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Abstract

Formulating the classic Allingham and Sandmo [1972] tax compliance problem under Rank Dependent Expected
Utility (RDEU) provides a simple explanation for the “excess” level of full compliance observed in empirical
studies, which standard Expected Utility (EU) theory is unable to explain. RDEU provides a compelling answer to
this puzzle, without the need for the moral sentiments or stigma arguments that have recently been advanced in the
literature. Formally, we show that the threshold audit probability or penalty rate at which full compliance becomes
optimal for the decisionmaker are significantly lower under RDEU axiomatics than in the EU case, and that the
optimal level of underreporting is lower under RDEU. Numerical simulations using various parameterizations of
the probability weighting function illustrate the large quantitative differences between the two models, while a
simulation of underreporting rates in the US over the past 50 years shows how RDEU can go some way towards
explaining the tax-compliance puzzle.
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1. Introduction

Since the seminal article by Allingham and Sandmo [1972], most authors dealing with
the issue of tax compliance have had great difficulty in making their theoretical models
square with empirical or experimental results. The most glaring example is the tendency of
many individuals to engage in no tax evasion at all, whereas the Allingham and Sandmo
[1972] model predicts, when the expected rate of return to each dollar of taxes evaded is
strictly positive (which is the case in the US, for example), that all risk-averse taxpayers
will underreport their income. Despite the “over-compliance” of individuals, at least with
respect to what is predicted by an expected utility (EU) model, tax-evasion is an enormous
problem: in the US alone, tax-evasion is estimated by the Internal Revenue Service (IRS)
to amount to $300 billion per year.

A first common reaction to the over-compliance puzzle has been to “improve” upon
the initial model. Yitzhaki’s [1974] contribution was to assume that the penalty for non-
compliance is proportional to the amount of taxes evaded, while Pencavel [1979]
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endogenized income by jointly considering labor supply along with tax compliance. Koskela
[1983] considered the nature of penalty schemes (charged on undeclared income or on the
amount of tax evaded). Pestieau and Possen [1991], for their part, included the choice of
activity by the consumer, where each sector varies in the opportunities available for evasion.
Engel and Hines [1999] focused upon the repeated nature of the problem and explored its
dynamics. Finally Graetz, Reinganum, and Wilde [1986], and Beck and Jung [1989] in-
troduced strategic concerns: the former used game-theoretic tools to model the interaction
between the taxpayer and the tax authorities; the latter endogenized the audit probability
within a principal-agent framework, in which the audit probability becomes a function of
the amount of income declared.

While these developments have been both interesting and important, most observers
agree that they still do not allow one to reconcile theory with observed empirics (see e.g.
the survey by Andreoni, Erard, and Feinstein [1998]). As a result, a number of authors have
introduced new constraints, derived from psychological arguments, in an effort to explain
the “excessive” level of observed compliance. Spicer and Lundstedt [1976], for example,
considered the degree of satisfaction felt by the taxpayer with respect to his government.
Erard and Feinstein [1994] included notions of guilt and shame in the taxpayer’s objective
function. While the heuristic appeal of these arguments is undeniable, they remain, however,
difficult to justify on purely economic grounds.

A second approach has been to raise doubts concerning the expected utility framework ini-
tially adopted by Allingham and Sandmo [1972]. Slemrod [1992], for example, summarizes
a large corpus of empirical and experimental literature that finds a subjective probability of
audit that is significantly different from (and larger than) the observed objective probability.
Our paper picks up on this idea as its point of departure, and takes aim at the fundamental
building-block of the Allingham and Sandmo [1972] approach: the EU model of von Neu-
mann and Morgenstern. As such, we formalize the Allingham and Sandmo [1972] problem
under alternative axiomatics, using the Rank-Dependent Expected Utility (RDEU) model.

