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Abstract

This paper discusses the regression testing in digital integrated circuit verification. The aim of the metric-driven verification
(MDV) and its role in modern verification methodology is presented. According to recognized limitations, it is proposed
to include the regression testing strategy in verification environment itself. The data collected from the verification metrics
can be used to adjust the testing procedures during the simulation. This approach allows for a dynamic management of
the regression testing structure and may result in a significant reduction of the simulation time. The presented solution
introduces a concept of the test segments. They may be started at arbitrary simulation point related to the DUT internal state
(checkpoint). Usage of such segments, in the controlled regression testing strategy, may prevent from repeating the stimuli
which is not contributing to the pre-defined verification metrics.
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1 Introduction

The aim of the functional verification, in the scope of the
digital IC design, is to examine the DUT (design under test)
using provided test stimuli. Its main goal is to ensure the
equivalence between the hardware model and its specifica-
tion. Nowadays, widely used are constrained random (CRV)
and metric-driven verification (MDV) techniques. The
directed testing, with fixed scenarios, has been considered
not effective for complex verification tasks [15].

The CRV principle assumes that each test stimulus
may contain some random elements. Such elements are
randomized, which means their values may be different at
each test execution. This randomization is often controlled
by constraints, which allow for more precise regulation of
the values that random elements may take. Running the
simulation of the same test scenario with a different seed
results in a different choice of such random items and thus
a different flow of the test.
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Due to test scenario randomization, it is required to
monitor whether the DUT was examined as expected.
Therefore, metrics play a major role in CRV. Observing
such metrics is necessary to make sure all expected stimuli
was executed, as there is always an uncertainty whether a
specific DUT operation has been tested during the actual
simulation. In MDV approach, metrics are pre-defined and
they constitute goals for the verification tasks. Nowadays,
the frequently used metrics are related to a coverage. Apart
from automatic coverage (such as code, toggle or FSM),
the functional coverage has an important role in modern
verification flow, as it is defined manually by engineers with
an emphasis on corner cases.

The regression testing is a process to fully verify the DUT
against a verification (or a test) plan [20]. Such plan consists
of items defining the verification scope. These items may be
related to the test scenario, DUT internal states or settings,
logic-level sequences or high-level operations flow. They
are mapped to the quantifiable metrics, so the verification
progress can be observed by reaching their satisfactory
values. Fulfilling the verification plan requirements is called
a verification closure. A regression testing suite consist of
a set of tests, which are supposed to examine the DUT
according to these requirements.

Although there are methods and good practices focus-
ing on verification environment implementation, the process
of building regression testing suites is, in general, exper-
imental. Moreover, due to the random nature of the test
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sequences, there is never a guarantee if all specified cover-
age goals will be achieved by the simulation. To improve the
likelihood of hitting desirable corner cases, randomized test
stimuli are often simulated repeatedly during the regression
testing. This approach is however not effective, as it results
in a significant extension of the total simulation time.

The main goal of work described in this paper was to
present methods of building regression testing suites with
a dynamic structure. That means, the regression testing
strategy becomes a part of the verification environment
itself, and its composition is adjusted using the metrics
tracked in real time. According to this approach, it is
possible to reach the planned verification goals faster than
in case of running straightforward regression suites.

As it is difficult to provide a reliable data relevant to
the verification of a complex design, a probabilistic model
of the regression testing has been introduced. This model
is used to estimate the verification effort of the MDV-
based environment in terms of simulation complexity. The
analysed data show advantages of the dynamic control over
the regression suite structure, in comparison to the standard
approach.

In this paper, the regression testing and verification effi-
ciency topics are described in Section 2. Various improve-
ment proposals are discussed in Section 3. The new
approach of the dynamic regression management is pre-
sented in Section 4. Probabilistic model of the regression
testing has been introduced in Section 5 and its evaluations
were shown. Finally, a simple example verification environ-
ment implementing the discussed methodology is described
in Section 6.

