
Vol.:(0123456789)

Journal of Computational Neuroscience (2024) 52:133–144 
https://doi.org/10.1007/s10827-024-00870-6

RESEARCH

Analysis of hippocampal local field potentials by diffusion mapped 
delay coordinates

D. A. Gonzalez1 · J. H. Peel3 · T. Pagadala1 · D. G. McHail1 · J. R. Cressman1,3 · T. C. Dumas1,2

Received: 21 June 2022 / Revised: 13 July 2023 / Accepted: 15 March 2024 / Published online: 6 April 2024 
© The Author(s) 2024

Abstract
Spatial navigation through novel spaces and to known goal locations recruits multiple integrated structures in the mam-
malian brain. Within this extended network, the hippocampus enables formation and retrieval of cognitive spatial maps and 
contributes to decision making at choice points. Exploration and navigation to known goal locations produce synchronous 
activity of hippocampal neurons resulting in rhythmic oscillation events in local networks. Power of specific oscillatory 
frequencies and numbers of these events recorded in local field potentials correlate with distinct cognitive aspects of spatial 
navigation. Typically, oscillatory power in brain circuits is analyzed with Fourier transforms or short-time Fourier methods, 
which involve assumptions about the signal that are likely not true and fail to succinctly capture potentially informative 
features. To avoid such assumptions, we applied a method that combines manifold discovery techniques with dynamical 
systems theory, namely diffusion maps and Takens’ time-delay embedding theory, that avoids limitations seen in traditional 
methods. This method, called diffusion mapped delay coordinates (DMDC), when applied to hippocampal signals recorded 
from juvenile rats freely navigating a Y-maze, replicates some outcomes seen with standard approaches and identifies age 
differences in dynamic states that traditional analyses are unable to detect. Thus, DMDC may serve as a suitable complement 
to more traditional analyses of LFPs recorded from behaving subjects that may enhance information yield.

Keywords  Hippocampus · Local field potential · Diffusion mapped delay coordinates

1  Introduction

Synchronous activity amongst large populations of neurons 
in the hippocampus creates rhythmic oscillations that coordi-
nate the discharge activity of neuronal ensembles. The most 
well studied hippocampal oscillations observed in local field 
potentials (LFPs) occur between 6–12 Hz (theta), 25–55 Hz 
(slow gamma), and 60–100 Hz (fast gamma) along with broad 
spectral 200 Hz LFP complexes known as sharp wave ripples 
(SWRs, that include a late 140–200 Hz ripple component). 
While informative, traditional frequency analyses may not be 

ideal for interrogation of hippocampal oscillations. For exam-
ple, Fourier transforms used to quantify the power of selected 
frequencies residing within a complex signal operate by decom-
posing signals into collections of sinusoids. Since neuronal net-
work dynamics are, in general, quasi-periodic and nonlinear by 
nature (Perrenoud & Cardin, 2023), Fourier transforms may 
exclude information by over-simplifying the signal and both 
quasi-periodicity and nonlinearity are hard to succinctly quan-
tify with a Fourier transform. Moreover, methods to determine 
if an oscillatory event occurred and when a given oscillation 
event begins and ends can be somewhat arbitrary (McHail & 
Dumas, 2020; Segneri et al., 2020; Ventrucci et al., 2014).

To address these issues, we propose the use of diffusion 
mapped delay coordinates (DMDC). This DMDC analysis 
assumes that the dynamical state of the system is, for the 
time of the measurement, in a stable, or steady state. This 
may not be strictly true for all samples, but works well as a 
starting assumption for LFPs recorded at stationary locations 
within the hippocampus. Such steady states can be described  
by fixed points, periodic signals, and, more generally, tra-
jectories in a potentially high dimensional space, sometimes 
referred to as attractors, or manifolds. DMDC operates under 
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the assumption that each temporal measurement, which we 
take as 2500 ms, or 2500 samples, for this study, is a sam-
ple of a single dynamic manifold. The method is based on 
combining Takens’ time-delay embedding theory for chaotic 
systems and a technique called diffusion maps. If one were 
to observe all of the processes of a dynamical system, the 
trajectory tracing out the movement through the large space 
of these observations would, if deterministic, never cross 
itself. If the number of observations is limited to a subset 
of the relevant dynamics, as is typically the case, the obser-
vations will produce trajectories in their limited space that 
will almost certainly overlap. Takens’ theorem is a powerful 
tool that enables the disentanglement of these non-linear 
dynamics by casting the data into a higher dimensional space 
through the process of time-delay embedding. The new man-
ifold, created by the time-delay embedding, is not the same 
as the full manifold of relevant dynamics, but Takens proved 
that they should have the same topology.