The RDEU approach was initially developed by Quiggin [1982] in order to address
a number of important weaknesses that had become apparent in the EU approach. Under
RDEU, the linearity in probabilities of the EU model is replaced by a probability weighting or
perception function (see Chateauneuf, Cohen, and Meilijson [2005]) which assigns weights
to the probabilities of the different states of nature, where the weights are themselves
functions of the rank of the given state of nature, in terms of the level of satisfaction that the
individual derives.1 Bernasconi [1998] analyzes tax compliance using the notion of first-
order risk-aversion, introduced into the literature by Segal and Spivak [1990]. In a two states
of nature example (which corresponds exactly to the Allingham and Sandmo tax compliance
problem) the particularity of Segal and Spivak’s approach is that an individual’s indifference
curves possess a kink along the 45 degree line (which corresponds to perfect insurance).
Formally, individual preferences admit points of non-differentiability, where risk-aversion
is of order one. This property arises naturally under RDEU axiomatics. Indeed, Bernasconi
[1998] illustrates his results using a numerical simulation based on a RDEU model in which
the parameterization of the probability perception function is borrowed from the empirical
work of Camerer and Ho [1994]. Our paper can thus be seen as a natural extension to
Bernasconi’s work, in which RDEU axiomatics are posed both explicitly and right from the
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start, and in which a broader set of parameterizations of the probability weighting function
is tested in numerical simulations.

The paper is organized as follows. In part 2 we introduce the Allingham and Sandmo
problem in terms of RDEU axiomatics, and present our main theoretical result which shows
that full compliance is “easier” to obtain under RDEU than under EU. Formally speaking,
this is expressed by the threshold audit probability at which full compliance becomes optimal
for the consumer being lower under RDEU than in the EU case. It follows, under certain
conditions, that the level of underreporting will be lower under RDEU than under EU. In
part 3, we perform numerical simulations using the parameterizations of the probability
weighting function proposed by Camerer and Ho [1994], Tversky and Fox [1995] and
Prelec [1998], and examine: (i) the minimal audit probability and penalty rate needed to
ensure full compliance, and (ii) the compliance rate (this is done for various specifications
of the utility function as well). For realistic parameter values drawn from US evidence,
the underreporting rates predicted by our theoretical models are then compared with the
observed levels of underreporting, over the past 50 years. These simulations show that
RDEU, and the pessimistic attitudes it can account for, can provide part of the explanation
for the tax-compliance puzzle.

2. Allingham and Sandmo [1972] under RDEU

2.1. The model

In the Yitzhaki’s [1974] version of the standard Allingham and Sandmo [1972] problem,
the penalty faced by the taxpayer in the case of an audit is proportional to the amount of tax
avoided, when the taxpayer engages in a positive amount of avoidance. The lottery faced
by the taxpayer is given by P(z) = (p, y − θ t z; 1 − p, y + t z), where p is the probability
of being audited, y is the taxpayer’s after tax income, t is the tax rate, θ is the penalty rate
if fraud is detected, and z is the amount of underreporting by the taxpayer.2

The taxpayer’s problem under RDEU axiomatics is then given by

max
z≥0

RDEU[P(z)] = max
z≥0

ϕ(1 − p)u(y + t z) + (1 − ϕ(1 − p))u(y − θ t z), (1)

where u : R −→ R, defined up to a monotone increasing transformation, plays the role of
a utility function under certainty, and ϕ : [0, 1] −→ [0, 1], which satisfies the restrictions
ϕ (0) = 0 andϕ (1) = 1, is unique and plays the role of a probability transformation function;
u and ϕ are both continuous and increasing.3 The solution to the taxpayer’s optimization
problem is characterized by the necessary First Order Condition (FOC):

t[ϕ(1 − p)u′(y + t z∗RDEU) − θ [1 − ϕ(1 − p)]u′(y − θ t z∗RDEU)] + λ = 0, (2)

where λ is the Lagrange multiplier associated with the constraint z ≥ 0.4 Two cases will
arise because of the complementary slackness condition from Kuhn-Tucker: λz∗RDEU = 0.
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First, we may have z∗RDEU = 0 and λ > 0. Rearranging (2) implies that:

−λ = tθ [1 − ϕ(1 − p)]u′(y)

[
ϕ(1 − p)

θ [1 − ϕ(1 − p)]
− 1

]
< 0,

which can only be true for (1 + θ )ϕ(1 − p) − θ < 0, and becomes impossible when
(1 + θ )ϕ(1 − p) − θ > 0. Second, we may have z∗RDEU > 0 and λ = 0, and (2) can be
rewritten as:

ϕ(1 − p)

θ [1 − ϕ(1 − p)]
= u′(y − θ t z∗RDEU)

u′(y + t z∗RDEU)
≡ f (z∗RDEU; y, t, θ ). (3)

