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Abstract
Work in online learning traditionally considered induction-friendly (e.g. stochastic with a 
fixed distribution) and induction-hostile (adversarial) settings separately. While algorithms 
like Exp3 that have been developed for the adversarial setting are applicable to the sto-
chastic setting as well, the guarantees that can be obtained are usually worse than those 
that are available for algorithms that are specifically designed for stochastic settings. Only 
recently, there is an increasing interest in algorithms that give (near-)optimal guarantees 
with respect to the underlying setting, even in case its nature is unknown to the learner. In 
this paper, we review various online learning algorithms that are able to adapt to the hard-
ness of the underlying problem setting. While our focus lies on the application of adaptive 
algorithms as meta-inductive methods that combine given base methods, concerning theo-
retical properties we are also interested in guarantees that go beyond a comparison to the 
best fixed base learner.

Keywords Online learning · Regret · Prediction with expert advice · Multi-armed bandit 
problem

1 Introduction

The program of meta-induction as introduced by Schurz (2019) is built upon formal results 
from online learning theory. The goal of this paper is to discuss some of the relevant lit-
erature from this field under the perspective of the meta-inductive program. In particular, 
we want to give pointers to alternative as well as complementary settings, algorithms, and 
performance measures that we think are worth considering.

Most importantly, we want to focus on learning (meta-)algorithms that are particularly 
adaptive in the sense that they are able to combine (near-)optimal behavior in different set-
tings. These algorithms do not just satisfy a uniform worst case performance guarantee, but 
are able to adapt to the difficulty of the underlying problem, which is obviously of impor-
tance for the program of meta-induction.
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2  Which Setting of Induction?

2.1  Schurz’ Setting of Meta‑Induction

Schurz (2019) considers the following setting of sequence prediction. The goal is to predict 
for discrete time steps t = 1, 2,… the event et of an unknown sequence e1, e2,… , where it is 
assumed that events are encoded as real numbers in the closed interval [0, 1]. At each time 
step t the learner selects a prediction pt taken from [0, 1] and suffers a loss of �(pt, et) for a 
loss function � ∶ [0, 1] × [0, 1] → [0, 1] that intuitively measures the distance between the 
prediction pt and the true event et.

A straightforward choice to measure the performance of a learner choosing predictions pt 
would be the total loss

after T steps. More precisely, one would consider a learner to be successful if the average  
loss 1

T
LT vanishes for T → ∞ , that is, limT→∞

1

T
LT = 0 . Obviously, the considered setting 

is very general and it is easy to see that for each learning algorithm there will be sequences 
(et)t≥1 so that its total loss with respect to a reasonable loss function will be large, that is, it 
will suffer total loss linear in T (i.e., LT ≈ c ⋅ T for a constant c).

There are two ways to make learning possible in the considered setting. The first is to 
make some assumptions on the generation of the underlying sequence to be predicted. For 
example one may assume that the sequence is generated by a fixed probability distribution 
unknown to the learner. This would presume an induction-friendly setting and hence is not 
suitable if one aims at a general justification of induction.

The alternative is to restrict the hypothesis space by assuming that the learner has 
access to a set of so-called experts indexed by 1, 2,… ,K . At each step t each expert i pro-
duces her own prediction p(i)t  . The learner can observe all the experts’ predictions as well 
as the respective losses �(i)

t ∶= �(p
(i)
t , et) . Moreover, the goal of the learner is more mod-

est. Instead of insisting on achieving sublinear total loss, she is happy to compete with the 
best fixed expert in hindsight. That is, if L(i)

T
∶=

∑T

t=1
�
(i)
t  denotes the total loss of expert i 

after T steps, we are interested in learning algorithms that are able to keep the difference to 
mini L

(i)

T
 small. Accordingly, we aim at algorithms for which limT→∞

1

T
(LT −mini L

(i)

T
) = 0 . 

More generally, we are also interested in the rate with which the loss difference approaches 0 
and define the regret of a learning algorithm A after T steps as

2.2  Prediction with Expert Advice

The setting introduced in the previous section is a special case of what is known as predic-
tion with expert advice (short PEA in the following) in the online learning community.1 More 

LT ∶=

T∑

t=1

�(pt, et)

(1)RA
T
∶= LT −min

i
L
(i)

T
.

1 While we focus on sequence prediction, various other problems including allocation, matching, schedul-
ing, or packing have been considered in an online setting. For an overview of techniques and typical results 
see e.g. Borodin and El-Yaniv (1998).
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generally, the events et are taken from an outcome space O , and the learner’s prediction is 
more generally coined as a decision taken from a decision space D . Accordingly, the loss 
function � ∶ D ×O → ℝ provides non-negative feedback for each decision-outcome-pair. 
In some cases this can be interpreted as a distance (as before), or it can be e.g. the cost (or 
reward) for taking a decision in some state of nature. Apart from these slight generalizations 
the setting remains the same as before.

2.3  Learning Reductions to PEA

First note that while the considered online prediction setting may seem very special, it can 
represent seemingly different or more general scenarios as well. Consider e.g. the follow-
ing online classification problem. The learner receives a sequence of observations x1, x2,… 
one after another. For each observation xt taken from some space X  the task is to provide a 
label yt ∈ Y . In the simplest case the label is binary, i.e., Y = {0, 1} , e.g. indicating some 
particular property of the respective observation. For example, the xt could be image data 
and the label would be 1 if the image shows a horseshoe crab and 0 otherwise. Transferred 
to the sequence prediction setting the goal of the learner is to predict the next entry in the 
sequence x1, y1, x2, y2,… , xt , that is, D = Y and O = Y × X .