The second part of the DMDC algorithm, the diffusion 
maps algorithm, assumes that the density of points on the 
time-delayed manifold can be used to find the solutions to a 
presumed diffusive process on the manifold. When ordered 
by amplitude, the spectrum of eigenvalues of the diffusive 
process can provide insights into the geometric structure of 
the underlying dynamical manifold. In fact, the geometrical 
properties of a space can be inferred through the eigenvalue 
spectrum through another powerful mathematical relation 
called Weyl’s law that can be used to determine the geometric 
features, such as the dimension and volume of the manifold. 
The dimensionality of a manifold is a rough measure of its 
independent degrees of freedom. In the case of a fixed point, 
the dimensionality is 0, a periodic orbit, 1, or a surface, 2. 
The dimensionality of a manifold will be N or lower in a 
general N dimensional space. For complex dynamics, fractal 
structures can form and the dimension can be non-integer. 
Volume is the higher dimensional analog to period, and 
loosely represents the length (in timesteps) of a quasi-period.

DMDC has been used successfully to model nonlinear 
and dynamic physical systems (Berry et al., 2013) but has 
yet to be applied to neural signals. To that purpose, we 
applied DMDC to LFP data previously analyzed using tra-
ditional frequency analyses (McHail & Dumas, 2020). Prior 
analyses found significant effects of developmental stage 
and a positive AMPA receptor modulator on slow gamma 
power and fast gamma event rate, peak power, and peak fre-
quency. However, these effects were tied most to duration 
of time spent in the maze or movement speed, not location 
or any other behavioral effects. Here we report that DMDC 
reveals age effects for Dimension in the slow gamma, fast 
gamma, and SWR bands, but also for two control bands not 
necessarily related to cognition. While there were no main 
effects on Volume, there was an age and drug interaction 
seen for theta Volume that matched effects on theta event 

rate assessed through Morlet wavelets. Reanalysis through 
Morlet wavelets also uncovered maze location effects on 
average power in the slow and fast gamma range that were 
not replicated by DMDC. When data were collapsed across 
age, drug, location, and alternation groups, main effects 
of filter type on Dimension and Volume emerged. Thus, 
while DMDC resolves different levels of complexity when 
applied to different oscillation bands of the same signal, 
this approach may serve as a complementary means to bet-
ter understand the roles of various LFP oscillation bands in 
brain development and spatial cognition.

2 � Methods

2.1 � Electrophysiological recordings

DMDC was applied to LFP recordings collected by McHail 
and Dumas (2020). These LFPs were recorded from the stra-
tum radiatum region of area CA1 of the dorsal hippocampus 
in juvenile rats freely exploring a Y-maze on postnatal days 
(P) 18–19 (“Younger”) and P22-23 (“Older”). Each subject 
was tested at the Older and Younger ages twice. (Fig. 1, top). 
The AMPAKINE drug, CX614 (2.5 mg/kg or 4 mL/kg), or 
vehicle alone (cyclodextrin) was administered thirty minutes 
before every behavior test in a counterbalanced fashion (drug-
vehicle for Younger followed by vehicle-drug for Older or 
vehicle-drug for Younger followed by drug-vehicle for Older) 
and each exploration lasted for eight minutes.

2.2 � Definition of signal Epochs for DMDC analysis

We identified events where the animal was immobile near 
the center of the Y-maze just prior to making an arm selec-
tion and moving through the maze center (Fig. 1, left side 
unshaded maze regions). DMDC was executed on 2500 ms 
of the LFP just preceding the movement. Additionally, we 
identified similar 2500 ms periods of immobility in the outer 
locations of the arms as control epochs when the animal was 
not making an arm selection (Fig. 1, left side shaded maze 
regions). All analyses of LFPs were conducted with Matlab 
including the signal processing toolbox.

