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Abstract
With the continued down-scaling of IC technology and increase in manufacturing process variations, it is becoming ever
more difficult to accurately estimate circuit performance of manufactured devices. This poses significant challenges on the
effective application of adaptive voltage scaling (AVS) which is widely used as the most important power optimization
method in modern devices. Process variations specifically limit the capabilities of Process Monitoring Boxes (PMBs), which
represent the current industrial state-of-the-art AVS approach. To overcome this limitation, in this paper we propose an
alternative solution using delay testing, which is able to eliminate the need for PMBs, while improving the accuracy of
voltage estimation. The paper shows, using simulation of ISCAS’99 benchmarks with 28nm FD-SOI library, that using delay
test patterns result in an error of 5.33% for transition fault testing (TF), error of 3.96% for small delay defect testing (SDD),
and an error as low as 1.85% using path delay testing (PDLY). In addition, the paper also shows the impact of technology
scaling on the accuracy of delay testing for performance estimation during production. The results show that the 65nm
technology node exhibits the same trends identified for the 28nm technology node, namely that PDLY is the most accurate,
while, TF is the least accurate performance estimator.

Keywords Adaptive voltage scaling · Performance monitor boxes · Delay testing · Process variations · Power optimization

1 Introduction

Power is one of the primary design constraints and per-
formance limiters in the semiconductor industry. Reducing
power consumption can extend battery life-time of portable
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systems, decrease cooling costs, as well as increase sys-
tem reliability [19]. Various low power approaches have
been implemented in the IC manufacturing industry, among
which adaptive voltage scaling (AVS) has proven to be
a highly effective method of achieving low power con-
sumption while meeting the performance requirements.
Moreover, with the on going scaling of CMOS technolo-
gies, variations in process, supply voltage, and temperature
(PVT) have become a serious concern in integrated circuit
design. Due to die to die process variations, each chip has
its own characteristics which lead to different speed and
power consumption. The basic idea of AVS is to adapt the
supply voltage of each manufactured chip to the optimal
value based on the operation conditions of the system so that
in addition to saving power; variations are compensated as
well, while maintaining the desired performance.

A standard industrial approach for AVS is the use of on-
chip PMBs to be able to estimate circuit performance during
production. AVS approaches embed several PMBs in the
chip architecture so that based on the frequency responses
of these monitors during production, the chip performance
is estimated and the optimal voltage is adapted exclusively
to each operating point of each manufactured chip. PMBs
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range from simple inverter based ring oscillators to more
complex critical path replicas designed based on the most
used cells extracted from the potential critical paths of the
design [3–5, 7, 9, 12]. The frequency of PMBs is dependent
on various silicon parameters such as NMOS and PMOS
speeds, capacitances, leakage, etc.

To be able to estimate the circuit performance based
on PMB responses during production, the correlation
between frequency of PMBs and circuit frequency should
be measured during characterization, an earlier stage of
manufacturing. Once PMB responses are correlated to
application performance, they are ready to be used for
AVS during production. Figure 1 shows the way PMBs can
be used for the application of AVS power optimization.
The goal is to have the appropriate voltage supply
point optimized for each silicon die individually. During
production and based on the frequency responses from
PMBs, the chip performance will be estimated to enable
AVS. This can be used to serve various purposes. First, AVS
is used to adapt the voltage in order to compensate for PVT
variations. AVS is also used to enhance yield; operating
voltage of fast chips is reduced to compensate for extra
leakage power, while operating voltage of slow chips is
increased to reach the performance target. In addition, AVS
can be used to improve power efficiency per die by reducing
the voltage supply to the optimum voltage at the transistor
level [19].

However, trying to predict performance of the many
millions of paths in a given design based on information
from a single unique path could be difficult and in many
cases inaccurate. This results in high costs, extra margins,
and consequently yield loss and performance limitations.
This approach might work for very robust technologies and
when only very few parameters influence performance, such
as voltage, process corner, and temperature. However, in
deep sub-micron technologies, as intra-die variation and

interconnect capacitances are becoming predominant, it is
more complex to estimate the performance of the whole
design based on few PMBs. Hence, to improve the accuracy,
we should use an alternative approach that increases the
number of paths we take into account for performance
estimation. Moreover, the more the characterization effort
can be reduced, the more cost effective the AVS approach
will be.

Previous work in this context, such as [15] and [6],
propose techniques for generating optimal set of delay
test patterns during the characterization process. These
techniques guarantee to invoke the worst-case delays of
the circuit. These tests are applied on a small set of chips
selected from a batch of first silicon. The reason is to
expose systematic timing errors that are likely to affect a
large fraction of manufactured chips. Hence, these timing
errors may be addressed via redesign before the design
moves into high-volume manufacturing. However, they do
not propose test generation for the purpose of application to
AVS during manufacturing on every chip. Work published
in [2] and [11] proposes using a predictive subset testing
method which reduces the number of paths that need to be
tested. This method is able to find correlations that exist
between performance of different paths in the circuit. This
way it is possible to predict the performance of untested
paths within the desired quality level, thus, improve test
complexity and cost. However, due to the increasing effect
of intra die process variations in smaller technologies, the
correlations between different paths change throughout a
single chip rendering this technique ineffective in current
manufacturing technologies.

