we predicate of them, deal with relations or operations between them, quantify 
on them, and so forth. Object talk is admissible within any theory, but it lacks deep con-
tent—it is closer to surface grammar.

Think of the case when we are elaborating a theory of relations (as Peirce, Frege or Rus-
sell were). Is a relation the same, metaphysically speaking, as an object? One would say no,22 
but despite this, when formulating the theory we shall refer to relations as ‘things’, we shall 
discuss their properties (is it symmetric?) and interrelations (the composite of two relations), 
we shall quantify (for any relation there is the inverse), and in doing so we shall be using the 
framework of basic first-order logic. It has been proposed that we may talk about a notion of 
logical object (Parsons, 2009), that requires nothing more than the above, predication and 
quantification in a first-order logical framework.23 Hence there is not just one kind of objects, 
and logical objects must be kept separate from additional connotations involved in the notion 
of a physical object (actual or wirklich in the sense of physically acting, or in naive language 
“really existing”).

There is a long tradition of admitting the reality of abstract objects, without implying 
that they “exist” in anything like the physical sense of existence. This tradition has been 

22 In his well-known papers ‘Function and concept’ and ‘On concept and object’, Frege denied this in the 
most emphatic way. But the fact that we talk about “the concept horse” and the like, in apparent reference 
to an object, gave him philosophical trouble (hence his famous phrase “the concept horse is not a concept”).
23 A referee asked for clarifications, since I am interpreting the idea of Gedankendinge (Dedekind, Hilbert) 
in terms of logical objects, but also emphasizing first-order logic. One can say this: second-order logic can 
also be considered, as long as we refrain from adopting the “full” set-theoretic semantics (sometimes called 
“standard” semantics); that suffices e.g. for Dedekind’s work on numbers. The reinterpretation of Hilbert’s 
Gedankendinge I am proposing requires some adjustment, clearly, but our aim here is not exegetic but phil-
osophical.
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revitalized by authors such as Parsons and Tait,24 but it begins with the founders of mod-
ern logic. Peirce distinguished the reality of logical or mathematical entities from what he 
called existence, the latter meaning “reacting with other like things in the environment;” 
Frege distinguished objectivity from Wirklichkeit, “actuality” (i.e., to act physically  or 
to produce effects which may cause sense-perceptions).25 The existence of mathematical 
objects is “ideal existence,” as Hilbert and Zermelo said,26 and with that adjective they 
seemed to aim at the same distinction (formulated differently by Frege and Peirce).

It is a subtle philosophical matter whether we choose to speak, like Feferman and others, 
of a “non-realist” philosophy (notice that in Peircean terminology one should write “non-
existential”), or else of the “reality” of mathematical objects interpreted along lightweight 
lines, as explained e.g. by Parsons (2009).27 The difference may be less than it appears at 
first sight, and in any case our choice will be in need of clarification. I prefer to follow the 
line of Parsons, but in doing so I believe we are not introducing an essential difference with 
the position of Feferman.

This whole discussion should remind the reader of recent contributions to the literature 
on ontology and philosophy of mathematics, above all Linnebo’s Thin Objects (2018). In 
fact, what I call logical objects is substantially the same as his ‘thin objects’, although his 
work on abstractionism should be considered a particular way of presenting a more general 
idea. The bonus, of course, is the great precision and clarity of Linnebo’s work. Notice 
that relations do the really substantial work in Linnebo’s abstractionist introductions of thin 
objects, hence one can argue that his abstractionist position is a form of structuralism. (He 
starts in each case from a basic domain, say  D0 = {a, b}, but the nature of the entities in 
question is irrelevant, the only relevant thing is that they can bear certain kinds of rela-
tions, on which basis higher domains are introduced; we can always replace  D0 by another 
domain D’0 which may be, let us say, a set of two apples, {apple1, apple2}.)

To try to reduce ambiguities, which are  quite inevitable due to the overuse of the 
key terms in this discussion, I will be following Peirce’s terminology. Existence implies 
physicality (in some sense), reality in the parlance of this paper does not  (at places, I 
will still employ ‘existence’ to avoid excessive departure from common usage, but then 
I will use scare quotes). You may dislike that terminological choice: if so, all you need 
to do is exchange one word for the other. I reserve the word platonism for its heavy-
weight form (in agreement with Linnebo, 2013), while the lightweight version is called 
realism. If lightweight realism makes sense, as I believe it does, then one can be a real-
ist in truth value without needing a platonic realm of ‘heavy’ things to sustain that. 
Remember that the Gedanken-dinge of Hilbert and Dedekind are ‘light’ things, ‘thin’ 
objects, in which case we may talk about logical objects.