By inspection of (3) it is immediate that fz∗ (z∗RDEU; .) > 0.5 Moreover, it is equally clear
that f (0; .) = 1. Therefore (3) cannot hold when (1 + θ )ϕ(1 − p) − θ < 0 and can only
obtain when (1 + θ )ϕ(1 − p) − θ ≥ 0. Consider the partial inverse of f with respect to
z∗RDEU , which we shall denote by ψ , where ψ( f (z∗RDEU; y, t, θ ); y, t, θ ) = z∗RDEU . It follows
that ψ( f (0; .); .) = ψ(1; .) = 0. Since f is increasing, so is its inverse: ψ f ( f ; .) > 0. Since
ϕ(.) is a strictly increasing function from [0, 1] to [0, 1], its inverse ϕ−1(.) is so as well and
the condition ϕ(1 − p) − θ [1 − ϕ(1 − p)] ≥ 0 can be rewritten as:

p ≤ 1 − ϕ−1

(
θ

1 + θ

)
= p∗

RDEU
(θ ).

We then have the following Proposition:

Proposition 1: The taxpayer’s optimal compliance behavior is given by:

z∗RDEU(p; y, t, θ ) =


ψ

(
ϕ(1 − p)

θ [1 − ϕ(1 − p)]
; y, t, θ

)
, p < p∗

RDEU
(θ )

0, otherwise
(4)

If we pose ϕ(p) = p, ∀ p ∈ [0, 1], then we are back to EU axiomatics, and one obtains:

z∗EU (p; y, t, θ ) =


ψ

(
1 − p

θp
; y, t, θ

)
, 1 − p − θp ≥ 0

0, otherwise
(5)

This result is a standard one in the tax-compliance literature (see e.g. Andreoni, Erard, and
Feinstein [1998]).

Experimental studies show that the probability weighting function (ϕ(.)) is inverse S-
shaped (first concave, then convex), overweighting low probabilities and underweighting
high probabilities [Heath and Tversky, 1991; Abdellaoui, 2000]. The probability weight-
ing function therefore satisfies the condition that ∃ p̂ ∈ [0, 1], such that ϕ( p̂) = p̂, with
ϕ(p) > p,∀p < p̂ and ϕ(p) < p,∀p > p̂. For Prelec [1998], “the overweighting of small
probabilities, below the fixed point [ p̂], enhances the attraction of small-p gains (lottery
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tickets) and the aversion to small-p losses [audit], while the underweighting of larger prob-
abilities above the fixed point, diminishes the attraction of larger-p gains [underdeclaration
without auditing] and the aversion to larger-p losses.” Prelec [1998] also establishes that
p̂ lies between 0.2 and 0.4. Decidue and Wakker [2001] specify that: “Descriptively, a
pessimistic attitude can result from irrational belief that unfavorable events tend to happen
more often, leading to an unrealistic overweighting of unfavorable likehoods (Murphy’s
law).”

In what follows, we assume that the true audit probability q and the penalty rate faced
by the taxpayer satisfy:

Condition 1. (i) ϕ(1 − q) < 1 − q; (ii) ϕ( θ
1+θ

) < θ
1+θ

.

When ϕ(p) is inverse S-shaped, Condition 1(i) boils down to assuming that the true audit
probability q is strictly smaller than the fixed point p̂, an hypothesis that would appear
reasonable in light of the available estimates of the audit probability (q ∈ [0.01, 0.05],
Andreoni, Erard, and Feinstein [1998]) and of the fixed point ( p̂ ∈ [0.2, 0.4]).6 Condition
1(ii) implies that the penalty rate must be sufficiently “high”. For an inverse S-shaped ϕ(.),
it is equivalent to θ >

p̂
1− p̂ . Again, this condition is reasonable in “real world” terms as

p̂ = 0.2, for example, implies θ > 0.25 (the minimum rate in the US is 0.20). We are now
in a position to compare z∗EU (q; y, t, θ ) and z∗RDEU(q; y, t, θ ):

Proposition 2: Consider z∗RDEU(q; y, t, θ ) and z∗EU (q; y, t, θ ) as defined in Eqs. (4) and
(5). Then, when Condition 1(ii) is satisfied, p∗

RDEU
(θ ) < p∗

EU
(θ ). Moreover, when Condi-

tion 1(i) is satisfied:

(i) for q < p∗
RDEU

(θ ), z∗EU (q; .) > z∗RDEU(q; .) > 0;
(ii) for p∗

RDEU
(θ ) ≤ q < p∗

EU
(θ ), z∗EU (q; .) > z∗RDEU(q; .) = 0;

(iii) for p∗
EU

(θ ) ≤ q, z∗EU (q; .) = z∗RDEU(q; .) = 0.

