Skip to main content
Log in

Highly enhanced electrochemical performance of silicon-free platinum–yttria stabilized zirconia interfaces

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

In the drive to achieve economically viable solid oxide fuel cells, efforts have been directed towards substantially decreasing their operating temperature. Unfortunately, these efforts have been hindered by extremely sluggish electrode kinetics at reduced temperatures. In this report, we show that silicon impurities on the surface of the electrolyte play a critical role in influencing electrode kinetics. More specifically, improvements by as much as three orders of magnitude are reported for the performance of platinum electrodes on yttria-stabilized zirconia electrolytes prepared as high purity thin films with a largely Si-free surface. These improvements in performance are estimated to enable operation of a solid oxide fuel cell down to approximately 400 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.Q. Minh, J. Am. Ceram. Soc 76, 563 (1993)

    Article  CAS  Google Scholar 

  2. S.C. Singhal, K. Kendall, High temperature solid oxide fuel cells: fundamentals, design and applications (Elsevier, Oxford, 2003), pp. 1–19

    Google Scholar 

  3. X. Chen, N.J. Wu, L. Smith, A. Ignatiev, Appl. Phys. Lett 84, 2700 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Z. Shao, S.M. Haile, J. Ahn, P.D. Ronney, Z. Zhan, S.A. Barnett, Nature 435, 795 (2005)

    Article  PubMed  ADS  CAS  Google Scholar 

  5. H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito, F.B. Prinz, J. Electrochem. Soc 154, B20 (2007)

    Article  CAS  Google Scholar 

  6. A. Bieberle-Hütter, D. Beckel, A. Infortuna, U.P. Muecke, J.L.M. Rupp, L.J. Gauckler, S. Rey-Mermet, P. Muralt, N.R. Bieri, N. Hotz, M.J. Stutz, D. Poulikakos, P. Heeb, P. Müller, A. Bernard, R. Gmür, T. Hocker, J. Power Sources 177, 123 (2008)

    Article  Google Scholar 

  7. B.C.H. Steele, A. Heinzel, Nature 414, 345 (2001)

    Article  PubMed  ADS  CAS  Google Scholar 

  8. S.B. Adler, Chem. Rev 104, 4791 (2004)

    Article  PubMed  CAS  Google Scholar 

  9. J. Fleig, Annu. Rev. Mater. Res 33, 361 (2003)

    Article  CAS  Google Scholar 

  10. J.E. Bauerle, J. Phys. Chem. Solids 5, 2657 (2006)

    Article  Google Scholar 

  11. J.R. Wilson, W. Kobsiriphat, R. Mendoza, H.-Y. Chen, J.M. Hiller, D.J. Miller, K. Thornton, P.W. Voorhees, S.B. Adler, S.A. Barnett, Nature Materials 5, 541 (2006)

    Article  PubMed  ADS  CAS  Google Scholar 

  12. A. Bernasik, J. Phys. Chem. Solids ed. by K. Kowalski, A. Sadowski63, 233 (2002)

    Article  ADS  CAS  Google Scholar 

  13. M. Backhaus-Ricoult, M.-F. Trichet, Solid State Ionics 150, 143 (2002)

    Article  CAS  Google Scholar 

  14. M. Aoki, Y.-M. Chiang, I. Kosacki, L.J.-R. Lee, H. Tuller, Y. Liu, J. Am. Ceram. Soc 79, 1169 (1996)

    Article  CAS  Google Scholar 

  15. S.P.S. Badwal, J. Drennan, A.E. Hughes, B.A.A. Sexton, Mater. Sci. Forum 34–36, 195 (1988)

    Google Scholar 

  16. G.M. Ingo, G. Padeletti, Surf. Interface Anal 21, 450 (1994)

    Article  CAS  Google Scholar 

  17. J.-M. Bae, B.C.H. Steele, Solid State Ionics 106, 247 (1998)

    Article  CAS  Google Scholar 

  18. M. de Ridder, A.G.J. Vervoort, R.G. van Welzenis, H.H. Brongersma, Solid State Ionics 156, 255 (2003)

    Article  Google Scholar 

  19. K.V. Hansen, K. Norman, M. Mogensen, J. Electrochem. Soc 151, A1436 (2004)

    Article  CAS  Google Scholar 

  20. J.J. Zhu, J.G. van Ommen, A. Knoester, L. Lefferts, J. Catal 230, 291 (2005)

    Article  CAS  Google Scholar 

  21. J. Mizusaki, H. Tagawa, T. Saito, K. Kamitani, T. Yamamura, K. Hirano, S. Ehara, T. Takagi, T. Hikita, M. Ippommatsu, S. Nakagawa, K. Hashimoto, J. Electrochem. Soc 141, 2129 (1994)