A conceptual structuralist can therefore accept a form of lightweight realism, defined as 
the conjunction of three theses28: 1. Reality: there are mathematical objects, though they 

24 This form of lightweight platonism which I believe to agree with previous proposals by Tait (2005) and 
Parsons (2009), follows on the footsteps of Dedekind, Hilbert, Zermelo, Carnap, Quine.
25 Frege (1893, xix). Peirce (1902, 375) Following Peirce, the quantifier ∃x should be read as “there are” 
but not as “there exist”—that is to say, the basic logical operator indicates reality in the broad logical sense; 
claims of existence in the strict sense would involve extra information about actual physical reality via 
experimental data or the like.
26 Zermelo (1930, 43), Hilbert’s “ideal elements” in (1926).
27 This is reminiscent of Maddy’s (2011) and the way she oscillates between arrealism and thin realism.
28 Compare with Linnebo’s (2013) description of platonism, cited in a footnote above; the crucial differ-
ence is in condition 3.
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are not analogous to physical objects; 2. Abstractness: mathematical objects are abstract; 3. 
Objectivity: mathematical objects, though not independent of intelligent agents, are inde-
pendent of mental processes—of anyone’s particular mental processes—, they are objec-
tive insofar as they are strongly intersubjective.

We shall have to clarify this last point. What is the foundation for such claims of objec-
tivity? And how objective are the relevant (abstract) objects? Is objectivity an all-or-noth-
ing aspect, or does it come in degrees?29

In order to analyze this crucial aspect, what becomes key is the theory in question, each 
time, and the grounds for its admission. Take the case of natural number arithmetic: we 
know this theory with certainty, which implies that the reality of natural numbers is as 
solid as the reality of truth and falsehood (see Sect. 5.2). We form a basic conception of 
numbers already thanks to counting practices, and the Peano-Dedekind axioms are rec-
ognized as truths with respect to such numbers. There is not much comparable with the 
reality of natural numbers, even inside the domain of mathematical theories. By present-
ing things this way, I hope, it becomes clear that all this has nothing to do with a Platonic 
Heaven.

A more interesting question is: How real and objective are the real numbers? My answer 
would be: Not like the naturals, because the corresponding theory is more complex, less 
certain. Why so? Precisely because it rests on hypothetical postulates of a kind that is not 
to be found in elementary arithmetic; intended here are axiomatic assumptions such as the 
continuity or completeness of R (see Sect. 5).

In the view that I defend, it makes sense to analyze the grounds for admission of a the-
ory and to insist that different theories may stand on more or less solid ground. And, pace 
Quine, I interpret this to mean that not all our objects “are there” in just the same way. We 
have the right to make a difference between natural numbers and quarks, or between num-
bers and topologically complete spaces. It may all be myth-making as Quine said, but some 
myths are more solid than others, more closely connected with our basic practices and 
experiences. Precisely because, on that account, mathematical theories cannot be compared 
to fictional narratives, the position I am delineating should not be labelled a ‘fictionalism’.

4  Assumptions Behind Conceptual Structuralism

Feferman contends that the basic objects of mathematics exist only as thought-objects, 
though their source lies ultimately in everyday practices. The basic conceptions are “rela-
tively simple ideal-world pictures” communicated and understood prior to any axiomatics, 
indeed prior to any systematic logical development. How are we to understand the pre-
theoretical and even pre-logical ingredients that Feferman emphasizes?

The thought-objects and ideal-world pictures are described and specified by theoretical 
means: the natural numbers can be characterized by means of the Dedekind-Peano axioms 
in weak second-order logic, the real numbers can be specified by the Hilbert axioms. Such 
theoretical systems, and even more informal theories like the ones employed by mathema-
ticians in earlier times, can be understood in a shared way that remains free from subjectiv-
ism or relativism.

29 See also a companion paper, Ferreirós (forthcoming), where I compare mathematical ontology with 
social ontology. We cannot go into this topic here.
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Once a structure or relational system is thus specified, mathematicians proceed to 
inquire into its properties, the connections between its elements, its links with other sys-
tems or “objects”, etc. This process is naturally described by the mathematician as an 
exploration, as the discovery of the features of the system, which are independent of our 
intentions or desires. To understand this phenomenological aspect of mathematical work, 
one does not need platonism.