Proof. Condition 1(ii) can be rewritten as p∗
EU

(θ ) = 1
1+θ

< 1 − ϕ−1( θ
1+θ

) = p∗
RDEU

(θ ).
Rewrite Condition 1(i) as 1 − q − ϕ(1 − q) > 0. Adding qϕ(1 − q) to both sides yields
(1−q)[1−ϕ(1−q)] > qϕ(1−q). Rearranging this inequality and dividing both sides by θ

yields: 1−q
θq >

ϕ(1−q)
θ [1−ϕ(1−q)] . Since ψ f ( f ; .) > 0, it follows that ψ( 1−q

θq ; .) > ψ( ϕ(1−q)
θ [1−ϕ(1−q)] ; .),

which implies, by Proposition 1, that z∗EU (q; .) ≥ z∗RDEU(q; .). The rest of Proposition 2 is
immediate.

In the original contribution by Allingham and Sandmo [1972], the main factor limiting tax
avoidance is the consumer’s risk-aversion; RDEU axiomatics allow one to add pessimism
to the picture, in the sense of the consumer’s overweighting of lower-ranked outcomes (in
this case, being audited). The pessimism of individuals leads them to a greater degree of
compliance than in the EU case.7

Proposition 2 is illustrated in figure 1, using the single parameter probability weighting
function proposed by Kahneman and Tversky [1992].8 Full compliance obtains when the
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Figure 1. Compliance rate as a function of the audit probability.

compliance rate curves reach the 100% level. As should be obvious from figure 1, this
occurs for much lower values of p under RDEU than in the EU case.

3. Simulation results

In the numerical simulations that follow, we shall consider the following parameterizations
of the probability weighting function: Camerer and Ho (1994), which is equivalent to
Kahneman and Tversky [1992] with γ = 0.56, as used by Lattimore, Baker, and Witte
[1992], Gonzalez and Wu [1999]; Tversky and Fox (1995): δpγ

δpγ+(1−p)γ , δ = 0.77, γ = 0.69;
Prelec (1998): exp[−δ(− ln[p])α], as specified by Bleichrodt and Pinto [2000]: δ = 1.08
and α = 0.53.9 Bernasconi [1998] uses the Camerer and Ho [1994] probability weighting
function in his work on tax avoidance. It is clear at this stage that experimental work, in the
specific context of tax-avoidance, would be extremely useful in setting the parameter values
correctly in the simulations that follow.10 Given the lack of such experimental evidence,
our results should be taken with a grain of salt, although they are likely to be representative
of the broad differences between the EU and RDEU cases.

3.1. Threshold audit probabilities and penalty rates

Proposition 2 establishes a relationship between the audit probability and the penalty rate that
ensures full compliance, expressed in terms of the threshold audit probabilities: p∗

EU
(θ ) =

1
1+θ

and p∗
R DEU

(θ ) = 1 − ϕ−1( θ
1+θ

). Now note that
∂(p∗

EU
(θ )−p∗

RDEU
(θ ))

∂θ
= − 1

(1+θ )2 [1 +
ϕ−1

′
( θ

1+θ
)] < 0.The difference between p∗

EU
(θ ) and p∗

RDEU
(θ ) is thus a decreasing function

of the penalty rate θ . This statement can be formulated in an alternative manner by seeking
to determine the minimal penalty rate that entails full compliance, for a given value of the
true probability of audit q . Formally-speaking, these “limit” penalty rates can be expressed
as θ∗EU = 1−q

q and θ∗R DEU = ϕ(1−q)
1−ϕ(1−q) . If we assume that the true audit probability satisfies

CONDITION 1(i), it is immediate that θ∗EU > θ∗RDEU . It follows that when the penalty rate
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Figure 2. Threshold audit probabilities (p∗
RDEU

(θ) and p∗
EU

(θ )) that ensure full compliance, as function of the
penalty rate θ .