Authors of [13] propose an efficient technique for post
manufacturing test set generation by determining only 10%
representative paths and estimating the delays of other
paths by statistical delay prediction. This technique achieves
94% reduction in frequency stepping iterations during delay

Fig. 1 Implementation of AVS
power optimization using PMBs
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testing with a slight yield loss. However, the authors are only
able to define static power specification for all manufactured
chips, which is not able to address AVS utilization for each
chip. Shim and Hu [16] introduces a built-in delay testing
scheme for online AVS during run time, which offers a good
solution for mission critical applications. However, this re-
quires significant software modifications, making it very
expensive for non critical applications. Zain Ali [18] inves-
tigates the importance of delay testing using all voltage/
frequency settings of chips equipped with AVS to guarantee
fault-free operation. However, their approach does not enable
setting optimal voltage and corresponding frequencies to
enable AVS.

In this paper, we introduce a cost effective approach for
the estimation of AVS voltages during production using
delay test patterns. The contributions of this paper are the
following:

– Proposing the new concept of using delay testing for
AVS during production.

– A detailed investigation of the delay testing approach
including TF, PDLY, and SDD in terms of accuracy
and effectiveness using 29 ISCAS’99 benchmarks with
28nm FD-SOI library for 42 different process corners.

– A study on the impact of technology scaling on
accuracy and effectiveness of the delay testing approach
using 65nm, 40nm, and 28nm FD-SOI libraries.

The rest of this paper is organized as follows. Section 2
explains the implementation of AVS in different levels
of the design and manufacturing process. Limitations of
PMB-based AVS are introduced in Section 3. Section 4
proposes the new approach of using delay test patterns for
AVS. Evaluation of the proposed approach is presented
in Section 5 using simulation results on ISCAS’99
benchmarks. Section 6 investigates the impact of technology
scaling on accuracy and effectiveness of our proposed
method for AVS. Section 7 concludes the paper and
proposes potential solutions for future work.

2 Background

AVS can be done either offline during production or online
during run-time. Offline AVS approaches estimate optimal
voltages for each target frequency during production, while
online AVS approaches measure optimal voltages during
run-time by monitoring the actual circuit performance.

With regard to accuracy and tuning effort, online AVS
approaches are very accurate and no tuning effort is needed,
since they monitor the actual critical path of the circuit,
and there is no need to add safety margins on top of
the measured parameters due to inaccuracies. However,
for offline AVS approaches, since there is no interaction

between PMBs and the circuit, the correlation between
PMB responses and the actual performance of the circuit
is estimated during the characterization phase using the
amount of test chips representative of the process window.
Since there are discrepancies in the responses of same
PMBs from different test chips, the estimated correlation
between the frequency of PMBs and the actual performance
of the circuit could be very pessimistic, which results in
wasting power and performance. Hence in terms of accuracy
and tuning effort, online approaches always win [20].

In terms of planning effort and implementation risk,
online AVS approaches are considered very risky and
intrusive since adding flip-flops at the end of critical paths
requires extensive modification in hardware and thus incurs
a high cost. Moreover, for some sensitive parts of the
design, such as CPU and GPU, which should operate at high
frequencies, implementing direct measurement approaches
is quite risky since it affects planning, routing, timing
convergence, area, and time to market. On the other hand,
offline AVS approaches are considered more acceptable in
terms of planning and implementation risk, since there is no
interaction between PMBs and the circuit, hence, PMBs can
even be placed outside the macros being monitored, but not
too far due to within die variations. Consequently, offline
AVS approaches seem more manageable due to the fact that
they can even be considered as an incremental solution for
existing devices and the amount of hardware modification
imposed to the design is very low. Consequently, according
to the application, one can decide which technique more
suits a design. For example, for medical applications
accuracy and power efficiency are far more important than
the amount of hardware modification and planing effort,
while, for nomadic applications, such as mobile phones,
tablets, and gaming consoles, cost and the amount of
hardware modification are considered the most significant.

In this work our focus is on AVS implementation on
devices used for nomadic applications. Thus, Our focus
is on offline AVS approaches. Offline AVS techniques
which are currently being used for nomadic applications
in industry use PMBs to estimate performance of each
manufactured chip during production to find the optimal
voltage for each frequency target accordingly. It is worth
mentioning that the use of PMBs is due to the fact that
AVS for each chip during production should be done as
fast as possible, thus, running functional tests on CPU to
measure optimal voltages for each operating point is not
feasible. In this section, we explain the implementation
of offline AVS in the different stages of the design and
manufacturing process. Figure 2 presents the stages along
with a discussion.

– Design: The process starts with the design stage, where
the circuit structure and functionality is described based
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Fig. 2 AVS implementation in different levels of the design and manufacturing process

on a given set of specifications. When the design
is completed, various PMBs are embedded in the
chip structure. Ring oscillators are the most widely
used type of PMBs present today in many products,
the frequency of which is dependent on various
silicon parameters such as NMOS and PMOS speeds,
capacitances, leakage, etc. These ring-oscillator based
PMBs are constructed using standard logic components
and placed in various locations on the chip to capture
all kind of variations (see Fig. 2(1)). Due to intra-die
variations, it is more efficient to place various PMBs
close or inside the block which is being monitored so
that all types of process variations are captured and
taken into account for performance estimation. The
number of used PMBs depends on the size of the chip.
There is no interaction between the PMBs and the
circuit.

– Manufacturing: When the design stage is completed,
the manufacturing stage starts where a representative
number of chip samples will be manufactured. The
number of chip samples should be representative of the
process window to make sure that all kind of process
variations are taken into account for the correlation
process.

– Characterization: To be able to use PMBs for AVS
during production, the correlation between PMBs
frequency and the actual application behavior is
measured during characterization stage. The chip
samples are used to find this correlation. The following
steps are done for each operating point of each chip
sample. 1. The optimal voltage is measured using
functional test patterns. 2. The chip is set to the optimal
voltage and the frequency of each PMB is captured.
3. The correlation between PMB frequencies and the
actual frequency of the chip is calculated. Therefore,
based on the data from all chip samples, we find
correlation between PMB frequencies and the actual
frequency of CPU for the design taking into account all
process corners of the technology (see Fig. 2(3)).