And yet, not all logical objects, not all structures are fully determined by their available 
descriptions.30 The fact that something is our conceptual creation does not imply that it will 
be epistemically constrained in the sense that we have full cognitive command and are able 
to determine all its features and aspects. Why should this be an inborn condition of all our 
conceptual creations? Intuitionism was wrong to the extent that it made this assumption, if 
it made it at all. It may even be the case that some structures, sufficiently well specified as 
to investigate them deeply and take them as basic to math, may not be fully determinable 
even in principle.

The history of philosophy teaches us that a conceptualist position is harder to formulate 
and maintain than its more extreme neighbors, platonism and nominalism, but simplicity 
is not the only criterion here. In order to understand the conceptual nature of mathemat-
ics, and to obtain an adequate account of the peculiar objectivity of mathematical knowl-
edge, one needs to get into an analysis of knowledge shared by communities of agents in a 
strongly intersubjective way.

And in order to do so, one has to analyze the cognitive roots of human knowledge, the 
shaping of our shared conceptions, how they are not necessarily subjective,31 how they 
depend on everyday practices, how they depend on symbols and symbolic practices. One 
has to deal with the question how logic and mathematics elaborate on the vernacular lan-
guage and on pre-theoretical notions, such as the general common-sense ideas of order, 
succession, collection, relation, rule and operation; or the general idea of property and the 
basic meaning of the logical connectives. Indeed, if we formulate them avoiding certain 
mathematical idealizations (so that, e.g., a collection is not a set—an abstract object, and 
a succession is not actually infinite), all those general ideas are quite easily understood 
and accepted by an average agent, by which I mean a human being of average cognitive 
capacities.

The conception of an infinite structure of the natural numbers may be acknowledged as 
a human thought-product, but one can also understand that its source lies in everyday prac-
tices, and ultimately in the structure of the world. For our patterns of action are, in the end, 
just part of the structure of the world—thus the idea that numbers are human conceptions 
does not make numbers unreal. The natural numbers reflect structural-relational facts about 
experience, objective facts. The view that something is a conception, emphasis on concep-
tualism, does not imply that it is not based on experience or that it is disconnected from the 
real world. That may only seem so to adherents of old forms of dualism.

This kind of approach to mathematical knowledge is agent-based, indeed I contend that, 
if we are going to defend a form of conceptual structuralism, then agent-dependence is 

30 See Feferman (2009) and (2014).
31 The topic is intimately linked with a properly philosophical discussion of traditional but ungrounded 
assumptions, in particular about the “subjectivity” of the “mental”. I reserve myself a detailed discussion 
for another occasion, but let me say here that I am essentially in agreement with pragmatists like Putnam. 
The dichotomy subjective/objective has traditionally (and naively) been aligned with mind/matter or mind/
nature—but this stands in need of reconsideration.
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inevitable. The conceptions in question are developed and shared by human enquirers and 
one can hardly claim “full independence” from human agents; that makes no sense. This 
agent-dependence is probably the reason why forms of platonism and nominalism have 
often been proposed, while conceptualism remains little explored. But one should not 
worry. There is enough of a basis to argue that conceptual structuralism avoids any danger-
ous psychologism or subjectivism, that the objectivity of mathematical results and devel-
opments can be saved.

For these reasons, the standpoint of conceptual structuralism may seem to lie closer to 
constructivism than to the usual assumptions of model-theoretic philosophy of language, 
truth and logic. Constructivists have always been concerned to understand the shaping 
of mathematical knowledge from the activities of agents—activities such as proving and 
constructing, interpreted concretely and not through the lens of idealized mathematical 
models. But conceptual structuralism can also be adopted by those who merely want to 
interpret classical mathematics; nothing in this viewpoint forces you to share the criticisms 
voiced by intuitionists or predicativists.

The key ingredient in this argument must be an account of the objectivity of mathemati-
cal results based on their shared theoretical descriptions as understood and elaborated by 
human agents.32 Crucial to conceptual structuralism is to view the objectivity of mathemat-
ics not as a consequence of the independent existence of abstract objects, but rather the 
opposite: we are justified in assuming the reality of mathematical objects as a result of 
the development of objectively established theoretical frameworks. Objectivity comes first, 
logical objects only second. This was, arguably, the idea behind Hilbert’s celebrated princi-
ple that mathematical existence is nothing but axiomatic consistency.

That may be largely in accord with Feferman’s intuitive idea:

The objectivity of mathematics lies in its stability and coherence under repeated 
communication, critical scrutiny and expansion by many individuals often working 
independently of each other, but on a common cultural basis. Incoherent concepts, or 
ones that fail to withstand critical examination or lead to conflicting conclusions are 
eventually filtered out from mathematics. The objectivity of mathematics is a special 
case of intersubjective objectivity. (Feferman, 2014, 5)

However, Feferman’s discussion of this key issue of objectivity was too cursory, the topic 
requires further elaboration. This is the aim of Sects. 5 and 6.