Figure 3. Threshold penalty rates (θ∗EU and θ∗RDEU ) needed to ensure full compliance, as function of the audit
probability p.

θ belongs to the interval [θ∗RDEU , θ
∗
EU ), RDEU predicts full compliance, as opposed to the

EU model under which some cheating will obtain. Generalizing the Allingham-Sandmo-
Yitzhaki model to RDEU therefore strengthens the deterrence effect of the penalty rate.

These results are illustrated graphically in figures 2 and 3. Figure 2 presents the critical
audit probabilities that ensure full compliance (on the vertical axis) for penalty rates θ

that vary between 0 and 3, for two specifications of the probability weighting function.11

Figure 3 reports the penalty rate needed to ensure full compliance, as a function of the
audit probability. Note that the results presented in figures 2 and 3 are independent of
u(.). For penalty rates that are greater than 0.5, the Prelec specification predicts threshold
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audit probabilities that are lower than those predicted by Tversky and Fox, which in turn
are lower than those predicted by EU. This ordering is inverted for penalty rates below
0.5 (which corresponds, given our parameterization, to Condition 1(ii) being violated),
though the ensuing critical audit probabilities are much too high. For threshold penalty
rates, Camerer and Ho predicts the lowest rate, followed by Prelec, and finally Tversky and
Fox. In contrast, the threshold audit probabilities predicted by the EU model are so high
(above 20 even for an audit probability of 0.05) as to be unrealistic by any standard. In terms
of threshold audit probabilities and penalty rates, the Camerer and Ho specification of the
probability weighting function would therefore appear to offer the best chance of providing
an explanation for the tax compliance puzzle.

3.2. Compliance rates

Proposition 2 established that compliance rates under RDEU should be greater than in the EU
case. How large are the quantitative differences between the two models? Experimentation
revealed that the specification of u(.) was the crucial element in determining the simulated
extent of compliance. In the four panels of figure 4 we present simulations of compliance
rates ( z−y

y ) for various specifications of u(.), as a function of the audit probability (which
varies between 0.005 and 0.05, roughly the orders of magnitude that one observes in US
data over the last 50 years), and with t = 0.30 (again, this corresponds to a reasonable

Figure 4. Simulated compliance rate ( z∗−y
y ) for four specifications: CRRA: u(x) = x−0.8

−0.8 , θ = 2; CRRA:

u(x) = ln x, θ = 3; CARA: u(x) = − e−20x

20 , θ = 0.5; HARA: u(x) = 1−k
A(2−k) (Ax + B)

2−k
1−k , A = 2, B = 0, k =

1.03, θ = 0.5.
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level in light of the US experience). While many more specifications were tried, the results
presented here are representative of our findings. Four aspects of our results are worth
underlining.

First, for CRRA and CARA utility functions, compliance rates are much too low when
compared to observed levels, at least in the US, while a HARA specification for the utility
function yielded orders of magnitude that are reasonably close to reality (more on this
below). Second, the ranking of the RDEU simulations in terms of compliance rates is
always the same, with the Camerer and Ho parameterization of the probability weighting
function yielding the highest compliance rates, followed by Prelec, and finally Tversky and
Fox. Third, the EU specification always yields compliance rates that are much lower than
its RDEU counterparts. This is particularly true in the case of the CRRA specifications,
where the EU specification yields zero compliance rates for audit probabilities below 5%
when − u′′(c)

u′(c) c = 1.8, with the corresponding figure being approximately 2.5% when the
utility function is logarithmic. Fourth, even with − u′′(c)

u′(c) = 20, the CARA specification is
unable to yield realistic levels of compliance. The upshot is that only a HARA specification
for u(.) appears to be capable of generating compliance behavior, for realistic parameter
values, that squares with available evidence.