– Production ramp up: Once PMBs are tuned to the
design during the characterization stage, they are
ready to be used for voltage estimation during the
production ramp up stage. During production and based
on the frequency responses from PMBs, the circuit
frequency is estimated so that optimal voltage can
be predicted exclusively for each operating point of
each manufactured chip. Then, margins for voltage
and temperature variations as well as aging are added
on top of the optimal voltage to make sure that
the chip functions properly in different environmental
conditions. Finally, optimal voltages for each operating
point are either fused in fuse boxes of the chip or stored
in a non volatile memory of the chip and are ready to be
used for AVS during run-time.

3Motivation

Although PMB-based AVS is very fast during production,
as technology scaling enters the nanometer regime, this
technique is showing limitations regarding time to market,
cost, and effectiveness in power saving. These limitations
are discussed below:

– Long characterization: The correlation process (i.e.,
finding the correlation between PMB responses and
the actual frequency of the circuit) should be done
for an amount of test chips representative of the
process window to make sure (for all manufactured
chips) voltage estimation based on PMB responses is
correlated with application behavior. This correlation
process has a negative impact in terms of design effort
and time to market, which makes these approaches
very expensive. Our delay test based approach, while
does not eliminate the need for characterization, it does
reduce the time needed to perform it.

– Incomplete functional patterns: finding a complete
set of functional patterns that reflects the real system
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performance could be very tricky specially for complex
systems. Also, we note that identifying the most critical
part of the application is not possible in most cases.
Although our delay test based approach also does
not provide complete coverage, any set of delay test
patterns (even very small sets) have an advantage as
compared to PMBs. The reason is that PMBs only
consider one or few paths, while delay testing considers
undoubtedly more paths for voltage estimation.

– Not a solution for general logic: the fact that
functional patterns are used for the correlation process
makes PMB approaches not suitable for general
logic, since even though using functional patterns
for programmable parts of the design such as CPU
and GPU is possible, the rest of the design such as
interconnects are difficult to be characterized using this
approach [1].

– Not effective enough: since there are discrepancies
in the responses of same PMBs from different test
chips, the estimated correlation between the frequency
of PMBs and the actual performance of the circuit could
be very pessimistic, which results in wasting power and
performance. In [21], a silicon measurement on 625
devices manufactured using 28nm FD-SOI technology
had been done. 12 PMBs are embedded in each device.
Results show that optimum voltage estimation based on
PMBs lead to nearly 10% of wasted power on average
and 7.6% in the best case, when a single PMB is used
for performance estimation.

4 Application of Delay Testing for AVS

4.1 Types of Delay Testing

In this paper, we propose an innovative new approach for
AVS using delay testing during production. Since delay
testing is closely related to the actual functionality of the
circuit being tested, and since it covers many path-segments
of the circuit design, it can be a much better performance
representative than a PMB. Such a test-based approach has
a number of unique advantages as compared to PMB-based
approaches.

1. First, this approach can be performed at a lower
cost than PMB approaches, since delay tests are
routinely performed during production to test for chip
functionality.

2. In addition, since delay testing is performed to explic-
itly test for actual chip performance, the expensive
phase of correlating PMB responses to chip perfor-
mance is not needed anymore, which reduces the length

of the characterization stage (see Fig. 2(3)), and subse-
quently dramatically reduces cost and time to market.

3. Moreover, as functional patterns are not used anymore,
the delay testing approach could be a solution for
general logic, and not only for CPU and GPU
components.

4. And last but not least, this approach makes using PMBs
redundant, which saves silicon area as well as PMB
design time.

TF test patterns target all gates and indirectly cover
all path-segments. Hence, it covers all different kinds of
gates and interconnect structures. Since several faults can be
tested in parallel, we can achieve a high coverage with few
patterns [22]. However, automatic test pattern generation
(ATPG) algorithms are based on heuristics like SCOAP
[8], which tend to minimize computational effort. Thus,
when several solutions are available for path sensitization,
ATPG will use the easiest, which means that the algorithm
tends to target the shorter paths rather than the optimal
critical paths of the design [10]. On the other hand, we can
alternatively use SDD testing, which sensitizes paths with
smallest slacks, as well as PDLY testing, which sensitizes
a number of selected most critical paths. Among the three
delay testing methods, PDLY has the highest delay test
accuracy since it sensitizes functional, long paths, which
is an advantage over TF and SDD testing. However, in
PDLY testing the objective is to obtain a transition along
those critical paths which are on average longer and more
complex than the paths targeted in TFs, thus reducing
parallel testing capability and thereby reduces the overall
coverage achieved.

In this paper, we propose using three different types of
delay testing to identify optimal AVS voltages: transition
fault testing, small delay defects and path delay testing [17].
As shown in Fig. 3, these three types of testing represent a
tradeoff between test accuracy and test coverage, with TF
having the highest coverage and lowest accuracy for a given
test cost, and PDLY having the lowest coverage and highest
accuracy. Despite the fact that these delay testing methods
have their limitations as technology scales down, they can

Low accuracy
High coverage 

High accuracy
Low coverage

Transition 
fault test

Small delay 
defect test

Path delay 
test

Fig. 3 Tradeoff in accuracy and coverage between different types of
delay testing types
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Fig. 4 An example of performance prediction using path delay testing

be used as better representatives than PMBs for on-chip
performance prediction.