The more traditional philosopher of mathematics may perhaps be surprised when con-
fronting this way of posing the questions. Some logicians seem to assume that they must 
frame their analysis in minimalist terms. Perhaps they imagine themselves living in a world 
where there is nothing but natural language, formal languages, and abstract objects (num-
bers, structures). As if one should not presuppose anything more—in particular not embod-
ied human agents. We (like Feferman) emphasize the pre-logical, pre-mathematical ele-
ments that emerge in human agents as part of what is called their mental life. Nowadays, 
in the context of both naturalistic philosophy of science and practice-oriented analyses of 
mathematics, this option should not seem surprising.

32 The need for such arguments is of course avoided by authors who postulate a realm of sui generis math-
ematical structures existing independently of human forms of life or culture. The price is that such a move 
seems unconvincing, or at least raises as many problems as it solves: famously we lack an account of how 
knowledge of them is secured, and we lack an account of such independent ‘being’ that may square with 
contemporary scientific or philosophical views (a relevant example being pragmatism).
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I shall not try to delve deeper into such issues here. Conceptual structuralism calls for 
interaction with careful studies of the cognitive roots of human knowledge, very especially 
the roots of our basic conceptions of number, time, and space (intimately tied with math-
ematical knowledge). In a practice-oriented and agent-based approach, one assumes given 
embodied agents with practical abilities, and with linguistic abilities, living among physi-
cal or other natural objects. Practical abilities include our competence to handle measuring 
rods and clocks and other tools—think e.g. of a microscope—without which the exper-
imental practices on which scientific knowledge depends would be impossible. And we 
must emphasize that human cognition is a more complex affair than what current cognitive 
science typically covers, that our knowledge builds crucially on explicit representations 
such as number-words, diagrams, maps, and algebraic symbols.

For our purposes we do not need to include more than that.33 There is nothing mysteri-
ous there, except of course if you consider it your goal to explain such practical abilities on 
the basis of the fundamental theories of physics. But such a foundationalist goal would be 
misplaced.

5  Conceptual Structuralism, Hypotheses, and Objectivity

The conceptual work of mathematics implies to study and clarify relations, relational sys-
tems, and their interrelations (iteratively going up). This may sound complex but is meant 
exactly. Consider the following examples, of increasing complexity:

• An ordering relation, e.g. total order, as an example of the first level (merely a relation);
• A relational system such as an ordered field, e.g. a number-field with an ordering rela-

tion (like Q);
• Interrelations between fields such as algebraic closure, or group structures associated 

with fields (in Galois theory); at level three, we have relations between structures.34

Interrelations between heterogeneous structures—such as groups and fields in Galois 
theory, Lie groups and Lie algebras, or algebraic varieties and sheaves in algebraic geom-
etry—are particularly important in the modern practice of structuralist mathematics.

Thus the subject matter of mathematics properly speaking is not objects, but relations 
and structures. Theories of ‘objects’ are perfectly all right as we have seen, but they are not 
primary—they are the tools employed to study structures: relations among relations, rela-
tions among structures, and so forth. In fact, reification may just be a feature of human psy-
chology: instead of keeping track of a very complex network of relations at different levels, 
we prefer to assume given certain abstract objects.

33 Although it may be relevant to consider the practical abilities of using pens to write on paper, or key-
boards to write on a computer, since they underlie our symbolic practices. Notice too that this presupposes 
complex abilities having to do with perception, e.g., to perceive differently shaped letters as tokens of the 
same type.
34 Category theory takes this third level as a basic ground, and iterates from there.
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The key point is, furthermore, that mathematics establishes results about hypothetical 
states of affairs,35 theorems about hypothesized structures (described by axioms which, as 
Riemann and Poincaré realized, can be regarded as hypotheses). There are two qualifica-
tions to be added, namely that part of mathematics is not hypothetical—what I call ‘ele-
mentary’ math—and that the hypothesized structures are designed to fit with the elemen-
tary ones.

5.1  Hypotheses

Some mathematical structures are implementations of content extracted from our deal-
ings with the world, with a measure of idealization, as is the case with basic arithmetic or 
even with basic group theory; some are extrapolations from world phenomena with a more 
serious degree of hypotheticalness, as with the real numbers R or real functions f: R → R 
or continuous groups. While in the first case there is almost no hypothetical component 
(except for the idealization involved in disregarding feasibility), structures of the second 
kind incorporate assumptions that constitute strong hypotheses—this is the case in particu-
lar with continuity.36 And there are yet further levels, as some structures are further itera-
tions based on extrapolation from the previous structures, looking for higher-order closure. 
This remark can be applied e.g. to the set-theoretic universe V, or to categories, but we 
shall not enter into deep waters here.