2 Regression Testing and Its Limitations

The methodical approach to the MDV-based verification
process [20] is presented in Fig. 1. The verification plan
contains elements organized in various sections. These
items are extracted from the specification (functional
requirements) or depend on a particular implementation
(e.g. performance or system-level features). There are a
number of test cases which intend to fulfil the verification
plan requirements. According to a CRV approach, they are
complex tests with highly randomized flow. As applying
stimuli to the DUT, according to CRV principles, is a
random process, there is often need for executing test
sequences repeatedly, to make sure the metrics-based corner
cases have been exposed. Therefore, it is often required
to run the simulation of the single test scenario several
times, in order to meet the coverage goals, as the same
scenario may examine different design features at each test
run. The coverage and other metrics are extracted from the
executed tests and accumulated. They correspond to the
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Fig. 1 Metric-driven verification flow

verification plan elements. When the testing is completed,
the verification report containing metrics data mapped to the
plan is generated.

The complete regression testing procedure consists of
the suite of tests which are executed repeatedly. Due to the
random nature of the test stimuli, we may only predict if
a specific coverage goal will be finally reached. Repeating
the test execution may increase the likelihood of satisfying
these metrics. In modern verification methodologies,
already collected metrics data is not usually reused in
the testing procedure, so each test execution with a
different randomization (seed value) may be considered as
independent. This leads to the conclusion that complete
CRV regression procedure can never assure the 100%
coverage goal. Moreover, when we increase the test run
count to hit corner cases, the already covered features are
examined repeatedly and may not contribute to the metrics
at all.

We may assume, that our verification goal is to satisfy
the coverage metrics at a specific level (e.g. 99%) with
an acceptable likelihood (e.g. 9 of 10 random regressions
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should achieve this value). There are always several ways of
achieving such results. Some tests can better contribute to
meeting specific coverage goals, so they may be preferred to
be executed repeatedly. On the other hand, other tests may
not improve the coverage at all — so they may be removed
from the suite.

We introduce the definition of a verification efficiency
as the ratio of achieved coverage level over a total cost
of execution of a full regression testing procedure. This
cost is a sum of the costs of each test in the suite. The
cost of the single test may be different, depending on its
scenario and randomization. It is convenient to measure the
cost of the test execution in terms of a real simulated time.
Due to this assumption, we assure independence from the
simulation platform performance and eventual simulation
parallelization. So, the goal to create an effective test suite
is to satisfy given coverage metrics, assuming the overall
simulation time is minimized. In the following part of the
paper we will be considering optimal test suites, which
mean regression structures that satisfy the coverage metrics
at a specific level with minimum execution cost.

The relation between a verification closure and a
regression testing is not straightforward. Fulfilling metrics
defined in a verification plan can be seen as validating
specific design features. However, a requirement for a
successful feature validation may be ambiguous. What
happens, when for example, a test is finished with and
without errors for different executions? What if we allow
for design failures in some cases, which may cause a test
error (e.g. if we need only to satisfy DUT operability with
given probability)? In general, all these assumptions must
be implemented in test scenarios, which complicates their
structure.

To sum up the above considerations, we can look at the
process of building regression testing suite as at the part of
the verification strategy. This step is not however mentioned
implicitly in modern verification methodologies. There is no
well-established approach to this problem and the test suite
construction process is rather experimental, often supported
by EDA tools. But overall, regression testing objectives are
separated from the verification environment architecture.

3 Improvements of the Regression Testing
Efficiency

The first step towards an improvement of the verification
efficiency is to make more use of the coverage metrics in
the testing procedure. It allows for an adjustment of the test
constraints in order to hit missing corner cases. This idea
is shown in Fig. 2 and is called a “coverage-directed test
generation”. It has been introduced in [7] and later extended
with use of evolutionary algorithms [12]. The main principle
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Fig.2 Coverage-directed test generation

of this concept is to observe the impact of the stimuli on
coverage. New test constraints can be generated using the
feedback from these coverage results. No information about
the DUT itself is processed during new tests generation.
This concept may be implemented off-line, which means
the data is analysed by an external application (outside
the testbench) the output of which is a set of new test
constraints to be applied. It is also possible to adjust the test
dynamically during the simulation [4, 14]. That involves the
actual test scenario modifications, i.e. implementation of the
constraints adaptation inside the testbench.