This latter setting obviously corresponds to scenarios usually associated with induc-
tion where one e.g. “concludes” from uniform observations x1, x2,… , xt−1 all having the 
same property (i.e., label) y to observation xt (or more generally all further observations 
xt, xt+1,… ) also having property y.

We note however, that formally it is not straightforward to apply the results and algo-
rithms usually given for the PEA setting to classification problems as specified before. For 
a more detailed account see e.g. Section 5 of Cesa-Bianchi et al. (1997) or the application 
of the Hedge algorithm of Freund and Schapire (1997) to classification problems in form 
of the influential Boosting algorithm (see also Sect. 3.3.2 below). For more on reductions 
of different learning settings see e.g. Langford and Zadrozny (2005).

In the course of this paper we will also consider different feedback models like the 
multi-armed bandit problem as well as performance measures that are alternatives to the 
notion of regret defined in (1). In the remainder of this section however we want to discuss 
some more technical choices to be made in the meta-inductive PEA setting.

2.4  Encoding of Events

For technical reasons the decision space in the PEA setting is often assumed to be a convex 
subset of some vector space. In particular, many algorithms such as the exponential fore-
casting algorithm EAW suggested by Schurz (2019) predict a convex combination of the 
predictions of the single experts. As in the setting of Schurz (2019), predictions as well as 
events are assumed to be in [0, 1]. That way one always obtains a valid prediction in [0, 1].

However, if the events are encodings of instances taken from a different domain it is 
by no means guaranteed that a convex combination of the experts’ predictions will result 
in a number that corresponds to an instance of the original instance set. This would need 
additional assumptions like that the encoding is surjective, i.e., any number in [0,  1] is 
an encoding of an element of the original instance set. In many natural cases such an 
assumption will not hold, for example, if the original instance set is countable. We refer to 
Sect. 3.2 for a more detailed discussion of such discrete settings.
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2.5  The Choice of the Loss Function

Concerning the loss function, also depending on the specific setting some choices may 
appear more natural than others. In general, the loss function will have an effect on the 
performance of a prediction algorithm and hence also on the choice of the preferred algo-
rithm. For example, the main result2 for the EAW algorithm suggested by Schurz (2019) 
rests on the assumption that the used loss function is convex in the first argument. For 
particular loss functions improved performance guarantees can be given, cf. Chapter 3 of 
Cesa-Bianchi and Lugosi (2006) and the respective Proposition 6.7 for exp-concave loss 
functions in Schurz (2019).

In particular for the application to meta-induction, the choice of the loss function may 
be not just a convention. Rather a whole spectrum of induction problems should be cov-
ered, so that one has to put some effort in the translation of the particular problem instances 
into the proposed setting of meta-induction. Thus, beside the problem of encoding these 
instances by numbers in [0, 1], finding a suitable loss function that defines a natural dis-
tance between the original instances is an additional challenge. This is basically a (metric) 
multi-dimensional scaling problem for which several techniques have been developed Borg 
and Groenen (2005). In general, the choice of a suitable combination of encoding and loss 
function will not only depend on the specific problem considered, but also on the guaran-
tees one aims at. Similar to other settings in machine learning, there will be a respective 
trade-off to be made and no approach will work for all applications. Rather, a proper repre-
sentation will be chosen with respect to prior knowledge about the underlying data, cf. e.g. 
Chapter 25 of Shalev-Shwartz and Ben-David (2014), which considers the general prob-
lem of feature selection in machine learning. In particular, Shalev-Shwartz and Ben-David 
(2014) point out that although there are also algorithms for selecting problem representa-
tions, due to the no-free-lunch theorem (cf. e.g. Wolpert and Macready 1997) these cannot 
be universally applicable.

An interesting aspect of the PEA setting is that the underlying sequence actually van-
ishes behind the loss sequences produced by each expert. Accordingly, it may be natural to 
eliminate this aspect of the setting by assuming that one directly observes loss sequences 
that can be interpreted as real rewards obtained by the learner, for which a comparison is 
more straightforward. In this setting the learner does not predict an underlying sequence 
any more, but only chooses an expert (or more generally a distribution over experts that can 
be interpreted as randomization). Such a setting is e.g. considered by Cesa-Bianchi et al. 
(2007) (cf. Sect. 3.3.3 below and also the bandit setting discussed in Sect. 4).

2.6  Translation and Scaling of Events and Losses

Closely related to the choice of the loss function is the question of translation or scaling 
of losses or events. In general, losses can be arbitrary real numbers. However, the range of 
the loss function will obviously have an effect on the achievable regret, so that it may seem 
preferable to normalize losses on some closed interval like [0, 1]. Indeed, in the general 
PEA setting the sets O and D are known, so that it is easy to define a loss function that 
maps to [0, 1]. However, as discussed in detail by Cesa-Bianchi et al. (2007) (cf. also Sec-
tion  2.6  of  Cesa-Bianchi and Lugosi 2006) the respective transformation may harm the 

2 Theorem 6.9 of Schurz (2019) on p. 145, cf. also Theorem 1 below.
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regret bounds that can be achieved. For a discussion of algorithms that are invariant with 
respect to natural transformations such as translations and scalings we refer to Sect. 3.3.3.