4.2 Performance Prediction Using Delay Testing

In order to show the basic idea of how circuit performance
can be predicted using delay testing, we show a simple
example for performance prediction using path delay
testing. Figure 4 shows how performance of a circuit is
predicted using path delay test patterns. Assume that the
path P{rising, adef} in this figure (the highlighted path) is
one of the critical paths of the circuit reported by STA.

The path delay test pattern needed to propagate the rising
transition from input a to output f is the vector pair V =<

010, 110 >. The values for off-input signals (b and c) are
11 and 00. First vector v1 = 010 is applied and given some
time for signal values to settle. Vector v2 = 110 launches the
test, and after a delay time dictated by the critical path the
output f will exhibit a rising edge. The timing diagram in
the figure shows that the critical path delay is 3 time units,
corresponding to a delay unit for each gate along the critical
path. It is possible to use this information to identify the
maximum frequency of the circuit by using a tester clock to
capture the correct value of f = 1. Any tester clock period
larger that 3 time units will be able to capture the correct
value of f. By gradually decreasing the tester clock period,
we can have an accurate estimation of the delay of the
critical path which can be used to calculate the frequency.
The accuracy of performance prediction can be increased
by taking more critical paths and corresponding path delay
test patterns into account. Therefore, depending on the time
invested in testing, the accuracy of performance prediction
using delay test patterns can be improved.

4.3 AVS IdentificationMethod

Figure 5 proposes a flow to identify AVS voltages using
delay test patterns that could be used during production.
The proposed flow performs a binary search to identify the
minimum voltage (Vmin), at which the chip can pass all
delay test patterns. The following steps are performed for
each operation point of the chip:

Fig. 5 Proposed flow to identify
AVS voltages using delay testing
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1. Apply chip setup at nominal values and initialize
variables. Vmin and Vmax are defined based on the
user specifications. Chips which operate at voltages
lower than Vmin are considered too leaky, and will be
discarded since they do not meet power specifications.
Chips which can only operate at voltages higher than
Vmax are considered too slow, and will be discarded
since they do not meet performance specifications.

2. Set supply voltage to Vmax and wait for stabilization.
According to the performance specifications, Vmax is
the maximum voltage at which a chip must be able to
operate properly.

3. Apply at speed test using all the delay test patterns in
the pattern set, generated using automatic test pattern
generation.

4. If the chip fails the test, discard it: any chip which is not
able to operate at this voltage will be discarded since it
is considered too slow.

5. Otherwise, compute new values and do a binary search
to find Vmin. This voltage is considered the optimal
voltage at which the chip can pass all delay test patterns
in the specified pattern set.

Conversion from Vmin to Fmax might be required
depending on either performance estimation is done for
yield enhancement or power optimization. “e” is an arbitrary
value to be set by the users to define the resolution they
want.

The basic requirement of using delay testing for AVS
is that there should be a reasonable correlation between
delay testing frequency the chip can attain while passing
all delay test patterns and the actual frequency of the chip.
In this case, delay test frequency could be a representative
of actual chip performance. Previous research indicated that
such a correlation does exist for specific designs [14]. It is
important to note that since performance estimation during
production should be done as fast as possible, running
functional patterns on CPU is therefore most of the time not
feasible. We do emphasize, however, that this is only true
during production testing. Functional tests are important to
validate design behavior in earlier stages of manufacturing.

In order to investigate if such correlation exits for a wider
set of designs, we have performed detailed simulations
on ISCAS’99 benchmarks, which contain 29 designs with
different characteristics.

5 Evaluation Results

5.1 Simulation Setup

This subsection explains the flow we used to explore if
delay test frequency correlates with the actual frequency

of the circuits. We use 28nm FD-SOI (http://www.st.com/
content/st com/en/about/innovation---technology/FD-SOI.
html) libraries to compare the delay fault maximum fre-
quency versus the critical paths of ISCAS’99 benchmarks
(http://www.cad.polito.it/downloads/tools/itc99.html) using
SYNOPSYS tools (http://www.synopsys.com/tools/pages/
default.aspx). ISCAS’99 contains 29 designs from small
circuits like b02 with 22 cells to more complicated designs
like b19 with almost 75K cells. The detailed information
on ISCAS benchmarks is presented in Table 1 synthesized
using 28nm FD-SOI library at SS corner, 0.9V voltage,
and 40 ◦C temperature. 42 different corners of 28nm FD-
SOI library have been used with different characteristics
in terms of voltage, body biasing, temperature, transistor
speed and aging parameters. We used Design Compiler in
topographical mode for physical synthesis, Primetime for
static timing analysis (STA), Tetramax for automatic test
pattern generation (ATPG), and VCS for back annotated
simulation. Since functional patterns are not available for
ISCAS’99 benchmarks, we use STA instead as a reference
for comparison versus delay test frequencies. This choice
can be justified by noting that any set of functional patterns
cannot be complete, since it is very tricky to select an appli-
cation which reflects the real system performance specially
for complex systems. Here, we note that identifying the

Table 1 Physical data of ISCAS’99 benchmarks synthesized using
28nm FDSOI library at SS corner

Benchmark Frequency
Total area 

(um2)