The central non-algebraic structures, which encapsulate the core ‘existential’ assump-
tions of mathematics, namely the natural-number system N, the real-number system R, and 
the cumulative hierarchy V of set theory, are considered by authors such as Isaacson (2011, 
26) to have been fully captured. They distinguish them from “general” structures, such as 
typically are the algebraic or topological structures, and they base this distinction on well-
known categoricity results obtained within second-order logic. Yet these results are them-
selves hypothetical, exactly insofar as they presuppose the full semantics of second-order 
logic – and thus the thesis is contentious.37

According to Feferman (2014, 22), distinctions have to be made between those three 
cases, and I agree completely. He writes:

The direct apprehension of these [basic structures] leads one to speak of truth in a 
structure in a way that may be accepted uncritically when the structure is such as 
the integers but may be put into question when the conception of the structure is less 
definite as in the case of the geometrical plane or the continuum, and should be put 
into question when it comes to the universe of sets.

This standpoint is based on careful logical analysis of the above-mentioned results.

35 This happy expression is due to Peirce (1902, 141), following on the footsteps of Riemann, and in agree-
ment with Poincaré and others. He explained that mathematicians mean by a ‘hypothesis’ “a proposition 
imagined to be strictly true of an ideal state of things” (1902, 137). See the paper by J. Carter in Reck & 
Schiemer, 2020.
36 The relevant axiom can be formulated e.g. in terms of cuts (Dedekind), in terms of least upper bounds, 
or in terms of nested closed intervals (Bolzano-Weierstrass).
37 The claim is only that the full semantics (sometimes called the ‘standard’ semantics) is hypothetical, to 
the extent that it presupposes arbitrary infinite subsets. The same cannot be said of weaker forms of second-
order logic. See Ferreirós, 2018 and 2020.
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The categoricity of the N-structure can be obtained in weak second-order logic and does 
not even depend on its impredicativity. Hence its fully determinate nature, so to speak. In 
practice, this is admitted by mathematicians and logicians who differ in their acceptance 
of some questionable foundational principles. The requirements for the categoricity of the 
R-structure are incomparably greater, as it does depend on full impredicative second-order 
logic. And the categoricity of the V-structure is, according to some, an illusion as it is con-
tradicted by the myriad independence results in set theory; to put it more positively, it is 
merely an ideal that guides some important research projects in advanced set theory (while 
it is abandoned in other projects).38

5.2  Elementary Mathematics

In the practice of mathematics, one can identify a plurality of theoretical levels and forms 
of practice—with explicit interconnections among themselves and with pre-mathematical 
practices (see Ferreirós, 2016). Often, new theoretical strata are introduced in such a way 
that they are constrained by the previous strata with which they connect back—thus the 
first element needed to understand the objectivity of mathematical results is the interplay 
of practices and theoretical strata. But second, some ingredients of mathematical knowl-
edge (what one may call ‘elementary’ mathematics) have such strong cognitive and practi-
cal roots that our knowledge of them is marked by certainty.

The obvious example is the natural number system as described by the Peano-Dedekind 
axioms—we know those axioms to be true of (counting) numbers. The argument is that 
our simplest conception of numbers is formed already in relation to counting (a basic, pre-
mathematical practice), and the axioms are recognized to be true (see the details  Ferreirós, 
2016, ch. 7). Through counting we obtain the conception of an arbitrary natural number as 
the outcome of a given counting process; this corresponds (in mathematical language) to 
the conception of an arbitrary number as the last element of an initial segment of the num-
ber structure. And this makes the Dedekind-Peano axioms obvious. Obviously each num-
ber has a successor, clearly different numbers have different successors, the number series 
is unlimited, and obviously reasoning by mathematical induction is conclusive.

The peculiarities of this case are reflected in the fact that natural number arithmetic has 
not been a bone of contention in foundational studies: even those who disagree strongly 
about more advanced strata of mathematics are happy to admit PA as a theory. As Koellner 
put it (2009), there is no convincing case for pluralism with regard to first-order arithmetic, 
because “the clarity of our conception of the structure of the natural numbers,” and our 
experience with that conception, make such a pluralism untenable.

