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Abstract Jitter is roughly defined as the timing shaking of
the square waveforms output from phase locked loops. It
consists of two parts: deterministic jitter and random jitter.
Separating and identifying each jitter component are
important in understanding the root cause of jitter and
further in improving on phase locked loop design. A
popular method for jitter separation is so-called Tail-fitting
Algorithm. A better method than Tail-fitting Algorithm for
separating deterministic jitter (DJ) and random jitter (RJ)
from total jitter (TJ) is presented in this Letter. The new
method targets directly on the original total jitter series,
instead of the histogram. Histogram is dependent on bin
number and is uncertain, but is inappropriately selected as the
starting point of Tail-Fitting algorithm. Our method is based
on Gaussian mixture model (GMM). The mathematical
relationship between this model and the quantities of DJ and
RJ is established. The concept of kurtosis is used to determine
the order of GMM, thereby rendering our method fully
automatic, highly efficient. Our method circumvents the most
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cumbersome difficulty in tail identification of Tail-Fitting
Algorithm, because tails and peaks of the histogram, even
after being filtered, are fundamentally ambiguously defined,
both theoretically and practically. Our method also bypasses
the problem of initial value selection.
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1 Introduction

Jitter is roughly defined as the timing shaking of the square
waveforms output from phase locked loops; or, is generally
defined as the timing-deviation with regard to its ideal
position, which in this sense is strictly called instantaneous
jitter. In addition to instantaneous jitter, there are several
other types of jitter, such as period jitter, cycle-to-cycle
jitter [5]. This paper considers period jitters (abbreviated as
jitters in the following) , which are simply periods from all
cycles. But the methodology of jitter separation is the same
for other kinds of jitter.

In practice, our measurement is total jitter (TJ). Statistically,
total jitter can be classified into two parts: random jitter (RJ)
and deterministic jitter (DJ). Random jitter is due to inherent
random noise such as thermal noise, shot noise, random
modulation, etc. Deterministic jitter changes in a deterministic
fashion, as contrary to random jitter. It may come from
reflections, cross-talk, electromagnetic interference, system-
atical modulation, etc. Separating and identifying each jitter
component is important in understanding the root cause of
jitter and further in improving on phase locked loop design

[5].
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2 Brief Review of Tail-fitting Algorithm

One popular method of jitter separation used by Wavecrest
Company is called Tail-Fitting Algorithm [5]. It has been
written to the relevant national standard [6]. The method
consists of two steps: tail identification followed by tail-
fitting. That is, to formulate the histogram of the jitter series
first, and then to identify the left and right tails of the
histogram, and finally to find two Gaussian curves to fit
these two tails respectively. After the two Gaussian curves
are found, the quantities of random jitter and deterministic
jitter are given by:

{RJ“H;M
DJ = uy — iy

Here, 0; and o0,, are the standard deviation of left and
right Gaussian curves, and p; and i, are the mean of left
and right Gaussian curves, respectively.

There are several serious drawbacks of the algorithm.
First of all, the derivation of the above two formula was not
established in [5] whatsoever. Further, fitting the histogram
using just two curves is theoretically illegitimate. Generally,
we need more than two curves to fit the overall histogram
(refer to Appendix). Practically, it is very difficult to
identify the correct portions for the left and right tails —
the left and right tails were not mathematically defined
whatsoever. The analysis in [5] is based on two peaks for the
left and right parts of the histogram. The peaks are not
clearly defined either, because histogram is not monotonous,
but quite fluctuating. Even after the histogram passes
through some specially designed filter, which is achieved
by a sophisticated artificial intelligence algorithm in [5],
there is still no guarantee that the two peaks will be
prominently identifiable, particularly for small jitter samples.
It is even more difficult to make this step fully automatic, i.e,
to use as less user intervention or visual inspection as
possible. The difficulty of accurately identifying and
distinguishing two tails becomes more serious when DJ
portion is very small and thus the two “tails” of the
histogram approach very closely to each other.

Another drawback which evaded the attention of [5] is
that histogram is dependent on bin-number used in the
generation of the histogram. Using histogram as starting
point in this problem unnecessarily adds another variable
(more ambiguity) to original noisy jitter. Clearly, we need
try as much as possible to avoid using a variable histogram
as our starting point for jitter separation.