Note that in many practical settings the range of the sequence to be predicted will not 
be known in advance, so that it is difficult to specify a transformation of the actual events 
to a bounded interval like [0, 1]. However, clever techniques can deal also with unknown 
ranges, see e.g. variants of the prod algorithm of Cesa-Bianchi et al. (2007) discussed in 
Sect. 3.3.3 below.

3  Adaptive Algorithms

3.1  The Exponentially Weighted Average Forecaster

The algorithm favored by Schurz (2019) is the exponentially weighted average forecaster 
of Cesa-Bianchi and Lugosi (2006) (called EAW for exponential attractivity weighted fore-
caster by Schurz (2019). As several other algorithms some of which we will discuss below, 
this algorithm works with weights assigned to each expert. These are used to choose a pre-
diction and change depending on the expert’s success. For the exponentially weighted aver-
age forecaster the initial weights w(i)

1
 at time t = 1 are set to 1 for each expert i. The update 

at any step t is done according to

for a learning rate parameter � and a factor N that normalizes weights to sum up to 1. The 
prediction for step t is then given by 

∑
i w

(i)
t p

(i)
t  . One can show that choosing a suitable 

value for � and a convex loss function the regret after any T steps is3 O(
√
T logK) . The fol-

lowing result of Cesa-Bianchi and Lugosi (2006) basically corresponds to (6.7) of Schurz 
(2019).

Theorem 1 (Theorem 2.2 of Cesa-Bianchi and Lugosi (2006)) After any T steps the regret 
of the exponentially weighted average forecaster choosing � =

√
8(logK)∕T  is bounded by √

T(logK)∕2 , provided that the loss function � is convex in its first argument.

It can be shown that this bound is in general not improvable, cf. Section 3.7 of Cesa-
Bianchi and Lugosi (2006). Choosing time-dependent learning rates �t ∶=

√
8(log T)∕t 

one can obtain similar results without knowing the horizon T in advance, cf. Theorem 2.3 
of Cesa-Bianchi and Lugosi (2006) and the corresponding Theorem 6.9 of Schurz (2019).

3.2  The Weighted Majority Algorithm and Mistake Bounds

As discussed in Section 6.7 of Schurz (2019), the original PEA setting has its limitations. 
Most importantly, for the very natural settings in which the outcome space O and the deci-
sion space D coincide and are discrete, a (convex) combination of expert predictions as 
usually suggested by weighted forecasting algorithms does not give a valid prediction in 

(2)w
(i)
t ∶= w

(i)
t exp(−��

(i)
t )∕N

3 Here and in the following we use the Landau notation O(⋅) to denote asymptotic upper bounds on the 
regret.
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general. Still the situation is not completely hopeless when interpreting the weights of the 
experts as probabilities of a randomized approach.

While randomization is a powerful tool, having access to independent random variables 
may be considered as a (too) strong assumption. Schurz (2019) suggests to simulate ran-
domization via a collective of experts approximating the probability distribution over the 
possible predictions (cf.  Section  6.7.2 of Schurz 2019). However, in some simple cases 
one can avoid randomization using a simple algorithm also employing exponential weights 
to decide according to the weighted majority. As randomization over hypotheses may not 
appear to be a natural choice when considering induction in science, such a deterministic 
algorithm seems preferable in the context of meta-induction.

The most basic form of the weighted majority algorithm has been suggested by Lit-
tlestone and Warmuth (1994) for binary prediction problems.4 That is, outcome space O 
and decision space D are binary, i.e., O = D = {0, 1} , and the loss function is defined by 
�(d, o) = |d − o| for d ∈ D and o ∈ O.

The weighted majority algorithm works as follows. Initializing weights w(i)

1
= 1 for each 

expert i, in each time step one sums up the weights over the experts that predict 0 and 
compares the sum to the respective total weight of all experts predicting 1. The group of 
experts with larger total weight decides on the prediction at the current step. After observ-
ing the true outcome the weights of all experts that predicted wrongly are discounted by a 
factor � with 0 < 𝜂 < 1 . This can be interpreted as an update rule of the form

for � as defined before.
Note that this algorithm is not only very simple, it also does not need any randomiza-

tion. The analysis of the algorithm is as elementary as the algorithm itself and yields the 
following upper bound on the number of wrong predictions of the algorithm.

Theorem  2 (Littlestone and Warmuth 1994) The number m of mistakes made by the 
weighted majority algorithm is bounded according to

where mi is the number of mistakes made by expert i.

Note that unlike the regret bounds we have seen so far this mistake bound is independ-
ent of the horizon. Actually, setting � ∶=

√
(logK)∕T  it is easy to obtain from (4) a regret 

bound of optimal order O(
√
T logK) after T steps similar to Theorem 1.

The weighted majority algorithm can be generalized to non-binary prediction settings 
resulting in an algorithm similar to the exponentially weighted average forecaster algo-
rithm. We will discuss the arising Hedge algorithm and its variants in more detail in the 
following section. It turns out that the weighted majority algorithm and its relatives can be 

(3)w
(i)
t ∶= w

(i)

t−1
��

(i)
t

(4)m ≤

log(K) + mi log
(
1

�

)

log
(

2

1+�

) ,

4 We note however that the weighted majority algorithm is applicable to a wide range of various other 
online problems and has been used and reinvented on several occasions, see (Arora et al. 2012) for an over-
view.
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used directly or with slight modifications to obtain adaptivity results that are stronger than 
the regret bounds we have seen so far.