Mathematical knowledge, in its elementary strata, is likely to be the best expression of 
the strength that shared experience and intersubjective agreements can attain. If you con-
sider the practice of counting from a cognitive viewpoint, it is highly complex: it requires 
abilities of coordination, of categorization, of word production, that by no means are cog-
nitively simple (see e.g. Carey, 2009 and Sect. 4). Yet most human beings have no great 
difficulty mastering that practice.39

38 To exemplify both viewpoints in the views of leading experts, compare the ideas of Shelah (2003) and 
Woodin (2001).
39 Also the conception of basic group theory can be recognized as elementary in the relevant sense, and 
arguably there is an ‘elementary’ geometry too—although it is an open question what, exactly, this basic 
geometry would include or exclude. Consider the seeming universality of simple symmetric shapes like the 
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It is noteworthy that, already at this level, epistemic constraint fails—i.e. there are true 
arithmetic propositions for which we lack evidence (Shapiro, 2007, 339). Failure of epis-
temic constraint is the first criterion of objectivity established by C. Wright in well known 
work that is the basis for Shapiro’s discussion. I surmise that this is perfectly compatible 
with a conceptualist understanding of mathematical knowledge.

The crucial point here is that ‘elementary’ mathematics has such strong cognitive and 
practical roots as to be indubitable. This is the anchoring point for the rest of mathematics. 
Within the complex web of mathematical practices, the ‘elementary’ ones are accessible to 
an average human agent, providing basic shared knowledge and a key source of constraints. 
For, as mentioned before, new theoretical strata are often introduced in such a way that 
they are constrained by the previous strata—this applies especially to the central structures 
discussed in Sect. 5.1.

5.3  Advanced Mathematics

More advanced mathematical theories are built on the basis of hypothetical assumptions, 
and this makes it more difficult to understand their objectivity. Still, the interplay of math-
ematical theories and practices constrains the freedom of such hypotheses and often leads 
to unavoidable results. The real number structure is paradigmatic for this higher level of 
complexity.

The real number system R is not a simple counterpart of “the given” in nature or in 
some form of intuition, either pure or empirical. The principle of continuity or complete-
ness is a hypothetical assumption and cannot be regarded as certain or necessary. It is often 
said that continuity is an intuitive property of the line, or that the reality of continuous 
motion is given to us in experience, but in fact our experiences with figures or with motion 
do not even suffice to ground the perfect denseness that is attributed to Q. This perfect 
denseness is thus an idealized property that is attributed in thought to the rational number 
system (to be precise, the property is that, whenever q < r, there is t such that q < t, t < r). 
Even more remote from experience, more hypothetical, is the completeness property attrib-
uted to R.40

Moreover, in light of mathematical and logical results obtained during the last hundred 
years, there is reason to doubt whether R is fully specified with the usual axiom systems. 
The set-theoretic structure R is categorical only relative to a background model of set the-
ory.41 Parallel considerations apply, all the more, to assumptions such as the notion of a 
totality of functions f: R → R, essentially equivalent to the assumption of a powerset ℘(R).

Yet, despite the hypothetical nature of such assumptions, the interconnections between 
them and previous theory (i.e., theoretical ingredients belonging to previous strata of 
knowledge) do enforce certain results. Easy examples are the non-denumerability of R, 

40 For more on this topic see Ferreirós (2016), chs. 6 & 8. Let me add that Poincaré was in agreement with 
the basic twist of the idea as just described (1902, ch. 2), which is also in agreement with Riemann, Dede-
kind, Hilbert (see Dedekind’s quotation in Sect. 1).
41 Regarding the background model as fixed by second-order quantification does not change this. Promi-
nently, it is compatible with all our current knowledge that the Continuum Hypothesis may not be a definite 
mathematical problem (Feferman, 2011).

Footnote 39 (continued)
circle and square, and the sophisticated results obtained on their basis (e.g. the Pythagorean theorem, devel-
oped independently in China and Greece, Ferreirós & García-Pérez, 2020).
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the existence of transcendental (not algebraic) real numbers, or the fact that there is no 
one-to-one correspondence between R and the set of all functions f: R → R. Cantor’s non-
denumerability result is an objective result, even if we grant that the conception of R and 
N as infinite sets is hypothetical. In particular, one proves a lemma establishing that no 
denumerable sequence can exhaust the real numbers; anyone who admits the conception of 
real-number decimal expansions will have to admit this lemma.42 She may not accept that 
there is a well-defined set of all real numbers, and thus she will not see any real content in 
the sentence: ‘The cardinality of the set of real numbers is greater than the cardinality of 
the set of naturals’ (compare Brouwer, 1913). But she will agree on the fact that the real 
numbers cannot be exhausted by a denumerable sequence of them.