Another approach is to regulate constraints based just
on the metrics definition, without running any simulation.
It has been presented in [18] and in this paper, an EDA
simulator tool can handle this task. However, this method
may be useful only, when a direct relation between metrics
and constraints is known.

It has been noted in [8], that for each random test it
is possible to determine the probability of covering some
particular metrics. This important observation will be later
used in the probabilistic model of the regression testing
described in Section 5. According to this remark, if we know
this data, we can create an optimal regression suite in terms
of the verification efficiency, as this in an optimization issue
called the set cover problem. But the discussed probability
data is not directly known and needs to be measured. As
an extension of [8], it has been proposed to prioritize
some tests using their coverage contribution estimation [21].
Further improvements involve use of a machine learning
and clustering techniques, in order to select tests in the
suite with minimum overall execution cost [10, 17], which
corresponds to an increase of the verification efficiency.

Another important observation is that various test sce-
narios usually share some common sequences [13]. These
particular stimuli do not improve the coverage level, but
must be executed in several test simulation runs in order
to set up a DUT. It can be, for example, an initialization
procedure, connection configuration or register program-
ming. It has been shown, that actual test scenario can be
started from a retained state, in which a DUT is already set
up. This retained state is a simulation point at a specific
time moment called a checkpoint.
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In the most advanced recent work it has been pro-
posed to dynamically manipulate the test seed in order to
improve the efficiency of a single test run [16]. The scenario
allows for “rewinding” the test process and continuation of
the simulation with a new randomized variables. The cost
function, that is subject to be maximized by a seed manip-
ulation engine must be defined. It may be, for example, a
coverage level.

Modern EDA verification platforms provide tools for
managing the regression suites and analysing the metrics
data. For example, in Cadence vManager [11] there is a
feature of ranking the executed runs. Generated rankings
can be used to modify the regression suite by selecting
appropriate runs contributing to the coverage. However, this
useful method is manual and the whole process may need to
be reiterated when verification environment is modified.

To conclude the related work description, the following
trends can be observed for improvements of the regression
testing efficiency:

— dynamic or static test constraints adjustment based on
metrics data [4, 7, 12, 14, 18];

— avoiding execution of the stimuli that does not
contribute to the coverage [13, 16];

— selecting appropriate scenarios or seeds in order to
minimize the executed test count [10, 16, 17, 21].

4 Proposal of the MDV Methodology
with Regression Management

The key concept of the proposed methodology is a redefini-
tion of the regression testing process. The regression testing
flow becomes dynamic and its structure is being adjusted
depending on metrics data. The overall concept is shown in
Fig. 3. The idea of a test segment is introduced. It is, in prin-
ciple, an independent test scenario, but instead of containing
a full standalone test flow, it corresponds to a specific
verification subroutine, such as initialization, connection
set-up, data transmission, reset, reconfiguration etc.

It is assumed that segments can be started at a specific
point of the simulation (checkpoint), which means they do
not need to execute all stimuli required to reach their initial
state. Moreover, due to the random nature of the testing flow,
each execution of the test segment results in a generation of a
new checkpoint. Test segments can be executed repeatedly,
starting from various checkpoints. Metrics data is used to
dynamically adjust the overall testing structure.

The example verification suite execution flow with test
segments and checkpoints is presented in Fig. 4. Instead
of a list of tests, a new structure looks like tree, the
nodes of which correspond to simulation checkpoints. In
the presented example flow, segment called “INIT” is called
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Fig.3 Metric-driven verification with regression management

twice, what produces two new checkpoints “A1” and “A2”.
Afterwards, test segments “S1 ... S6” are being executed
randomly starting from different checkpoints and thus new
checkpoints “B1 ... BS, C1 ... C5” are created. This structure
is dynamic, so at each execution it may look slightly
different. Metrics data can be also used to adjust only a
particular test segment scenario, as discussed in [4, 14] (it
shown by the dotted line in Fig. 4), but this case will not be
analysed in this paper.

The proposed approach assumes that the verification
environment must implement functions related to the
regression management. So, instead of using external EDA
tools or preparing regression scripts manually, it is required
to include such functionality in the testbench itself.