The second step of tail fitting is relatively much easier:
that is, to use a Gaussian curve to fit the tail. It is just a
nonlinear optimization problem. The curve fitting algorithm
used in [5] is x? fitting. For nonlinear optimization
problem, however, selection of initial parameters needs

@ Springer

attention. If initial values are not appropriate, it may either
never converge to the globally optimal point or take a long
time to converge. X fitting in [5] needs first estimate the
initial parameters so that “the initial fitting parameters are
close to the final converging values” to avoid those
problems. This circuitous reasoning is itself flawed because
we don’t know the final converging values. Therefore
initial parameter selection is another annoying problem in
tail-fitting algorithm.

3 Kurtosis—based GMM Approach
3.1 Theoretical Result

The main idea of our method differs radically from that of
previous method. The revolutionary change is to turn the
wheel around —-change starting point of jitter separation
from histogram to original jitter waveform. Instead of
fitting histogram curve directly, we change consideration to
the original jitter waveform, from which the histogram is
generated. Why? We assume the input jitter series are
independent realizations of one random variable. If we can
estimate the probability density function (pdf) of this
random variable, we then equivalently fit the histogram of
this random variable. Our main result is stated in the
following theorem, the derivation of which is in the
Appendix at the end of this Letter.

Theorem Consider the situation that a deterministic jitter
with unknown shape is immerged in random jitter, the
distribution of which is Gaussian:

1 2

Ppy(x) = e 2 (1)

2no?

The general expression for Pr/(x) is a then a Gaussian
Mixture Model (GMM):

P :Mb 1 7WW2:Mb- j; ik, ok
m(x) =3 e 207 > bip(xi, 0

J=1

And DJ and RJ are calculated as follows (suppose
Pr<p2<...<ppp):

{U:%%
DJ = iy — -

3)

RJ is characterized by standard deviation o. In general
setting, however, the o values for the most left and most
right components are not the same. Therefore the standard
deviation (or RMS) value o of RJ is taken as the average of
these two. DJ is quantified by the peak to peak value, which
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is calculated by the distance between two peaks of far left
and far right Gaussian components. Based on above
theorem, the jitter separation problem becomes parameter
estimation of the above model (2).

3.2 GMM and Maximum Likelihood Estimation (MLE)

A set of optimal parameters is then sought usually under the
criterion of maximum likelihood estimation (MLE), that is,
to find the model parameters, which maximize the
likelihood of the input data at hand, which are assumed to
be a set of samples drawn independently and observing
unknown density (2). For a waveform x=[ x; x, ... xy] of
length N, the GMM likelihood can be written as

Pl = [ [ p(wla)

where A is the collection of all the unknown parameters in
(2). That is, A{(b, p;,07) (i=1,2, ..., M )}.

However, this expression is a nonlinear function of the
parameter A and direct maximization is not possible.
Fortunately, these parameters (b;, 11;,0;) (i=1,2,...,M) can be
estimated iteratively using EM (Expectation Maximization)
algorithm [4], given model number M.

3.3 EM Algorithm

The basic idea of the EM algorithm is, beginning with an
initial model parameter set A, to estimate a new model
parameter set A;, such that p(x|A;)>p(x|ho), that is, to
monotonically increase the likelihood in each step. The new
model parameter set then becomes initial model parameter set
until some convergence criterion is reached. For a general
description of EM algorithm, refer to [9]. For our GMM
model, the algorithm simplifies to a set of iterative formula for
obtaining parameters A, from initial parameters Aq [4, 7]:

N
bt =% ;p"(/le),

N
Zp/‘(j\xi)x,
i=1

,uj]‘ﬁL] =N
> G
i=1
N
K(ilv\ (v k1) 2
2k+1) ;p () (i45"")
oj == -
>l
i=1
where

() = bt )

> b (ximisd o, )
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And p(xljspf, /) is the Gaussian distribution with
argument x; and parameterized by mean ,ujk and variance
ajk’, i.e., the individual component in (2).

There are some drawbacks of EM algorithm. The
algorithm requires an initialization of the unknown param-
eter vector A near the solution, it may get stuck in a local
maximum point; and it assumes that the total number of
mixing kernels is known in advance. The following
kurtosis-based EM algorithm effectively solves all these
limitations.

3.4 Kurtosis-based EM Algorithm for Automatic Model
Order Determination

Determining the number of components M in a mixture is
thus an important, but difficult, problem.