# combin. 

cells

# sequential 

cells
# ports

b01 5Ghz 35,90 35 5 9

b02 5Ghz 24,04 22 4 7

b03 2.5Ghz 149,16 66 30 12

b04 5Ghz 891,18 532 109 23

b05 5Ghz 738,53 647 53 42

b06 3.33Ghz 41,45 29 9 12

b07 1.66Ghz 274,39 258 51 13

b08 5Ghz 293,00 195 41 18

b09 5Ghz 179,08 89 28 7

b10 2.5Ghz 114,57 98 20 21

b11 2Ghz 327,71 388 31 17

b12 3.33Ghz 1016,95 785 121 15

b13 3.33Ghz 269,17 208 53 24

b14 909Mhz 3410,12 3897 461 90

b14_1 909Mhz 3025,73 3268 461 90

b15 5Ghz 6459,67 6859 484 110

b15_1 5Ghz 6569,13 6845 484 110

b17 1.5Ghz 13051,00 14750 1520 472

b17_1 1.5Ghz 13066,12 15011 1520 472

b18 909Mhz 33719,30 39363 3964 1188

b18_1 909Mhz 33241,66 38482 3964 1188

b19 909Mhz 66037,68 75934 7929 2456

b19_1 909Mhz 65535,79 74538 7929 2456

b20 909Mhz 7141,85 8446 922 239

b20_1 909Mhz 6458,59 7343 922 239

b21 909Mhz 7197,45 8545 922 239

b21_1 909Mhz 6258,94 7494 922 239

b22 909Mhz 10626,28 12975 1383 329

b22_1 909Mhz 9651,76 11308 1383 329

http://www.st.com/content/st_com/en/about/innovation---technology/FD-SOI.html
http://www.st.com/content/st_com/en/about/innovation---technology/FD-SOI.html
http://www.st.com/content/st_com/en/about/innovation---technology/FD-SOI.html
http://www.cad.polito.it/downloads/tools/itc99.html
http://www.synopsys.com/tools/pages/default.aspx
http://www.synopsys.com/tools/pages/default.aspx
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most critical part of the application is not possible in most
cases. We also note that although gate-level simulations
provide pessimistic STA delay estimations due to the low
level of details for resistance and capacitance values, this
pessimistic estimation is also true for the delay test patterns
we simulated in our experiments, since all simulations were
performed at the gate level.

Figure 6 shows the simulation flow containing 4 steps as
follows:

– Synthesis: physical synthesis on 29 ISCAS’99 circuits
using 28 nm FDSOI physical library to extract the
netlists, and other reports required as an input for STA,
ATPG and back annotated simulation. (29 netlists and
other reports)

– STA: timing analysis using 42 corners of 28nm FD-
SOI library to extract the critical timing of benchmarks
in each corner. (42 corners*29 netlists= 1218 critical
timing reports)

– ATPG: TF, SDD and PDLY test pattern generation
to extract test patterns and test benches for each
benchmark. We generated 4 TF pattern sets consisting
of 50, 100, 200, and 500 patterns, 3 PDLY fault pattern
sets consisting of 100, 1000, and 10000 patterns, and
2 SDD pattern sets consisting of 50 and 500 patterns
(targeting only register to register paths) for each
benchmark. Figure 7 shows some detailed information
regarding the number of test patterns that ATPG could
generate for each pattern set for each benchmark. For
instance, for small benchmarks such as b01 with only
30 cells, increasing pattern count does not have any
effect on coverage since the total number of TF patterns
is less than 50.

– Simulation: applying delay test patterns on back
annotated simulation of each benchmark, and searching
for maximum frequency at which each device passes
the test. Frequency search is done using binary search
and STA results as a starting point since the maximum
frequency cannot exceed critical timing.

Finally, we compared STA results versus delay fault
frequencies of 29 ISCAS’99 circuits in 42 corners.
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Fig. 7 Number of test patterns generated for each ISCAS’99 design
targeting TFs, SDDs and PDLYs

Furthermore, to understand how untestable paths are
influencing the results, we have done the following post
processing analysis for each circuit: We first extracted the
10Kmost critical paths and generated a pattern covering that
path with the highest effort level. Considering all untestable
paths as false paths, we removed all those paths from
STA, and updated the comparison of delay fault frequencies
versus STA accordingly. The results are presented in the
next subsection.

5.2 Simulation Results

To understand if delay testing is a reasonable performance
indicator that can be used for AVS during production,
we compared the maximum frequency at which each
delay pattern set can be performed for each benchmark
versus STA results. We estimated the performance of each
benchmark in each of 42 corners both using STA and
each delay pattern set. In order to present the results, we
define a parameter named error which is measured for each

Fig. 6 Simulation flow for
comparing delay testing
frequency vs. STA for the 29
ISCAS’99 circuits
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Table 2 Error and standard deviation (SD) of error for TF versus STA (darker shaded entries indicate higher values)