The proposed methodology provides a general approach
that could be used to resolve problems with verifica-
tion efficiency, mentioned in Section 3. The methodology
requires to implement new verification components respon-
sible for the test regression suite management. However,
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Fig.4 Example structure of the segment-based regression suite

tools and infrastructure used nowadays for functional veri-
fication tasks, such as Universal Verification Methodology
(UVM) [19] and SystemVerilog hardware verification lan-
guage, do not provide a sufficient functionality to make
use of presented mechanisms. The limitations of current
methods have been observed [3] and there are various
approaches to mitigate them. Most of existing solutions is
based on external solvers or libraries [10, 12, 16, 17, 21].
There are also other proposals that make use of other ver-
ification platforms, such as enhanced simulators [18], or
testbenches developed using SystemC language [14]. The
recent solution is also the COCOTB platform implemented
in Python [6].

For the purpose of the presented work, functions that
enable checkpoints management have been implemented as
an extension of the COCOTB platform. It allows for imple-
mentation of verification environments according to the
presented methodology. The complete testbench based on
COCOTB can be written in Python. The platform provides
a VPI-based communication with an arbitrary HDL simu-
lator. Some base verification components, such as drivers
or monitors are already provided within the framework.
There are also extensions of the COCOTB which make use
of advanced verification mechanisms, such as functional
coverage [4] and constrained randomization [5].

For the presented methodology, the arbitrary point of the
simulation depends not only on the stimuli of a current
test segment, but also on its starting checkpoint. In order
to precisely reproduce a particular simulation event (e.g.
during debugging), this checkpoint must be strictly known.
For a traditional regression testing, the test case could be
reproduced using its run seed. In case of the dynamic
regression structure, the verification environment must

implement a functionality facilitating rerunning the same
simulation flow. The easiest way to achieve that is to store
checkpoints as the simulation output files and reuse them
when necessary.

Using dynamic regression suites managed by the test-
bench allow for major improvement of the verification effi-
ciency. First of all, simulation time may be reduced thanks
to checkpoints usage. That enables possibility of simulat-
ing common phases of the tests (or phases not improving
the coverage) with lower repetition count. Moreover, if
the particular stimulus requires to be repeated many times,
it is more efficient to restart it from the specific check-
point and therefore execute only the most suitable part of
the stimulus. Regression management can be also imple-
mented such way that it “learns” which segments should
be executed by observing their coverage contribution. This
automation allow for making the regression suites self-
organising and therefore capable of achieving coverage
goals much faster than during traditional testing.

5 Probabilistic Model of the MDV-Based
Regression Testing

This section describes mathematical simulations of the
MDV-based verification closure procedure of the regression
testing. Simulations were performed in order to estimate
the verification efficiency of this process. Two approaches
are described: a traditional one, where tests are executed
repeatedly and a new one, implemented according to the
new methodology assumptions.

The standard approach to the regression testing assumes
that test runs are executed independently. It will be called
a sequential regression testing. According to the new
proposed methodology, test segments can be started at
arbitrary, already existing checkpoints. This approach will
be called a tree regression testing.

The probabilistic model is based on numerical data
describing the relations between the cost of the stimulus and
the probability of covering the particular metrics.

5.1 Model Definitions

The fundamental assumption of the presented model is that
regression testing session is a random process and planned
verification items are random variables. The probability
of covering such particular element is known [8]. For the
simplification of the model, it is also assumed that metrics
cannot drive the stimuli of a standalone test (or segment), so
the probability of covering the particular metric is constant
during the whole session.

The main goal of the regression testing is to achieve
a given coverage level, which means satisfying metrics
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with given probability. Let’s define a set of N metrics
My...My_1 and assume that each probability of covering
the particular metric is independent of all others and their
weights are equal. This approach is good approximation
only when a single metric corresponds to some group of
coverage primitives, i.e. a subsection of the verification
plan. The probability of covering metrics is known and
will be given as a set defined by function of a multiple
arguments P(M;,..) and 0 < P(M;,..) < 1. In case of
sequential regression testing, it depends only on a test case
(P(M;, T})) and in case of tree regression testing, it depends
on a test segment and a starting checkpoint of this segment
(P(M;. S}, Ci)).