This is the kind of constraining, induced by the interplay of mathematical practices and 
strata, that I am arguing explains the objectivity and non-arbitrariness of mathematical 
developments—even across deep foundational disagreements. We introduce the set R by 
means of a hypothesis, but some of its properties are enforced and completely non-arbi-
trary.43 Most of us just admit the hypothetical assumption, and the resulting “ideal-world 
picture” is quite unambiguous.

Consider also a key feature of the real number structure, namely that one must distin-
guish between algebraic and transcendental numbers. The existence of transcendental (i.e., 
not algebraic) real numbers can be established in more than one way. One of them is set-
theoretic (a consequence of Cantor’s lemma), but there is also Liouville’s proof, based on 
the fact that algebraic numbers cannot be too well approximated by rational numbers. That 
is, Liouville proved that, if α is a root of a polynomial of degree n, then

for all integers p, q and for a constant C which depends on the value of α. Knowing this 
property of algebraic numbers, it was not difficult for Liouville to exhibit numbers that 
in fact can be approximated by rationals extremely well, so that they cannot be algebraic 
numbers—must be transcendental. This was just a matter of offering examples of particular 
real-number expansions, perfectly constructive.

The failure of epistemic constraint is much stronger at this level than it was with arith-
metic. Most transcendental numbers have never been named and will never be studied; the 
theory of transcendental numbers is, in all likelihood, full of ‘blind spots’. But the main 
point is that, even admitting the uncertainties induced by the adoption of hypothetical 
assumptions, one still has remarkable intersubjective agreement. Many key results con-
cerning the hypothetical structures are enforced, perfectly objective, and this underlies the 
reality we ascribe to the objects of those advanced theories. Hopefully this quick sketch 
will suffice to convince readers that indeed one has the ingredients to offer an account of 
the intersubjective objectivity of mathematical results, without the need for platonistic 
assumptions. Large parts of mathematics investigate into what must be the case in hypo-
thetical states of things.

|
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42 For further details on this topic, see Ferreirós, 2016, chs. 8 & 9.
43 There is more: although the Axioms of Infinity and Power Sets are two of the most characteristic hypo-
thetical assumptions of modern math, their introduction as new hypotheses can be explained by reference to 
the web of mathematical practices around 1850. This claim is substantiated in Ferreirós, 2016.
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6  Robust Intersubjectivity as Objectivity

Some authors have emphasized the role of “the imagination” in mathematics, arguing 
that the contents of our imagination can be communicated to others, the features of the 
imagination can be delineated and scrutinized; and under examination, what is private and 
subjective becomes public and objective.44 In this way, mathematical conceptions would 
transcend the realm of the subjective and become objectively shared, communicated and 
confirmed. But the mathematician is trained in the ideal of objective thinking, mathematics 
is justly reputed to be the most sharply precise of all sciences. Therefore such philosophical 
statements may seem confusing—objective? intersubjective? or merely subjective? What is 
all that supposed to mean?

The intersubjectivity of mathematical structures has also been compared with the real-
ity of social objects. One can adduce the examples of social realities that have the status of 
objective facts in the world, but are only facts by human agreement—things like money, 
property, governments, and marriages. It is true that such things exist only because “we 
believe them to exist” (or, as I would rather say, we join in the communal agreement that 
they are real), “yet many facts regarding these things are ‘objective’ facts in the sense that 
they are not a matter of preferences, evaluations, or moral attitudes” (Searle, 1995, 1).

The analogy between mathematical and social objects is illuminating, but I find it nec-
essary to add that the objectivity of mathematics is different from even the most solid 
social facts. Consider e.g. marriage, an institution that—among other things—has to do 
with offspring, and with kinship relations between social groups. Defined broadly, mar-
riage is considered a cultural universal, but the broad definition must include monogamous, 
polygamous and temporary forms of marriage (plus the recent issue of same-sex marriage). 
The enormous plurality and diversity of forms of marriage contrasts with the univocity of 
natural numbers.

I do not mean to deny that a great variety of counting systems have been devised in dif-
ferent cultures (using body parts, tallies, fingers and toes, or numerals), nor of course that 
many cultures lack means to express numbers beyond three or four. The key point, for my 
argument, is that counting systems underwriting a precise number concept (such as recur-
sive systems of number-words or the famous count systems using body parts of Papua New 
Guinea) are essentially isomorphic. Abstractly described, they comply with the principles 
of Peano-Dedekind arithmetic.45 This is where the reality of numbers comes from.

To put it otherwise: although there have been many cultures without a developed num-
ber concept, no culture has ever developed an alternative conception of (natural) number 
incommensurable with ours. This is very unlike the situation with social institutions.