3.3  Adaptive Algorithms Based on Weighted Majority

In some sense, one could say that regret bounds for algorithms like the exponentially 
weighted average forecaster or the weighted majority algorithm actually are not so much 
about learning or inductive inference as about keeping track of the current best expert. 
Indeed, as already mentioned, the underlying sequence to be predicted in the PEA setting 
actually vanishes and what matters in the end are the loss sequences of the experts. Also 
with respect to the framework of meta-induction it would be desirable to have algorithms 
that are not only adaptive in the sense that they minimize the loss with respect to the best 
expert, but are able to perform better on sequences that are easy to predict. As in the PEA 
setting the experts serve as a basis for prediction, this is obviously a challenging task.

3.3.1  I.i.d. Losses

As just noted, what matters in the PEA setting are the loss sequences of the experts. So 
when talking about easy sequences we do not necessarily refer to the underlying sequence 
to be predicted but rather to the respective loss sequences of the experts. Then a particu-
larly easy setting is one where these loss sequences are stochastic and i.i.d. We emphasize 
once more that this not necessarily means that the underlying observations are stochastic 
and i.i.d. It is only guaranteed that the interplay between observations and experts results in 
stochastic and i.i.d. losses. There are several ways how this can happen, for example, when 
the experts predict the observations perfectly only with some i.i.d. noise added.

In this particular setting a simple algorithm like Follow the Leader (FTL, called Imitate 
the Best by Schurz 2019) that chooses the best expert so far works perfectly and indeed 
achieves constant regret. That is, the regret after any T steps will be bounded by a constant 
that is independent of T, cf. de Rooij et al. (2014) for details. Importantly, a lot of com-
mon PEA algorithms with known regret guarantees perform worse than FTL on i.i.d. loss 
sequences. On the other hand, for certain loss sequences FTL is known to suffer linear 
regret, see de Rooij et al. (2014).

3.3.2  Hedge

The question whether it is possible to combine FTL with other algorithms to guarantee 
good performance on easy sequences but still overall regret bounds of order O(

√
T logK) 

has sparked some interesting research, starting with the Hedge strategy of Freund and 
Schapire (1997; 1999).

The Hedge algorithm of Freund and Schapire (1997; 1999) is a generalization of the 
weighted majority algorithm using the same weight updates as given in (3) but for arbitrary 
loss functions � . More precisely, the learner at each step t chooses a probability distribu-
tion (w̄(1)

t , w̄
(2)
t ,… , w̄

(K)
t ) over the experts5 and suffers a loss defined as 

∑
i w̄

(i)
t �

(i)
t  , which 

can be considered to be the expected loss with respect to the selected probability distribu-
tion. The regret of this generalized algorithm can be shown to be of order O(

√
T logK) just 

5 Hedge simply normalizes the computed weights w(i)
t

 to obtain the probabilities w̄(i)
t

.
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as for the weighted majority algorithm. Freund and Schapire (1997) also present an appli-
cation to classification problems in form of the seminal Boosting algorithm that enables to 
combine several weak learners (that perform just a bit better than random) to achieve high 
overall performance.

Recently, a modification of Hedge with adaptive learning rate � has been shown to be 
optimal in a range of problems that are in some sense “between” i.i.d. and adversarial, see 
Bilodeau et al. (2021) for details. This result is a neat complement to regret bounds for best 
of both worlds algorithms discussed in Sect. 4 below.

3.3.3  Prod

The prod algorithm of Cesa-Bianchi et al. (2007) has been proposed for a more general 
setting where the sign of the losses can be arbitrary. As before, the learner chooses at each 
step t a probability distribution (w̄(1)

t , w̄
(2)
t ,… , w̄

(K)
t ) over the experts and receives a payoff 

of 
∑

i w̄
(i)
t x

(i)
t  , where x(i)t  is the payoff of expert i. Here payoffs are taken from [−M,M] , 

that is, they can be positive (rewards) or negative (losses). The prod algorithm updates the 
weights for each expert i according to

for a parameter � and initializing weights to 1 as usual.
Whereas the regret bounds we have seen so far depend on the horizon T as well as 

on the range of the payoffs,6 Cesa-Bianchi et  al. (2007) provide what they call higher 
order bounds that depend on the sum of the payoffs (resulting in first order bounds) or 
the squared sums of the payoffs (giving second order bounds). For example, defining 
Q∗

T
∶=

∑T

t=1
(x

(i∗)
t )2 to be the sum of the squares of the best7 arm’s payoff, they show the fol-

lowing bound on the regret of prod.

Theorem  3 (Cesa-Bianchi et  al. 2007) The regret of Prod with parameter 
� ∶= min{1∕(2M),

√
(logK)∕Q∗} is upper bounded by

Obviously, Q∗
T
 is upper bounded by TM2 , so that the second order bound of Theorem 3 

improves over the bounds we have seen so far whenever Q∗
T
 is smaller than TM2 . While 

Theorem 3 assumes knowledge of the quantities Q∗
T
 and M, Cesa-Bianchi et al. (2007) also 

provide adaptations of the basic prod algorithm to deal with the usual case when neither 
Q∗

T
 nor M are known. Further, second-order bounds for the weighted majority algorithm 

using a time-dependent learning rate are given as well.
Another important contribution of Cesa-Bianchi et al. (2007) is that they also provide 

bounds that are stable under certain natural transformations like additive translations and 
rescalings of the payoffs. It is also discussed how given (unstable) regret bounds can be 

(5)w
(i)
t ∶= w

(i)

t−1
(1 + �x

(i)
t )

(6)max
{
2

√
Q∗

T
logK, 4M logK

}
.