    Article  CAS  Google Scholar 

  22. A. Bieberle, L.P. Meier, L.J. Gauckler, J. Electrochem. Soc 148, A646 (2001)

    Article  CAS  Google Scholar 

  23. V. Brichzin, J. Fleig, H.-U. Habermeier, J. Maier, Electrochem. Solid-State Lett 3, 403 (2000)

    Article  CAS  Google Scholar 

  24. R. O’Hayre, F.B. Prinz, J. Electrochem. Soc 151, A756 (2004)

    Article  Google Scholar 

  25. R. Radhakrishnan, A.V. Virkar, S.C. Singhal, J. Electrochem. Soc 152, A927 (2005)

    Article  CAS  Google Scholar 

  26. E. Koep, C. Compson, M. Liu, Z. Zhou, Solid State Ionics 176, 1 (2005)

    Article  CAS  Google Scholar 

  27. A. Mitterdorfer, L.J. Gauckler, Solid State Ionics 117, 187 (1999)

    Article  CAS  Google Scholar 

  28. A. Mitterdorfer, L.J. Gauckler, Solid State Ionics 117, 203 (1999)

    Article  CAS  Google Scholar 

  29. M.G.H.M. Hendriks, B.A. Boukamp, J.E. ten Elshof, W.E. van Zyl, H. Verweij, Solid State Ionics 146, 123 (2002)

    Article  CAS  Google Scholar 

  30. D. Vladikova, J.A. Kilner, S.J. Skinner, G. Raikova, Z. Stoynov, Electrochim. Acta 51, 1611 (2006)

    Article  CAS  Google Scholar 

  31. J.L. Hertz, H.L. Tuller, J. Electroceram 13, 663 (2004)

    Article  CAS  Google Scholar 

  32. J.L. Hertz, Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA (2006)

  33. J.L. Hertz, H.L. Tuller, Solid State Ionics 178, 915 (2007)

    Article  CAS  Google Scholar 

  34. M.J. Verkerk, M.W. Hammink, A.J. Burggraaf, J. Electrochem. Soc 130, 70 (1983)

    Article  CAS  Google Scholar 

  35. S.N. Shkerin, Russ. J. Electrochem 39, 863 (2003)

    Article  CAS  Google Scholar 

  36. S.N. Shkerin, S. Gormsen, M. Mogensen, Russ. J. Electrochem 40, 136 (2004)

    Article  CAS  Google Scholar 

  37. C. Schwandt, W. Weppner, J. Electrochem. Soc 144, 3728 (1997)

    Article  Google Scholar 

  38. S. Damyanova, P. Grange, B. Delmon, J. Catal 168, 421 (1997)

    Article  CAS  Google Scholar 

  39. R. Vaßen, N. Czech, W. Malléner, W. Stamm, D. Stöver, Surf. Coat. Tech 141, 135 (2001)

    Article  Google Scholar 

  40. Z. Shao, S.M. Haile, Nature 431, 170 (2004)

    Article  PubMed  ADS  CAS  Google Scholar 

  41. C. Xia, M. Liu, Adv. Mater 14, 521 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the DoD Multidisciplinary University Research Initiative Program administered by the Army Research Office under Grant No. DAAD19-01-1-0566. This work made use of the Shared Experimental Facilities supported by the MRSEC Program of the National Science Foundation under award number DMR 02-13282. The authors thank Joseph Bullard and Elisabeth Shaw for assistance in obtaining the XPS data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua L. Hertz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertz, J.L., Rothschild, A. & Tuller, H.L. Highly enhanced electrochemical performance of silicon-free platinum–yttria stabilized zirconia interfaces. J Electroceram 22, 428–435 (2009). https://doi.org/10.1007/s10832-008-9475-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-008-9475-5

Keywords

Navigation