The function f(P(M;, ...)) defines the probability of
covering given metric during the full regression testing. The
final verification goal is to satisfy all defined metrics with
overall probability exceeding an assumed level, which is
given by Eq. 1.

1 X
G =D Lf (P(M;, )] (1)
i=0

Let’s define a total cost of a regression testing session
CoStrorqr as a sum of costs of all test runs. During the model
simulations, we are looking for a regression testing suite
structure of minimal cost, which corresponds to the highest
verification efficiency. This assumption can be described by
Eq. 2.

{ G = Gassumed Q)

COStt()tal = min

In a sequential regression testing, a test session is a list
of test scenarios that may be executed arbitrary number of
times. So, for a list of tests 7j...77,_ let’s define a function
describing a session structure, which associates a number of
repetitions with the particular test: R(7;) = n. Additionally,
also the (average) cost of a test run is known: Cost (T;). The
overall cost of the regression testing may be therefore given
by Egq. 3.

L
Costiorar = ) Cost (T)R(T}) 3)
i=0

The probability of covering a given metric during the
full regression testing can be calculated according to the
multiplication rule for independent events. If we also
consider test repetitions, the overall goal function is given
by Egq. 4.

N

1
G=NZ

i=0

R(Tj)

L
1—1[[1- P, )] 4)
j=0

For the tree regression testing let’s define a set of test
segments Sy...Sg—1 and checkpoints Cy...Cz_1. The check-
point Cp is a root of the tree — the starting point of the
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simulation. Test segments can be executed repeatedly and
start from different checkpoints. In case of representing a
tree regression testing structure, it is required to define a
two-argument function describing number of repetitions of
a segment in a specific checkpoint: U(S;, C;) = n. Addi-
tionally, this function must meet additional requirements.
First of all, in order to run a segment starting in a spe-
cific point, this point must be already created, which means
the simulation must reach this state beforehand. An emerg-
ing checkpoint depends on a segment and its starting point,
which means, each segment run creates a new checkpoint.
We will however introduce a simplification, assuming that
for each segment started in a particular point, only one new
checkpoint may be created.

Let’s introduce a parameter representing a regression
tree depth by ¢g. For ¢ = 1 all segments start from a
single checkpoint, so a tree structure corresponds to the
sequential regression testing, thus a function U(S;, C;) is
non-zero only for Cy. For ¢ = 2 segments may also start
at checkpoints emerged after running segments started in
Cp. It means, that for H segments started in a particular
checkpoint, there may be created maximum H + 1 new
checkpoints. In general, for arbitrary ¢, maximum number
of checkpoints Z is given by Eq. 5.

q
z=Y H (5)
i=1
The overall cost of the tree regression suite corresponds
to the similar function in sequential regression testing and is
given by Eq. 6.

V4
D UG, C)) 6)

H
Costroral = Z Cost(S;)
i=0 Jj=0

The probability of covering a given metric during the full
regression testing can also be calculated in a similar way,
what is represented by Eq. 7.

N H Z

G=% S y-TITT0 P, s col” 91 @)

i=0 j=0k=0
5.2 Simulation Methodology

In order to estimate the verification efficiency, it was
required to evaluate the cost of the full regression testing
procedure which reaches a specific overall coverage level.
To perform such simulations the following data is needed:

— set of tests (or segments) and their costs — Tp...77—1 and
Cost(T;) (or Sp...Sg—1 and Cost(S;)),

— the function defining the probability of covering all
metrics by the test — P(M;, T;); or by the segment in
the specific checkpoint — P(M;, S;, Cy),
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— target overall coverage level — G gs5umed -

The heuristic procedure has been implemented, the aim of
which was to find the regression suite structure (R(7;) or
U (S, C;)) with minimum Costzo1a1.-

In order to make a reliable comparison between the
sequential and the tree regression testing, it is required to
generate a consistent data for probability and cost functions.
When the regression tree depth ¢ = 1, the segments are in
principle independent tests, so Cost(T;) = Cost(S;) and
P(M;,T;) = P(M;, Sj, Co) as checkpoints other than Cy
do not exist. For ¢ > 1 it may be assumed that segments
are created the way that they are phases of the test from
sequential regression testing suite. For example, as shown in
Fig. 4, the set of consecutive segments [,,INIT”, ,,S2” started
in ,,A2” and ,,S4” started in ,,B5”] corresponds to such
test. Therefore the cost and probability functions should
follow the general assumption that the arbitrary complete
tree branch data is consistent with the same data for a single
sequential test.