6 The latter dependence has not been made explicit so far, as we have assumed that losses are taken from 
[0, 1]. Obviously, when taking losses from a larger interval [0, M], the respective regret guarantees scale 
with an additional factor of M.
7 The best arm i∗ here is the best arm after T steps, which in general depends on T. For the sake of readabil-
ity we skipped this dependence from the notation.
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improved by a meta-algorithm using artificial translations of the payoffs, see Section 5 of 
Cesa-Bianchi et al. (2007).

This is taken a step further by de Rooij et al. (2014) whose algorithms AdaHedge and 
FlipFlop are themselves translation invariant. That is, not only the regret bounds that hold 
for these algorithms are invariant under translation, the algorithms do not change their 
behavior if payoffs (or losses) are shifted or rescaled. As these algorithms are a bit more 
involved than the simple weight update algorithms we consider here, we refer to de Rooij 
et al. (2014) for details.

3.3.4  D‑Prod

Based on prod, Even-Dar et al. (2008) suggested the D-prod algorithm that aims to com-
pete not only against the best expert but also against an arbitrary given distribution D over 
the experts. The update of the weights is defined by

where x(D)t  denotes the payoff of the distribution D over the experts. This distribution is 
also assigned a constant weight according to (7). Using a proper initialization of weights 
one can show that the regret of D-prod with respect to the distribution D over the experts 
is constant, while the regret with respect to the best expert in hindsight is not much worse 
than for the algorithms we have seen so far.

Theorem 4 (Even-Dar et al. 2008) The regret of D-Prod with parameter � ∶=
√
(logK)∕T  

and initial weights w(i)

1
∶= �∕K and w(D)

1
∶= 1 − � is upper bounded by

Further, the regret with respect to the distribution D over the experts is constant.

This result is also applicable to the case where one of the experts performs well in some 
particular settings (e.g., i.i.d. payoffs). If D concentrates all probability mass to this par-
ticular expert, D-prod is guaranteed to perform basically as good as this expert in the spec-
ified settings.

The background of the development of D-prod is a trade-off between the performance 
with respect to the best expert and the regret with respect to the average over all experts. 
Indeed, it can be shown that so-called difference algorithms whose experts’ weights in the 
two experts case (i.e., K = 2 ) only depend on the difference of the experts’ losses cannot 
have small regret in both cases. More precisely, the product of the two regret bounds is at 
least linear in T as shown in Section 3 of Even-Dar et al. (2008). For example, a difference 
algorithm having regret of order O(logT) in one setting cannot have anything better than 
O(T∕ log T) regret in the other setting. We note that all algorithms we have considered so 
far are difference algorithms. Unlike that, D-prod is no difference algorithm (as it consid-
ers the performance of the special D-expert in the weight updates) and can escape this 
lower bound. Even-Dar et al. (2008) also provide some general lower bounds that hold for 
all algorithms showing that any algorithm with regret of order O(

√
T) with respect to the 

best expert must have regret of at least order 
√
T  with respect to a fixed distribution D over 

experts. Accordingly, it is not possible to improve the regret bound with respect to the best 

(7)w
(i)
t ∶= w

(i)

t−1

(
1 + �(x

(i)
t − x

(D)
t )

)
,

(8)O

�√
T logK +

�
T

logK
log T

�
.
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expert of Theorem 4 to O(
√
T) without losing the constant regret with respect to the distri-

bution D over the experts.

3.3.5  (A,B)‑Prod

The (A,B)-prod algorithm suggested by Sani et al. (2014) is a meta-algorithm that com-
bines two learning algorithms A and B , where A is supposed to be a general purpose algo-
rithm with regret guarantees in every scenario, while B is a baseline algorithm, similar to 
the distribution over experts for D-prod. Working on the meta-level, (A,B)-prod attributes 
weights w(A)

t  , w(B)
t  to the base algorithms using an update as for D-prod, that is, weights for B 

remain constant, while weights for A are updated according to

where �(A)
t  and �(B)

t  denote the loss of algorithm A and B , respectively.
Similar to the guarantees for D-prod, the regret of (A,B)-prod with respect to B is con-

stant, while the regret with respect to A is of order O(
√
T log T).

Theorem  5 (Sani et  al. 2014) (A,B)-Prod applied with parameter � ∶=
√
(log T)∕(4T) 

and initial weights w(A)

1
∶= � and w(B)

1
∶= 1 − � has regret upper bounded by 2

√
T log T  

with respect to algorithm A , while the regret with respect to B is bounded by the constant 
2 log 2.

Using e.g. an algorithm like FTL for B one obtains constant regret with respect to FTL, 
which means that for any easy case where FTL works well, (A,B)-prod will have similarly 
good performance. On the other hand, choosing for A a safe algorithm with O(

√
T logK) 

regret guarantees will safeguard the algorithm against sequences where FTL performs 
poorly. The additional regret of order O(

√
T log T) is the price to pay for the good perfor-

mance in easy settings.
Once more, we refer to the algorithm FlipFlop of de Rooij et al. (2014) that combines 

FTL with AdaHedge (a version of Hedge with time dependent learning rate) and whose 
regret can be shown to be upper bounded (apart from a constant factor) both by the regret 
of FTL and AdaHedge. For a more detailed discussion of the subtle differences between 
the respective performance guarantees for FlipFlop, D-prod, and (A,B)-prod we refer to 
Section 3.1 of Sani et al. (2014).