To deal with this problem, we borrow the method in [7]
and call it kurtosis —based EM algorithm. The value of the
likelihood alone does not provide much information
regarding the effectiveness of the fit [7]. A new measure
for Gaussian mixtures, called fotal kurtosis, is defined. This
measure provides a criterion of how well the estimated
Gaussian mixture fits the real data. The smaller the total
kurtosis is, the better the fit is. A lower bound for the total
kurtosis is zero.

The new algorithm for Gaussian mixture density
estimation starts with a small number of kernels (M=1, in
our application), it then performs EM update in order to
maximize the likelihood of the data, while at the same time
monitors the value of total kurtosis. Based on the
progressive change of the total kurtosis, the algorithm
performs kernel splitting and increases the number of
kernels in the mixture. This splitting aims at making the
absolute value of the total kurtosis as small as possible [7].
In short, the algorithm iteratively updates both the number
of unknown kernels and the unknown parameters of these
kernels from smaller number of kernels by monitoring both
the likelihood and the total kurtosis.

Another great advantage of this kurtosis-based EM
algorithm is that it nicely bypasses the problem of initial
parameter estimation in [5]. Since the algorithm always
starts with one mixture component, the selection of mixture
parameters greatly simplifies. In the following iterations,
the initial parameters are automatically updated from
previous results [7]. It always converges to the globally
optimal point (within reasonable accuracy tolerance).

4 Results

In order to test the validity of our algorithm, we applied it
to several sets of signals which were all collected by HP
scope. The signals were all FM (frequency modulation)

@ Springer



340

J Electron Test (2009) 25:337-342

signals with carrier frequency of f.=100KHz; modulating
frequency f,=1KHz; and the sampling rate f;=10 MHz.
What change were the frequency (equivalently period)
deviation from the modulating signal and thus the period
jitter of the modulated signal.

Notice, there are two criteria which are to be observed
and examined in this specially designed and controlled
experiment. The first one is about the deterministic jitter,
which ought to approximate the maximal deviation in the
period of modulating signal. The second one is about
random jitter. Because random jitter is one kind of
characterization of one particular system, its value should
be consistent regardless of the frequency deviations from
the modulating signals; by corollary and to be more
precisely , its value should approximate the random jitter
without any modulating signal present.

To achieve the goal, we first collected results of RJ
values from the above signal (with the above f. anf f;
setting) without any modulation. Because there was no
modulation, the jitter was completely due to random jitter
and we used single Gaussian curve to fit the histogram of
the period jitter. The standard deviation of the Gaussian
curve gave random jitter RJ=4.78 ns for this ideally pure
sine wave. The result is illustrated in Fig. 1.

Next, we studied FM100K 1K 05K 10M signal. This
notation means that f.=100KHz, f,,=1KHz, maximal
frequency deviation (single side) A/=0.5KHz, fs=10 MHz.
Therefore, f1,;n=99.5KHz, f;,.x=100.5KHz; periods 7,,.,.=

Fig. 1 Determination of RJ

from a sine wave signal without 1.003

10050ns, T,,;,,=9950ns, AT=100ns. Relative error for DJ
was REDJ=(100=94.3)/100=5.7%; relative error for RJ was
RERJ=(5.19-4.78)/4.78=8.6%. The final result for GMM
fitting is shown in Fig. 2.

Similarly, keeping all other parameters the same, we
studied three other cases (changed the frequency deviation
to 0.8KHz, 1KHz, and 2KHz respectively) and summarized
all results in Table 1. From Table 1, we conclude this
algorithm is very productive, accurate to practically
acceptable tolerance (the maximal relative error is within
10%). As far as speed is concerned, it takes about an
average of 5 minutes to finish the separation calculation.

5 Conclusion

A better method than Tail-fitting Algorithm for deterministic
jitter and random jitter separation based on Gaussian mixture
model is developed in this paper. The method is productive
both in theory and in practice. Theoretically, the mathemat-
ical foundation on the relationship between this model and
the quantities of DJ and RJ is rigorously established. From
this derivation, we further conclude that the method in this
paper can be easily extended to deal with a more general
problem. That is, to estimate the amplitude of an unknown
deterministic signal immerged in Gaussian noise.
Practically, our algorithm displays multifold benefits
compared with Tail-Fitting Algorithm in [5]. It does not use
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Fig. 2 Determination of DJ
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the raw histogram, which depends on bin number. Using
histogram as starting point in this problem unnecessarily
adds another variable (more ambiguity) to original noisy
jitter. It operates directly on the original jitter series and is
therefore much more tractable and stable than Tail-Fitting
Algorithm in [5], but the net effect is still fitting the overall
histogram by multi-Gaussian curves. It does not distinguish
the vague tails, which is most cumbersome in [5]. Our
algorithm nicely bypasses the problem of initial parameter
estimation in [5]. It always converges to the globally
optimal point (within reasonable accuracy tolerance). It
uses far less jitter samples for the jitter separation
calculation: the average jitter length used in our algorithm
is about 5,000, while the Tail-Fitting Algorithm in [5] uses
an average jitter length of 50,000. This is a big reduction
and therefore our algorithm is much faster.