5.3 Simulation Results

The example results comparing the sequential and the tree
structure for consistent costs and metrics data are shown
in Fig. 5. The graph shows the cost of the regression suite
(simulation time) for an assumed achieved overall coverage
level. The data is normalized such way that the lowest cost
of the regression suite is equal to 1. For ¢ = 1 the results
correspond to the sequential test suite, so no segments and
checkpoints are used at all.

It can be seen that the overall cost of the regression
suite is lower when the tree structure is used for all overall
coverage levels above 80%. Moreover, the cost increase
is lower for high coverage level targets. These results are
intuitively expected, as in the tree structure the stimuli
responsible for hitting corner cases do not require to rerun
the preceding phases (e.g. initialization).

70 1

[ (o))
o o
L L

N
o
|

w
o
!

Overall cost (Cost_total)

80% 90% 95% 97% 99% 99,5% 99,7% 99,9%
Overall coverage level (G)

Fig.5 Cost of the regression suite in function of the overall coverage

Similar results were achieved for different sets of
generated data. It has been also observed, that a higher
segmentation (higher values of ¢) can improve the overall
cost even further. This is also an expected observation, as
more checkpoints means that simulation time is reduced
due to possibility of repeating segments that are shorter.
However, in a real environment, the structure of the tree
will not be balanced and is unlikely to be optimal due to a
random nature of the test stimuli, so the expected simulation
time reduction is smaller.

6 Example of the Verification Environment
Implementation

In order to demonstrate a working example of the
discussed MDV methodology with regression management,
the comprehensive verification environment has been
developed for the APBI2C controller [1]. This controller is a
simple example of a multi-protocol DUT and contains such
typical building blocks as configuration registers, FIFO and
bus-specific logic.

The simplicity of the chosen deign-under-verification
may be considered as not sufficient for verification
methodology assessment. On the other hand, implementing
an environment for a complex IP block is quite a challenge
and its effectiveness may be impacted by many other
aspects, such as implementation flow, poor planning and
even team-working quality. In other words, even following
the given methodology, the end result may be different. For
simple environments this problem is expected to be reduced.

Despite the design and its test environment simplicity,
the implemented testbench structure contains all typical
verification elements, such as monitors, drivers, simple
scorebaording and coverage. The structure of the verified
module together with the verification environment is shown
in Fig. 6. The testbnech was implemented in Python
using the COCOTB platform and is available as an open
source [2].

The verification environment consists of:

— APB protocol agent, responsible for data transfer via
APB bus (register configuration and FIFO operations),

—  I2C protocol agent, responsible for data transfer via I>C
bus (which corresponds to an external I2C device),

— objects defining I’C transfers (data and protocol-
specific settings),

— test segments: read I>C transmission, write I°C
transmission and APB-only register operations,

— main test scenario which is responsible for the test data
operation and segments execution, so in principle the
regression management,

— functional coverage.
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Fig.6 Schematic diagram of the APBI2C controller and testbench

The functional coverage implementation contains items
related to a protocol-specific logic and various I>C transfer
properties. It can be divided into 3 main sections: APB
protocol coverage, 1>C protocol coverage and end-to-end
data transfer settings. In particular, the cross coverage point
containing 64 bins has been defined the aim of which was to
monitor executed end-to-end transmission. The regression
completion requirement is to satisfy a given coverage level
which includes the defined elements from all sections.

The main test generates random data transfer settings
and executes test segments. There is a constraint function
implemented which prevents from generating already tested
and covered settings. In principle, this feature drives the
segments execution and therefore applies the regression
management, so the main test implements the verification
flow shown in Fig. 3. If this constraint is disabled, all
segments are executed independently, so they begin at the
starting point of the simulation (no checkpoints are used). It

100% COVERAGE?

| PICK RANDOM CHECKPOINT

v

| RUN TEST SEGMENT |

Y

4' CREATE NEW CHECKPOINT

Fig.7 Segments execution algorithm
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is therefore possible to make a comparison of two regression
strategies: the sequential one with independent tests and
the default one, using a tree structure. The segments
execution algorithm is shown in Fig. 7. A new checkpoint is
created when a test segment finished successfully. For more
implementation details of the presented environment please
refer to the open source project [2].