4  Best of Both Worlds Algorithms

4.1  Limited Feedback—The Bandit Setting

The standard PEA setting assumes that the learner observes feedback for all the experts’ 
predictions. However, there are several alternative settings with limited feedback, the most 
well-known of which is the multi-armed bandit problem that is also briefly discussed in 
Section 7.5 of Schurz (2019). The bandit setting is usually described rather in the form of a 

(9)w
(A)
t ∶= w

(A)

t−1

(
1 + �(�

(B)
t − �

(A)
t )

)
,
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decision problem. That is, the learner at time steps t = 1, 2,… chooses one element from a 
given set of arms indexed by 1, 2,… ,K (corresponding to the experts in the PEA setting). 
After each step she obtains (and observes) a reward for the chosen arm, and there is no 
information available about the rewards of the arms not chosen.

Note that the multi-armed bandit problem can be translated back to a prediction setting 
by considering that the learner at each step chooses to follow (the prediction of) an expert 
(or arm respectively) and observes the success of this expert’s prediction. We have already 
mentioned that in the original PEA setting the underlying sequence to be predicted does 
not matter anymore as soon as a loss function is fixed and the goal is to minimize total 
regret. Accordingly, while in the bandit setting there is usually no underlying ground truth 
(such as a sequence to be predicted) assumed, apart from the limited feedback this does not 
make any principled difference to the PEA setting.

Note that while in the full feedback setting of PEA the FTL algorithm is a reasonable 
choice, it is easy to see that in the bandit setting it will not work well in general. Here the 
so-called exploration-exploitation dilemma becomes a challenge for the learner. She has to 
decide at each step whether to exploit her current knowledge and keep with the best arm so 
far, or to explore other arms that may have behaved suboptimally in past samples.

Research on bandit problems for a long time considered two different and well-sepa-
rated settings, the stochastic and the nonstochastic multi-armed bandit problem. In both 
settings it is assumed that rewards are bounded, and in the following we assume them to be 
contained in [0, 1].

4.2  Stochastic Bandits

In the stochastic multi-armed bandit problem it is assumed that the rewards of each arm i 
come from an unknown probability distribution over some bounded interval with mean �i . 
The learner does not know the reward distributions but is aware of operating in a stochastic 
setting. She competes against the optimal mean reward �∗ ∶= maxi �i and the respective 
measure called pseudo-regret is defined as

where T is the considered time horizon and It is the arm chosen at step t.
As already mentioned the greedy FTL algorithm, that after initially sampling each arm 

once chooses at each further step t the arm

that maximizes the observed average reward r̂ so far, is a risky choice. Indeed, the optimal 
arm may underperform in the first few samples taken from it, and may then not be chosen 
again, leading to regret linear in T. However, slight modifications work well in practice 
and in theory. For example, adding a bit of randomization by choosing a random arm with 
some small probability � and following (11) with probability 1 − � is sufficient to obtain a 
successful algorithm. While for fixed � the regret remains linear, if � is chosen to decrease 
over time one can derive strong performance bounds (Auer et  al. 2002a). Note that the 
added randomization is dealing with the exploration-exploitation dilemma in a very direct 
way with � being the fraction of exploration the algorithm conducts.

(10)T�∗ −

T∑

t=1

�It
,

(11)It ∶= argmax
i

r̂i
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A class of simple and popular algorithms that deal with the exploration-exploitation 
problem implicitly add a bonus term to the average reward r̂i of each arm  i and choose 
similar to (11)

where the bonus term b(i, t) usually depends on the respective arm i and the current time 
step  t. Often the bonus term corresponds to (the size of) a confidence interval for the 
respective empirical mean r̂i , so that with high probability each value r̂i + b(i, t) is larger 
than the true mean �i . Consequently, for the chosen arm at step t the value r̂i + b(i, t) > 𝜇∗ . 
As the confidence intervals shrink with the number of samples taken from each arm, after 
not too many steps with high probability the chosen arm will be the optimal one. However, 
the bonus term usually also increases slowly with t to guarantee the necessary amount of 
exploration, so that the algorithm keeps sampling suboptimal arms every now and then. 
The most well-known bandit algorithm in the stochastic setting is Ucb (Auer et al. 2002a) 
which chooses

where ni is the number of times arm  i has been chosen so far. The bonus term corre-
sponds to a confidence interval8 that shrinks with the number of samples ni but also slowly 
increases with t.

Theorem 6 (Auer et al. 2002a) The pseudo-regret of Ucb is bounded by

While this bound can still be slightly improved to match a corresponding lower bound 
(Lattimore 2015), the logarithmic dependence on T cannot be avoided. Note that the bound 
of Theorem 6 is problem dependent, that is, it depends on the gaps �∗ − �i between the 
average reward of an optimal and any suboptimal arm. The worst case bound applies to 
cases where these gaps are of order 1√

T
 , when the bound basically becomes O(

√
KT logT) . 

This problem independent bound can be improved to O(
√
KT) as shown by Audibert and 

Bubeck (2010). This corresponds to the bounds that can be achieved in the nonstochastic 
setting considered below.