Our algorithm needs appropriate selection of a set of
parameters, particularly one parameter controlling the

10.08
-3
x 10

10.06

10.04
Time=272.301 M=6 lterations=70 Unit: ms; DJ=94.3409 ns; RJ=5.1862 ns

convergence of the likelihood. The selection fashion is like
tuning the parameters of a wide band antenna designed to
receive signals with a wide range of frequencies. Howev-
er, this is not difficult: the values fall within some
reasonable region and can be set by experiment in the
lab beforehand. The good news is that, when that
parameter changes, the accuracy is still ensured, which is
most important, although the number of kernels (which
dictates speed) differs.

Our work was performed from fall 2001 to summer
2002. Because of some reasons, we did not consider
publishing our work until recently. In order to check the
timeliness of our work, we did a recent (up to 2008)
literature survey. We searched extensively in some author-
itative journals related to this area, such as, the Journal of
Electronic Testing, Measurement, IEEE Journal of Solid-
State Circuits, IEEE Transactions. on Circuits and Systems
(I and II), IEEE Trans. on Instrumentation and Measure-

Table 1 Summary of DJ and RJ

values and their relative errors Af (KHz) AT (ns) DJ (ns) RelErrDJ RJ (ns) RelErrRJ
from 5 experiments

0 N/A N/A N/A 4.78 N/A

5 100 94.3 5.7% 5.19 8.6%

.8 160 155.1 3.1% 491 2.7%

1 200 192.9 3.6% 5.03 5.2%

2 400 391.7 2.1% 4.86 1.7%
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ment, etc. We did not find any specific algorithms to
overcome the shortcomings of Tail-fitting Algorithm.
However, indeed, we found five conference papers [1-3,
8, 10] which proposed new jitter decomposition techniques.
Unfortunately, they did not point out the drawbacks of
Tail-fitting Algorithm either. So we are confident that our
work is still timely and novel at least in the aspect this
Letter’s title claims. Limited by the page length of this
short Letter, a comprehensive comparison of our algorithm
with those in [1-3, 8, 10] is beyond scope of this Letter and
may be done in the future.

In other words, we confine our discussion in this Letter
to the specific comparison of our algorithm with Tail-fitting
Algorithm, nothing else.

Appendix—derivation of the total Jitter’s pdf
from those of DJ and RJ

It is a fact that an unknown pdf of a random variable can be
approximated by a weighted finite sum of Gaussian pdfs
with different means and covariance matrices. While
representing an unknown pdf as a GMM is nothing new,
how the quantities of DJ and RJ are linked with the most
and right Gaussian kernels, that is, how Eq. 3 come from, is
rigorously established in this Appendix, which is one
contribution of this paper.

First of all, since total jitter TJ is the sum of random jitter
(RJ) and deterministic jitter (DJ),

M
Ppy(x) =Y biS(x—p) py < pp < ... < py
i=1

The pdf of TJ is the convolution of those of DJ and RJ.
We regard DJ as realizations of a random variable, which is
BOUNDED. The pdf of DJ can therefore be approximated
as a sum of discrete probability function, that is, a series of
d functions:
where b;’s satisfy the constraint that

M
> bi=1

i=1

It is expected that the more number of kernels M is used,
the more accurate this approximation and the better
(par—147) approximates the peak-peak value of the unknown
deterministic signal. In practice, only finite number of M is
used.

@ Springer

The pdf of RJ is Gaussian as expressed in (1). Therefore,

Pyl =3 b
71(x) = ; € 2
’ i=1

In general, o may not be the same at different locations.
Therefore, we generalize the form above to that in (2) as the
pdf of the total jitter, and it is exactly so-called GMM.

This Appendix lays more general and more solid
foundation for our method, and the related work in this
field, e.g., it can substitute relevant portion in [6].

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which per-
mits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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