error SD error SD error SD error SD

b01 1,00% 2,54% 1,00% 2,54% 1,00% 2,54% 1,00% 2,54%

b02 3,81% 3,15% 3,81% 3,15% 3,81% 3,15% 3,81% 3,15%

b03 4,04% 1,96% 4,04% 1,96% 4,04% 1,96% 4,04% 1,96%

b04 2,97% 2,74% 2,57% 2,90% 1,70% 3,21% 1,70% 3,21%

b05 1,28% 2,42% 1,28% 2,42% 1,21% 2,38% 1,21% 2,38%

b06 3,64% 1,84% 3,64% 1,84% 3,64% 1,84% 3,64% 1,84%

b07 5,83% 2,25% 2,20% 1,09% 2,20% 1,09% 2,20% 1,09%

b08 2,84% 3,21% 2,00% 3,45% 2,00% 3,45% 2,00% 3,45%

b09 7,50% 1,88% 7,50% 1,88% 7,50% 1,88% 7,50% 1,88%

b10 0,05% 0,93% 0,05% 0,93% 0,05% 0,93% 0,05% 0,93%

b11 2,19% 1,84% 0,46% 1,35% 0,20% 1,07% 0,20% 1,07%

b12 1,82% 3,27% 1,82% 3,27% 1,82% 3,27% 1,67% 3,28%

b13 2,35% 1,87% 2,35% 1,87% 2,35% 1,87% 2,35% 1,87%

b14 18,55% 1,44% 18,52% 1,43% 18,52% 1,43% 11,29% 1,53%

b14_1 19,23% 4,06% 14,01% 0,97% 14,01% 0,97% 13,66% 0,88%

b15 2,80% 2,05% 2,75% 2,01% 2,46% 1,70% 2,06% 1,34%

b15_1 7,44% 2,28% 7,38% 3,71% 3,21% 1,50% 2,57% 1,32%

b17 4,24% 3,14% 4,21% 3,08% 3,71% 2,52% 3,68% 2,48%

b17_1 8,29% 3,09% 5,26% 1,04% 4,91% 1,01% 4,91% 1,01%

b18 15,64% 0,90% 12,25% 2,02% 10,54% 1,13% 6,47% 1,40%

b18_1 14,53% 3,67% 7,89% 1,90% 7,57% 2,56% 7,47% 2,59%

b19 17,80% 1,13% 15,90% 2,07% 15,98% 1,89% 12,42% 2,18%

b19_1 8,83% 1,10% 8,82% 1,10% 8,82% 1,10% 8,82% 1,10%

b20 13,23% 0,44% 12,53% 0,47% 12,29% 0,73% 10,00% 1,33%

b20_1 15,99% 0,77% 15,70% 0,68% 11,48% 0,42% 9,94% 1,44%

b21 12,82% 0,43% 12,82% 0,43% 7,62% 0,42% 7,62% 0,42%

b21_1 4,96% 1,02% 4,47% 0,95% 4,45% 0,90% 3,42% 0,69%

b22 11,22% 1,83% 10,38% 1,40% 10,27% 1,22% 10,27% 1,22%

b22_1 12,05% 3,79% 12,01% 3,81% 11,94% 3,78% 8,54% 2,65%

Average 7,83% 2,11% 6,81% 1,92% 6,18% 1,79% 5,33% 1,80%

Benchmark
TF50 TF100 TF200 TF500

benchmark. The concept relates to how much margin should
be taken into account due to inaccuracies as a result of
performance estimation using delay testing. In addition to
this parameter, we also introduce a parameter as SDerror for
each benchmark which is used to measure the confidence
in the estimated error. To be able to measure error for each
benchmark, first we measured performance error for each
corner by:

errorcorner = (PSTA − PDT)/PSTA (1)

where PSTA is the performance estimation using STA, and
PDT is the performance estimation using delay testing for
the corresponding corner. Once errorcorner is calculated
for all process corners, error can be obtained for each
benchmark by:

error = max
all corners

[errorcorner] (2)

Then, SDerror is calculated for each benchmark using the
fallowing equation:

SDerror =
√∑

all corners[errorcorner − error]2
42

(3)

where errorcorner is the performance error for each corner,
and error is the mean of errorcorner for all 42 different
corners.

Tables 2, 3 and 4 present the error and SDerror,
for all ISCAS’99 benchmarks for TF, SDD and PDLY,
respectively. We generated the results for 4 TF pattern sets
including 50, 100, 200, and 500 patterns, 2 SDD pattern sets
including 50 and 500, and 3 PDLY pattern sets including
100, 1000, and 10000.

As it can be seen in these tables, depending on the size
of each benchmark, and with increasing pattern count, the
error is reduced. For TF, for example, the reduction in error
is higher than 5% for 7 benchmarks (b14, b14 1, b18, b18 1,

Table 3 Error and SD of error
for SDD versus STA (darker
shaded entries indicate higher
values)

error SD error SD error SD error SD

b01 0,79% 1,64% 0,79% 1,64% b15 2,77% 0,93% 1,56% 1,07%

b02 4,33% 2,78% 4,33% 2,78% b15_1 3,60% 1,60% 1,08% 0,71%

b03 4,12% 1,98% 4,12% 1,98% b17 3,43% 2,22% 1,32% 1,41%

b04 1,70% 3,21% 1,70% 3,21% b17_1 4,37% 0,91% 3,18% 0,51%

b05 1,21% 2,38% 1,21% 2,38% b18 5,00% 0,59% 4,86% 0,66%

b06 4,36% 2,23% 4,36% 2,23% b18_1 8,13% 1,51% 6,92% 3,85%

b07 5,21% 1,24% 5,21% 1,24% b19 11,77% 2,59% 11,16% 1,85%

b08 2,84% 3,21% 2,84% 3,21% b19_1 8,83% 1,10% 8,82% 1,10%

b09 7,42% 1,77% 7,42% 1,77% b20 8,04% 1,63% 3,33% 0,82%

b10 0,18% 0,87% 0,18% 0,87% b20_1 9,75% 1,22% 7,24% 1,15%

b11 0,20% 1,07% 0,20% 1,07% b21 7,03% 0,46% 5,86% 0,53%

b12 1,75% 3,27% 1,67% 3,28% b21_1 2,47% 1,28% 2,16% 0,87%

b13 2,35% 1,87% 2,35% 1,87% b22 6,34% 0,33% 5,07% 0,78%

b14 12,16% 1,05% 6,52% 0,85% b22_1 8,44% 2,35% 5,65% 1,69%

b14_1 10,15% 0,71% 3,77% 0,79% Average 5,13% 1,66% 3,96% 1,59%

Benchmark
SDD50 SDD500

Benchmark
SDD50 SDD500
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Table 4 Error and SD of error for PDLY versus STA (darker shaded
entries indicate higher values)