4.2.1  Excursion: Simple Regret

An alternative performance measure for the stochastic bandit setting with different flavor 
(sometimes called pure exploration) is the following. Instead of maximizing the sum over 
all rewards, the learner after a certain number of time steps (potentially not known to the 
learner in advance) has to recommend an arm she considers to be best. So-called simple 
regret measures the distance between the average reward of this recommended and the true 
optimal arm (Bubeck et al. 2011).

(12)It ∶= argmax
i

r̂i + b(i, t),

(13)It ∶= argmax
i

r̂i +

√
2 log t

ni
,

∑

i∶𝜇i<𝜇
∗

(
8 log T

𝜇∗ − 𝜇i

+ 1

)
.

8 More precisely to an upper confidence bound, therefore the name.
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A scientist will probably not be evaluated with respect to regret over all her hypoth-
eses advanced in her career on a particular subject. Rather, one would be interested in 
her latest hypotheses. Accordingly, for this scenario simple regret appears to be a more 
suitable measure than the total regret considered so far. Note however that this meas-
ure is only sensible under the assumption of working in a stochastic setting.

4.3  Nonstochastic Bandits

The second bandit setting considered in the literature is the nonstochastic (sometimes 
also called adversarial) setting. Here there are no assumptions on the rewards, except 
that they are bounded and fixed in advance (i.e., do not change with respect to the 
choice of the learner). The goal is to compete against the best arm in hindsight, that is, 
writing r(i)t  for the reward of arm i at step t the regret after T steps is defined as

Several algorithms have been suggested for this setting. One of the first was Exp3 (Auer 
et al. 2002b) that uses exponential weights similar to the algorithms we have seen in the 
PEA setting. More precisely, initializing weights w(i)

1
 associated with each arm i to 1, EXP3 

with parameter � computes probabilities

with respect to which the arm in step t is chosen. Afterwards, weights are updated for the 
chosen arm i taking into account the observed reward r(i)t  according to

while for all other arms w(i)

t+1
∶= w

(i)
t .

Although compared to the PEA setting the learner receives much less information, 
regret bounds with respect to the best fixed arm in hindsight are still of order O(

√
T) , 

only the dependence on the number of arms K is slightly worse.

Theorem  7 (Auer et  al. 2002b) The expected regret of ExP3 using parameter 
� = min

{
1,
√

K logK

(e−1)T

}
 is bounded by

While the parameter setting in Theorem  7 assumes knowledge of T the variant 
Exp3.1 uses time dependent parameters �t and achieves the same regret bounds with 
only a slightly larger constant (Auer et al. 2002b). Auer et al. (2002b) also give lower 
bounds that show that any algorithm will suffer regret at least of order 

√
KT  . The 

gap between this lower bound and the upper bound of Theorem 7 can be closed. That 
is, there are algorithms that get rid of the logarithmic factor in the bound of Theo-
rem 7, see (Audibert and Bubeck 2010) for further details. Note that the regret of order 

(14)max
i

T∑

t=1

r
(i)
t −

T∑

t=1

r
(It)

t .

p
(i)
t ∶= (1 − �)

w
(i)
t

∑
i w

(i)
t

+
�

K
,

(15)w
(i)

t+1
∶= w

(i)
t exp(�r

(i)
t ∕p

(i)
t ),

2
√
(e − 1)KT logK.
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O(
√
KT) corresponds to the regret bounds that are not problem dependent in the sto-

chastic setting.

4.4  Best of Both Worlds Algorithms

Only recently, algorithms have been proposed whose goal is to achieve the best of both 
worlds, that is, the best possible bounds in the stochastic as well as the nonstochastic set-
ting. This corresponds to the question of adaptive algorithms in the PEA setting that we 
have considered in Sect. 3. Note that any algorithm for the nonstochastic setting of course 
can be deployed in the stochastic setting as well, giving regret bounds of order O(

√
KT) 

specified in the previous section. However, if one wants to obtain logarithmic bounds in 
stochastic settings (cf. Sect. 4.2), one has to apply more sophisticated algorithms that e.g. 
constantly check whether they are in a stochastic domain. Such algorithms that are robust 
in an induction-hostile nonstochastic setting on the one hand but on the other hand manage 
to exploit the induction-friendly stochastic setting have been first proposed by Bubeck and 
Slivkins (2012). The regret bounds that hold for their Sao algorithm are summarized in the 
following theorem.

Theorem 8 (Bubeck and Slivkins 2012) The pseudo-regret of Sao in stochastic settings is 
upper bounded by

where Δ ∶= 𝜇∗ −maxi∶𝜇i<𝜇
∗ 𝜇i is the gap between best and second best mean reward. Fur-

thermore, the expected regret of Sao in adversarial settings is upper bounded by

Comparing the bounds of Theorem 8 to those of Theorems 6 and 7, it can be seen that 
the former do not quite achieve the best possible bounds in both settings. Indeed while the 
bound on the expected regret in the adversarial setting has an additional polylogarithmic 
factor in T, the bound for the stochastic setting is also polylogarithmic in T.

These bounds have been complemented by Auer and Chiang (2016) whose Sapo algo-
rithm can be shown to be best possible in the nonstochastic setting and have near-optimal 
pseudo-regret in the adversarial setting, which is defined as

It can be shown that in the adversarial setting the pseudoregret is a slightly weaker notion 
than that of expected regret, cf. e.g. Section  1 of Bubeck and Cesa-Bianchi (2012) for 
details.