The deeper reasons for this singularity of mathematical knowledge is the peculiar nature 
of its links with basic cognition and with basic human practices. Meant here are practices 
such as counting and measuring, where human beings interact with the world around them 
in ways that are enormously constrained. Mathematical knowledge (which is always in 
some way or another related with number and/or geometric forms) does not allow for the 
kind of plurality or relativity that we find in other cultural realms. A convincing explana-
tion of this fact can hardly come from claims about the Platonic reality of abstract objects.

44 See Feferman’s post to FOM list, Jan 3, 1998.
45 For more on this topic and a defense of the certainty of arithmetical knowledge, see Ferreirós, 2016, ch. 
7.
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After all, even if such objects exist, how could we know that our mathematical claims 
(axioms, theorems, problem-solutions) are true of them? One can easily imagine that the 
“true” system of real numbers, the one that exists independently of our forms of life, lacks 
the completeness property—and our claims about real numbers would be just false. How 
could we know? And, how could the absolute existence of things invisible to us rule out 
cultural relativities in the human claims?

The objectivity of mathematics is a special case of intersubjective objectivity, but it is 
indeed so special and robust as to deserve separate classification: a whole category of its 
own. There is simply nothing comparable to the solidity of the intersubjective objectivity 
of math, and thus it would deserve a special name. Whatever the name, the comparison 
between mathematical objects and social institutions or facts is only partly illuminating, 
and just as much confusing, perhaps.

7  Conclusion

The tension between platonism and structuralism has been resolved, I surmise, in a way 
that makes sense of the proposals of classical figures like Riemann, Dedekind, Hilbert and 
Noether. Mathematical work is first and foremost conceptual work, the study of relations 
and interrelations, that finds its current expression in structural methodologies (abstract 
structures, morphisms, categories). This way of understanding structuralism in mathemat-
ics captures some key insights not only of the mathematicians just mentioned, but also 
of philosophers such as Peirce—according to whom mathematics deals with “necessary 
conclusions” about “hypotetical states of things” —and Cassirer—who thinks that modern 
math is based on pure “functional concepts” whose presuppositions are given by the logic 
of relations, and that the objects of mathematics are “ideal objects whose whole content is 
exhausted in their mutual relations”.46

Needless to say, it  is not my intention to claim that the position outlined in the previ-
ous pages reflects in all details the ideas of Cassirer or Peirce, Hilbert or Riemann. On the 
contrary, there are points where it is quite obvious that significant differences of opinion or 
viewpoint can be highlighted. Perhaps the author who might come closer to my viewpoint 
is, arguably, C. S. Peirce—whose work nevertheless is sometimes puzzling, and difficult to 
interpret. The important idea is that the conceptual structuralism I have sketched incorpo-
rates some key insights of those classical figures.

The price to be paid, in the path to conceptual structuralism, is an explicit acknowl-
edgement of the role of agents (and communities of agents) in the making of mathemati-
cal knowledge. This implies that mathematical structures are not completely independent 
of human mathematicians and their form of life—especially their cognitive abilities and 
the forms of culture enabling symbolic frameworks. Conceptual understanding cannot be 
found beyond the agents: the conceptual plane is found, rather, in the trading zone where 
agents elaborate ideas and formulas, thanks to their interactions with symbolic and theo-
retical frameworks, and exchange them with each other.

But we have given arguments to the effect that this in no way compromises the objec-
tivity of mathematical results. Of course, some authors may find intersubjective reality 

46 Peirce, 1902, Cassirer, 1910. I refer again to the recent compilation Reck & Schiemer (2020) for details 
about these and other figures.
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too weak, and try to get a much stronger form of objectivity by postulating a transcendent 
(fully independent) realm of structures. The prices to be paid along this course are exces-
sive: mathematical knowledge becomes a mystery, the truth of our axioms and their rela-
tion to the ‘real’ structures becomes unfathomable.

A conceptual variant of structuralism has resources to make sense of the certainty of 
arithmetical knowledge, this being the strongest possible form of objectivity. Natural-num-
ber arithmetic presents us already with such a rich realm of truths, that epistemic constraint 
fails (Shapiro, 2007). This should not come as a surprise, as the conceptions we form by no 
means have to be fully surveyable.

On the other hand, the form of conceptual structuralism that we have proposed makes 
room for important differences between mathematical theories. In particular, advanced 
mathematics builds on hypothetical assumptions, hence it does not provide us with a cer-
tainty comparable to basic arithmetic. Yet even this is no obstacle for a robust form of 
objectivity.
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