3.3. Confronting “real” data

How do the two specifications –EU and RDEU– compare in terms of their ability to predict
true compliance rates over the long term? In figure 5, we present simulation results for
the underreporting rate (z/y) for the US over the past half-century (1947–2000), which we

Figure 5. Actual versus simulated underreporting rate (
z∗EU

y ,
z∗RDEU

y ) for the US, 1947–2000.
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compare to the “true” underreporting rate.12 The empirical counterpart to z is given here
by the US Bureau of Economic Analysis (BEA) “AGI [Adjusted Gross Income] wage gap
for wage and salary income”, which represents the difference between the BEA’s estimate
of wages and salaries and taxpayer-reported wages and salaries.13 This measure is then
adjusted to account for “legitimate non-filers” (mainly low-income individuals who are
not required to file a tax return) using evidence from the 1988 TCMP study. The tax rate
(t) is a weighted average marginal tax rate on ordinary income (excluding social security
and medicare).14 Income (y) is given by the Census Bureau’s Current Population Survey
estimate of median wage and salary income.15 The audit probability p is given by the “face
to face” audit rate, as published by the IRS.16 The penalty rate is assumed to be constant
and equal to 0.5. This is not an unreasonable figure for the US, where the monetary penalty
rate varies between 0.25, and 0.75.17 This does not, however, take potential incarceration
into account (see e.g. Andreoni, Erard, and Feinstein [1998]), or the fact that audits of prior
year tax returns, when performed in conjunction with an audit of the current year tax return,
can be thought of as an extended penalty.

The utility function used in the simulation is of the HARA class: simulations using
the CARA and CRRA specifications were far less successful and failed to generate the
substantial fall in tax-evasion that occurred between the mid-seventies and mid-eighties.
The simulation results presented in the previous subsection, in which the HARA form for
u(.) was demonstrably superior in terms of the simulated level of compliance, also led us
to prefer this specification. Three remarks are in order concerning this simulation.

First, it is clear that both the EU and RDEU models (irrespective of the parameterization
chosen for the probability weighting function) do a surprisingly good job of tracking changes
in actual underreporting rates. In quantitative terms, the correlation between the actual
underreporting rate and each of the simulated series is approximately equal to 0.76. If
one runs a simple regression of the actual underreporting rate on any of the simulated
series, the resulting R2 is equal to 0.57, which is surprisingly high for such a simple
model.

Second, the most glaring difference between the simulated RDEU and EU series obtains
in terms of their means. While the mean “true” underreporting rate is equal to 2.37%,
EU predicts a mean underreporting rate of 4.31%, with the corresponding figures for the
RDEU simulations ranging from 2.16% (Camerer and Ho) to 2.93% (Tversky). As expected,
EU predicts a much higher rate of underreporting than does RDEU: the mean difference
between the actual and simulated EU underreporting rates is equal to 1.93% and is highly
significant (t-statistic = 22.53), while the corresponding difference is equal to 0.07% and
is statistically insignificant (t-statistic = 0.89) for the Prelec specification. RDEU therefore
predicts mean underreporting rates that are in line with US historical evidence, while the
corresponding EU model predicts underreporting rates that are almost twice as high as they
should be.

Third, while RDEU is more successful than EU in predicting mean underreporting rates, it
is less so in terms of the amplitude of their variations over time (and this despite the identical
correlation coefficients mentioned above). The standard deviation of the true underreporting
rate is equal to 0.0091: EU predicts roughly the same number (0.0090), while all RDEU
specifications are off the mark by a factor of almost one half (standard deviation of 0.0050
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for Prelec). RDEU therefore tends to underestimate the variation in underreporting rates
caused by changes in the underlying variables (t, y and p).18

4. Concluding remarks

Considering the Allingham-Sandmo-Yitzhaki problem under RDEU axiomatics has allowed
us to bridge at least part of the gap between observed levels of compliance and theoretical
predictions. Intuitively, RDEU axiomatics allow one to do this by introducing “pessimism”
into the individual’s decision-making process in that the taxpayer will overestimate the
probability of audit. Contrary to Bernasconi [1998], we believe that social or ethical factors
may still account for a portion of the tax compliance puzzle, insofar as they affect the prob-
ability weighting function, although we have not developed this point here. Experimental
evidence would be extremely useful in this context, and should be extended to countries
outside of the US.19 An example includes the concept of “competence” as defined by Heath
and Tversky [1991], which could explain the use of accountants for establishing tax returns.
Finally, institutional factors, such as third party reporting, may be the key to understanding
tax compliance, although our focus would be on how these elements affect the probability
perception function.
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Notes