error SD error SD error SD

b01 0,33% 0,77% 0,33% 0,77% 0,33% 0,77%

b02 0,11% 0,82% 0,11% 0,82% 0,11% 0,82%

b03 4,05% 1,96% 4,05% 1,96% 4,05% 1,96%

b04 1,70% 3,21% 1,70% 3,21% 1,70% 3,21%

b05 1,21% 2,38% 1,21% 2,38% 1,21% 2,38%

b06 3,64% 1,84% 3,64% 1,84% 3,64% 1,84%

b07 2,20% 1,09% 2,20% 1,09% 2,20% 1,09%

b08 1,95% 3,46% 1,95% 3,46% 1,95% 3,46%

b09 7,50% 1,88% 7,50% 1,88% 7,50% 1,88%

b10 0,05% 0,93% 0,05% 0,93% 0,05% 0,93%

b11 0,20% 1,07% 0,20% 1,07% 0,20% 1,07%

b12 1,82% 3,27% 1,82% 3,27% 1,82% 3,27%

b13 2,35% 1,87% 2,35% 1,87% 2,35% 1,87%

b14 16,35% 1,54% 0,23% 0,43% 0,23% 0,43%

b14_1 13,35% 0,73% 0,22% 0,32% 0,22% 0,32%

b15 2,46% 1,70% 0,80% 0,79% 0,80% 0,79%

b15_1 3,25% 1,55% 0,57% 0,76% 0,57% 0,76%

b17 3,69% 2,42% 2,31% 1,43% 1,82% 1,25%

b17_1 4,99% 1,04% 1,89% 0,50% 1,89% 0,50%

b18 10,54% 1,13% 0,14% 0,32% 0,46% 0,63%

b18_1 7,96% 2,81% 4,02% 1,11% 4,03% 1,11%

b19 12,35% 2,07% 5,30% 2,74% 4,58% 3,33%

b19_1 8,82% 1,10% 8,76% 0,99% 8,70% 0,92%

b20 11,69% 0,77% 1,50% 0,51% 1,50% 0,51%

b20_1 12,36% 1,05% 0,43% 0,84% 0,43% 0,84%

b21 8,56% 0,84% 0,50% 0,40% 0,50% 0,40%

b21_1 4,45% 0,90% 0,33% 1,32% 0,33% 1,32%

b22 10,29% 1,24% 0,34% 0,32% 0,17% 0,61%

b22_1 10,90% 3,35% 12,16% 3,37% 0,41% 0,46%

Average 5,83% 1,68% 2,30% 1,40% 1,85% 1,34%

PDLY10000PDLY1000PDLY100
Benchmark

b19, b20 1 and b21), with the largest reduction in error
realized for b18 with an error reduction of 9.18% (from
15.64% down to 6.47%). For SDD, the reduction in error is
higher than 5% for 2 benchmarks (b14 and b14 1), with the
largest reduction in error realized for b14 1 with an error
reduction of 6.38% (from 10.15% down to 3.77%). In the
same way, for PDLY the reduction in error is higher than 5%
for 9 benchmarks (b14, b14 1, b18, b19, b20, b20 1, b21,
b22, b22 1), with the largest reduction in error realized for
b14 with an error reduction of 16.12% (from 16.35% down
to 0.23%). These specific benchmarks particularly benefit
from increasing the number of patterns due to the fact that
they represent some of the biggest circuits in the ISCAS’99
benchmark. However, it is important to note that b14 and
b14 1 are not the biggest circuits among the benchmarks,
which means that the design complexity of the circuits plays
an important role as well.

Therefore, depending on the time invested in testing
during production, the accuracy of performance estimation
using delay testing can be improved. As mentioned earlier,
for some small benchmarks such as b01 with only 30 cells,
the error remains unchanged with increasing number of
patterns since there are no more patterns that can be used to
increase the coverage.

Considering the average error (listed in the last row of
the tables), this figure shows that increasing the pattern
count for TF testing from 50 to 500 results in 2.50% error
improvement from 7.83% down to 5.33% for ISCAS’99
benchmarks. In the same way, increasing pattern count from

50 to 500 for SDD testing improves the average error by
up to 1.17%, from 5.13% down to 3.96%. Increasing PDLY
pattern count from 100 to 10000 causes 3.98% improvement
(from 5.83% down to 1.85%) for the average error of
PDLY testing for performance prediction. According to
these results, we can conclude that using TF testing for
performance estimation achieves an average inaccuracy
as low as 5.33% with a standard deviation of 1.80%,
while, using SDD testing results in 3.96% performance
estimation error with 1.59% standard deviation. PDLY
testing for performance estimation results in the most
accurate estimation error of only 1.85% with a standard
deviation of 1.34%.

5.3 Discussion and Evaluation

We can use the measured error and SDerror to get a
good estimation of the amount of performance margin
that needs to be added to each benchmark in order to
allow for a reliable application of adaptive voltage scaling.
This measured error means that in order to make sure
the performance estimation using delay testing is accurate
enough, a margin should be added on top of the estimated
performance, while SDerror represents the confidence in the
estimated error. Therefore, it is desirable to have error and
SDerror measurements that are as low as possible for each
benchmark since such low measurements allow us to have a
margin that is as low as possible.

Figure 8 illustrates the average SDerror plotted versus
the average error measured using each pattern set for all
the circuits in the ISCAS’99 benchmark. The size of each
plotted measurements circle in the figure reflects the size
of the test pattern set. The figure shows that for each type
of delay test, the larger the size of the used test pattern set,
the more predictable the performance estimation will be.
Therefore, depending on the time invested on testing during
production, the accuracy of performance estimation using
delay testing can be improved. However, also note that for
TF testing, moving from 200 to 500 patterns, the average
standard deviation remains unchanged, which means that
increasing pattern count up to a limit reduces uncertainty,
after which the uncertainty remains unchanged even though
the error is improved.