Theorem  9 (Auer and Chiang 2016) The pseudo-regret of SaPo in stochastic settings is 
upper bounded by

O

(
K
log2 T

Δ
logK

)
,

O

(√
KT log

3

2 (T) logK

)
.

max
i

�

[
T∑

t=1

r
(i)
t −

T∑

t=1

r
(It)

t

]
.
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Its pseudo-regret is upper bounded by

Auer and Chiang (2016) also show that no algorithm is able to combine the pseudo-
regret guarantees of Theorem 6 in the stochastic setting with an upper bound on the 
expected regret of 

√
KT  in the adversarial setting. We note that similar results are 

available for the pure exploration setting of Sect. 4.2.1 (Abbasi et al. 2018).
While the algorithms Sao and Sapo are explicitly defined to work well in stochastic 

and adversarial environments, similarly to some of the approaches we have seen for 
the PEA setting in Sects.  3, Agarwal et  al. (2017) have proposed a meta-algorithm 
called Corral that combines various bandit algorithms. Obviously, due to the limited 
feedback making combinations of bandit algorithms work is a bigger challenge than 
in the PEA setting. Still, under some stability assumptions on the base algorithms one 
can show regret bounds for Corral that depend on the regret of the best base algorithm 
as well as on the number of base algorithms. It should be noted however that in order 
to take full advantage of the combination power of Corral it is necessary to know in 
advance the regret guarantee of the best base algorithm in the application scenario. For 
a detailed discussion and various applications to more general decision problems we 
refer to Agarwal et al. (2017).

5  Changing Environments

The original PEA setting as well as the limited feedback nonstochastic bandit set-
ting do not make any assumptions on the sequence to be predicted or the reward (or 
loss) sequences of the underlying arms, respectively. Accordingly, they already sub-
sume changing environments. However, the regret usually is considered with respect 
to the best fixed arm in hindsight, whereas any truly adaptive algorithm would change 
between arms. As has already been observed by Bubeck and Cesa-Bianchi (2012) the 
notion of (pseudo-)regret in the case of nonstationary reward sequences can become 
practically vacuous e.g. if the total reward of any fixed arm is small. Accordingly, one 
can try to compete against the best way to follow an arm for a certain time period and 
is allowed to change arms at most S times in total. Auer et al. (2002b) have considered 
this problem and suggested a variant of Exp3 called Exp3.S that achieves regret of 
order O(

√
SKT log(KT) using S to tune the algorithm.

Similarly, in the stochastic setting, it is easy to define a changing environment 
where the arms’ distributions change at certain time steps. With the number of total 
changes S known in advance, one can simply apply the Exp3.S algorithm to achieve the 
mentioned regret guarantees. Only recently, an algorithm was suggested by Auer et al. 
(2019) that similar to the best of both worlds algorithms discussed in Sect. 4.4 tries to 
detect changes by itself and does not need to know the number of changes in advance. 
That way, the algorithm can be shown to achieve regret upper bounded by a term of 

O

(
∑

i

log T

�∗ − �i

)
.

O(
√
TK log T).
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order O(
√
SKT logT) . We refer to (Warmuth and Koolen 2014) for more on so-called 

shifting experts and some related open problems.
We note that here we only mentioned settings with bandit feedback. For the respec-

tive problem in the PEA setting we refer to Chapter  5 of Cesa-Bianchi and Lugosi 
(2006) as well as Sections 7.3 and 9.2.5 of Schurz (2019).

6  Conclusion

Our main goal was to collect adaptive algorithms and results from the online learning litera-
ture that may prove useful for the meta-inductive program. Beyond that, although a detailed 
discussion of various criticisms raised against Schurz’ approach is outside the scope of this 
paper, we conclude with a brief complementary discussion of a few important aspects that are 
worth mentioning but did not fit well into the main part.

First, we note that like Schurz (2019) we did not consider prediction in the Bayesian set-
ting, although of course a lot of literature on this topic can also be found in the field of machine 
learning. Some of this work might be even relevant for a Bayesian approach to Hume’s prob-
lem, however this would be the topic of a different paper.

Related to that, any argument that advertises a general prediction method has to deal 
with the no-free-lunch (NFL) theorem (Wolpert and Macready 1997). Indeed, Section  9.1 
of Schurz (2019) gives a detailed account of how meta-induction does not contradict NFL 
results. In response, Wolpert (2021) recently has argued that meta-induction does not escape 
the NFL theorem. Rather it rests on the possibility of free lunches among competing algo-
rithms (i.e., the experts in the PEA setting), which however does not justify the preference of 
one algorithm over another (at least when assuming standard Bayesian decision theory) and 
hence cannot be considered as a solution to the problem of induction.

Last but not least, we briefly comment on the adequacy of Schurz’ PEA framework as 
described in Sect. 2.1. Possible reductions of other induction settings to PEA and the difficul-
ties that thereby arise have already been mentioned in Sect. 2, where we also pointed out the 
need to specify an encoding and a loss function which in general will be problem dependent. It 
has been criticised that considering a rather limited inductive setting, the PEA algorithms and 
results cannot be said to justify induction in its full sense and moreover hardly match scientific 
practice (Wolpert 2021). Unlike that, Sterkenburg (2019) thinks that the investigated frame-
work is general enough to consider the approach proposed by Schurz (2019) to be a significant 
contribution towards a solution to Hume’s problem. In any case, as we also have tried to indi-
cate in the course of our presentation there is still some work to be done before the program of 
meta-induction can provide a full account of induction as used in science.
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