The cost of the regression (total simulation time) in
function of the overall coverage level is shown in Fig. 8.
Several runs of the regression have been executed with a
sequential (blue) and a tree regression suite structure (red).
These results match pretty well the data provided by the
model, presented in Fig. 5.

It can be seen that the tree structure efficiency advantages
arise when target coverage level is going up to 100%,
which is consistent with the probabilistic model data. For
the 99.9% target coverage the overall regression simulation
time was approximately 3 times shorter compared to a
traditional, sequential regression testing structure.

7 Methodology Evaluation and Conclusion

In this paper a new verification methodology with
regression management has been presented. It has been
shown that building the regression suite based on real-
time metrics can significantly reduce the overall cost of the
simulation and therefore improve the overall efficiency of
this process. Moreover, this approach gives better results for
high overall coverage targets, what is in particular important
for hitting functional corner cases.

The discussed proposal takes advantage of the idea of
a test segmentation, which is dividing test scenarios into
smaller parts and starting them from stored states of the
simulation (checkpoints). When regression suite is build this
way, its structure resembles a tree, which is shown in Fig. 4.
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The regression testing procedure according to CRV
principles is a random process, the goal of which is to
satisfy given coverage metrics. This process has been
described by a mathematical model and simulations of the
coverage closure have been performed. They showed the
advantage of the tree structure regression testing over the
traditional approach, where tests are executed repeatedly
and independently on each other.

The currently used verification techniques (System Ver-
ilog/lUVM and commercial simulators) are not intended
to design a verification environment that includes the
regression management procedure. The proposed method-
ology principles have been implemented in Python using
the COCOTB platform and have been proven to work
for advanced functional verification tasks. The provided
verification environment for APBI2C controller uses this
methodology and it has been shown, that (for a given target
coverage level) the simulation time is reduced compared to
a traditional regression testing strategy.

In the mathematical model described in Section 5 it
has been shown that splitting tests into smaller segments
(and using checkpoints) enables building regression testing
suites with significantly reduced simulation time. It
is possible as simulation scope may be changed to
emphasize corner cases. The described model is purely
theoretical, so provided data will not be valid for real
environments, as much more factors may impact their
performance and efficiency. However, an important relation
between segmentation factor and the simulation time
have been shown as well as rapidly rising regression
testing complexity for very high coverage goals (and its
possible reduction). The data produced by the mathematical
model matches real environment performance analysis, as
described in Section 6.

Using checkpoints requires to store the DUT state in
the memory. This is an additional complexity that will
impact the testbench performance, as this data must be
saved and read during the simulation. It may be however
noticed that this issue will depend on simulator engine and is
methodology-independent. Even in the worst case, dumping
all DUT registers data and restoring it is expected to be very
quick compared to test stimulus complexity.

In general, it is difficult to clearly evaluate the described
methodology and confirm that it produces better results
in any case. There are many factors that may impact
the verification environment implementation and therefore
its performance. Also, the idea of segmentation may not
be fully applicable for all verification tasks. The goal
of this paper was however to show a general rule for
building verification environments. The main concept of
the proposed methodology is making use of the coverage
metrics in real time and building regression suites according
to this data. The verification complexity is therefore reduced

as the simulation effort is better adjusted for meeting the
pre-defined requirements.

In the presented methodology it is assumed that the
regression management functionality is implemented inside
the testbench itself. There are two verification platform
requirements that need to be satisfied in order to make
use of this feature. The first one is an access to the
coverage metrics data in real time. This is roughly possible
in SystemVerilog, but limited to a single test scope. The
second requirement is an access to checkpoints from the
testbench code, so the functionality of saving and restoring
a DUT state. The Verilog Programming Interface [9]
provides dedicated functions for these operations, but not all
commercial simulators support it. If these two requirements
are satisfied, the new methodology can be implemented
using a different platform than presented in this paper.
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