1. As applied to tax compliance, we prefer the RDEU approach to its main competitor, Cumulative Prospect
Theory (CPT), developed in a series of papers beginning with Kahneman and Tversky [1979]. CPT does, as
noted by Cowell [2003], present a number of advantages. First, individuals “edit” the information associated
with the underlying lotteries. Second, and contrary to the RDEU approach, CPT allows one to distinguish the
value function (as opposed to the utility function) from the weighting function associated with the probabilities
of given gains or losses. On the other hand, and in the context of tax compliance we believe this argument to
be the clincher, CPT imposes a reference point. The choice of this reference point, or status quo, is crucial
for any ensuing results. In the case of tax compliance, this would involve choosing arbitrarily between after-
or pre-tax income as the reference point. Moreover, the existence of a reference point implies that consumers
should be indifferent to wealth effects, which runs counter to most empirical evidence that indicates that the
degree of fraud is correlated with the consumer’s level of income. Note that Cox [1984] finds a U-shaped
relationship between income and the rate of underreporting, which is inconsistent with all currently-used
theoretical models, while Bloomquist [2003a] presents US evidence of a higher rate of underreporting for
lower income brackets. Current received wisdom among practitioners is that the relationship between income
and the rate of underreporting can at best be described as non-linear.

2. Note that we assume z ≥ 0. If one had z < 0, the structure of the optimization program implies that the
taxpayer would receive a reward for over-declaration (this follows because of the formulation in terms of a
penalty: −θ t z∗ > 0 if z∗ < 0). As such, we prefer to assume, as in Andreoni, Erard, and Feinstein [1998]
that overdeclaration is irrational.
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3. We present the definition of RDEU [P (z)] in terms of a decumulative density function (i.e., 1 minus the
cumulative density), whereas, in his illustration of the kink, Bernasconi [1998] uses a cumulative density
function formulation.

4. The second order condition holds because we shall assume strict concavity of u(.). The FOC is therefore
sufficient as well as necessary.

5. In what follows, subscripts will denote partial derivatives, i.e. ∂ f
∂x = fx .

6. Condition 1 could be replaced by the much stronger requirement that ϕ(1 − p) ≤ 1 − p,∀ p, which would
correspond to a convex probability transformation function, but this would preclude us from using the inverse
S-shaped functions that have been found in experimental work.

7. Note that one can also establish, for q < p∗
RDEU

(θ ), and under the assumption that − u′′(.)
u′(.) is decreasing, that

0 <
dz∗RDEU

dy <
dz∗EU

dy and
dz∗RDEU

dt <
dz∗EU

dt < 0. The proof is available upon request.

8. That is, ϕ(p) = pγ

[pγ+(1−p)γ ]
1
γ

, in which we use Abdellaoui’s [2000] specification, i.e. γ = 0.7, with a CRRA

utility function (u(x) = x1−σ

1−σ
, σ = 1.8), and θ = 2, t = 0.30.

9. While some of these probability weighting functions were developed in a CPT context, they are readily
transposed to the RDEU approach (see e.g. Camerer [1994]). Our simulations, carried out in Mathematica
5.0, are available upon request.

10. Some initial experimental evidence can be found in Alm, Jackson, and McKee [2004].
11. We were unable to determine, even numerically, the threshold audit probability for the Camerer and Ho (1994)

probability weighting function.
12. We are extremely grateful to Kim Bloomquist of the IRS for making these data available to us. See Bloomquist

[2003b] for further details.
13. Available online at: http://www.bea.gov/bea/ARTICLES/2004/04April/0404PI&AG.pdf.
14. The raw data concerning the amount of income reported by taxpayers in different tax rate brackets are

available online at: http://www.irs.gov/taxstats/article/0,,id=96586,00.html. Bloomquist [2003b] then uses
Census Bureau data defining the upper and lower income bounds for population quintiles to derive the
average marginal tax rates.

15. Available online at: http://www.census.gov/hhes/income/histinc/p53.html.
16. Available online at: http://trac.syr.edu/tracirs/trends/current/audpctcompare ind.html and http://www.irs. gov/

taxstats/article/0,,id=102174,00.html.
17. Note that Bernasconi (1998) sets θ = 3 in his simulations.
18. It is interesting that this last finding is perfectly in line with the theoretical results mentioned in note 7, where

it was noted that the comparative statics of the RDEU model are “weaker”, with respect to changes in y and
t , than for the EU model.

19. See Cummings, Martinez-Vasquez, and McKee [2001], for some experimental evidence for South Africa,
Botswana and the US.
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