The figure also shows that PDLY patterns have the
capacity to achieve the lowest error with the lowest
uncertainty, followed by SDD patterns and finally TF
patterns. At the same time, the figure shows that if a
lower number of patterns is used than actually required by
the circuit complexity, the accuracy of the estimation can
degrade significantly. This can be seen, for example, for the
test set PDLY100, which has an accuracy significantly lower
than other PDLY test sets with higher number of patterns.
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6 Impact of Technology Scaling

With the continued reduction in feature sizes and continued
scaling of technology nodes, performance estimation
becomes increasingly more difficult to achieve using
PMBs. In this section, we present an analysis of the
impact of technology scaling on the effectiveness of delay
testing approaches. For this analysis, we perform elaborate
simulations using two technology node libraries: 65nm and
28nm. The simulations are performed for all the circuits in
the ISCAS’99 benchmark using all delay test approaches
(TF, SDD and PDLY) and with all test set sizes discussed in
this paper.

In order to illustrate the impact of technology scaling
on the various delay tests in this paper, Fig. 9 plots the
average SDerror against the average error measured for
65nm and 28nm technology nodes. These measurements
are made using each pattern set for all the circuits in the
ISCAS’99 benchmarks, and are represented as circles, the
size of which reflects the average size of the test pattern set
used for all benchmarks. The figure shows that the 65nm
technology node exhibits the same trends identified for the
28nm technology node (Fig. 8): for each type of delay test,
the larger the size of the used test pattern set, the more
predictable the performance estimation will be. Therefore,
depending on the time invested in testing during production,
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the accuracy of performance estimation using delay testing
can be improved.

First we consider the impact of migrating to lower tech-
nology nodes on the confidence in measured performance.
The figure shows that the average standard deviation is
always higher for 28nm as compared to 65nm. This means
that the smaller the technology node becomes the less confi-
dence there is in the performance measurement made by the
test patterns. This is inline with our expectation that more
advanced technology nodes add more process variations and
increase the uncertainty in measured circuit performance.

In terms of the measured performance error, the results
are slightly different. For TF patterns, SDD patterns and
very low coverage PDLY100 patterns, the figure shows
that for the 28nm node the error is higher than that for
65nm, which is inline with expectation. However, for higher
coverage PDLY1000 and PDLY10000, the figure shows that
these test patterns are actually able to measure performance
with lower error at 28nm as compared to 65nm, which is
unique as compared to TF and SDD. This can be attributed
to the fact that PDLY measure actual delay of the most
critical paths in the circuit, rather than an indicator to this
delay. This makes the average performance measurement
more accurate and reduces the error. Also note that for
the 65nm node, PDLY10000 does not have any accuracy
advantage as compared to PDLY1000. This indicates lower
variation in the 65nm node that does not require a high
number of test patterns to capture.

7 Conclusion

Process variations occurring in deep sub-micron technolo-
gies limit PMB effectiveness in silicon performance predic-
tion leading to unnecessary power and yield loss. Estimation
of overall application performance from one or few oscil-
lating paths is becoming more and more challenging in
nanoscale technologies where parameters such as intra-die
variation and interconnect capacitances are becoming pre-
dominant. All those effects have a negative impact in terms
of cost and time to market. Finally, the fact that functional
patterns are needed for the estimation process makes PMB
approaches not suitable for general logic.

This paper proposed a new approach that uses three
types of delay test patterns (TF, SDD, and PDLY) for
AVS characterization during IC production, which serves
as an alternative to the industry standard of using PMBs.
This approach represents a powerful example of value-
added testing, in which delay tests (already used during
production) can replace a long and expensive process
of PMB characterization, at low extra cost and can
reduce time to market dramatically. Moreover, since delay
test patterns target all gates and indirectly cover all

path-segments, they are better at representating performance
than PMBs. As functional patterns are not used anymore,
the testing approach could be a solution for general logic as
well, not only for CPU and GPU. According to simulation
results of the 29 ISCAS’99 benchmarks on 42 corners of
a 28 nm FD-SOI library, using TF testing for performance
estimation ends up with an inaccuracy of 5.33% and a
standard deviation of 1.80%; using SDD for performance
estimation ends up with an inaccuracy of 3.96% and a
standard deviation of 1.59%; using PDLY for performance
estimation results in an average error as low as 1.85%
and standard deviation of only 1.34%, which makes PDLY
the most accurate performance estimator for defining AVS
voltages during production. Since TF testing does not
necessarily target critical paths of the design, which might
be a limitation of the model, performance estimation using
TF showed less accuracy as compared to SDD and PDLY
testing. Since SDD and PDLY test patterns allow us to focus
on paths that are more critical, the results are very promising
to improve performance estimation accuracy at the cost of
extra patterns.

We also presented an analysis of the impact of technol-
ogy scaling on the effectiveness of delay testing approaches
using two technology nodes: 28nm and 65nm. The results
show that the 65nm technology node exhibits the same
trends identified for the 28nm technology node, namely that
PDLY is the most accurate performance estimation method,
while TF is the least accurate performance estimator. Based
on the results, we also conclude that for each type of delay
test, the larger the size of the used test pattern set, the more
predictable the performance estimation will be. Therefore,
depending on the time invested in testing during production,
the accuracy of performance estimation using delay testing
can be improved.
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