2.3 � Signal processing

From the original raw LFP signal, multiple filters were cre-
ated to isolate signal components using standard filtering 
packages in Matlab and some custom scripts. Biologically 
relevant band pass filters included the theta (4–12 Hz), slow 
gamma (25–55 Hz), fast gamma (65–100 Hz), and sharp 
wave ripples (SWR, 140–200 Hz). Additionally, we included 
control conditions of 20 Hz high pass (HP), 100 Hz low pass 
(LP), 100 Hz HP, 100–135 Hz, and a combination 4–100 Hz 
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and SWR band pass (4–100 Hz + SWR). When running mul-
tiple signals concurrently (4–100 + SWR), DMDC relies on 
the assumption that the signals are causally related to each 
other and both are measurements of the same underlying 
dynamic​.​ By running the same signal differently filtered, 
relationships between multiple filters can be identified that 
may not be detectable in the unfiltered signal or when a 
single filter is applied.

The DMDC algorithm was written in-house and was 
executed with fixed parameters for all the runs. The number 
of delay coordinates was set to 8 and the number of nearest 
neighbors was set at 32. These were selected primarily from 
trial and error. Parameter sets were validated as successful 
when the results were persistent across parameter variations 
and the algorithm consistently converged for all of the sam-
ples taken at the center of the maze. Any samples in center 
or outer arm locations that returned a volume greater than 

250 (2 in the center; 43 in outer) were discarded as this 
would not allow for adequate measurement of the attractor 
given our sampling time.

The same 2500 millisecond epochs were convolved using 
modified code from Cohen (2014). This code uses a series 
of Morlet wavelets at 1 Hz intervals from 1 to 101 Hz with 
number of cycles set to seven (Cohen, 2014). To account for 
the 1/f relationship of frequency to power and minimize the 
impact of differences in recording conditions across trials, each 
frequency band was then individually z-scored within a trial. 
These waveforms were broken down into theta, slow gamma, 
and fast gamma frequency bands. We then calculated average 
power for each band and also counted the number of times 
power surpassed a z-scored absolute value power of 1.95 (5% 
significance level) to estimate event rate within each frequency 
band. Average power and event rate were compared across age, 
drug, location, and frequency bands.

2.4 � Statistical analyses

Three-way analyses of variance (ANOVAs) were conducted 
to compare Dimension and Volume across age, drug con-
dition, and maze location within each filter range for bio-
logically relevant and control frequency bands. A three-way 
ANOVA was also conducted to compare Dimension and Vol-
ume across age, drug condition, and alternation choice when 
animals were at the maze center, just prior to making an 
arm selection. Alternation occurs when the animal chooses 
the least recently visited arm and non-alternation occurs 
when the animal does not choose the least recently visited 
arm (Douglas et al., 1973; Dumas, 2004; Blair et al., 2013). 
Average power and event rate were compared across age, 
drug condition, and maze location by three-way ANOVA. 
Data were collapsed across age, drug, location, and alterna-
tion and compared across filter type by one-way ANOVA. 
Linear regressions were calculated for mean Dimension or 
Volume versus filter band central tendency or range (Nyquist 
frequency limit for filters with no upper bounds). Post hoc 
pairwise comparisons were made by Tukey honest signifi-
cant difference (HSD) tests. All bar graphs display means 
and confidence intervals (set at 95%).

3 � Results

3.1 � DMDC detects effects of age on dimension 
of biologically relevant band pass filtered 
hippocampal LFPs

We first applied DMDC to 2500 ms epochs of LFPs that 
were collected when subjects were at the center of the maze 
or in the outer portions of the arms. Prior to execution, 

Fig. 1   Schematic of data collection and analyses. LFP signals were 
continuously recorded as juvenile rats treated with vehicle or a posi-
tive AMPAR modulator (CX614, 2.5 mg/kg) freely navigated a sym-
metrical Y-maze (top left). Coronal image (taken from the Harvard 
Medical School, High Resolution Rat Brain Atlas) shows the record-
ing location and a representative unfiltered LFP signal (top right). 
DMDC decomposes the filtered signal into a series of eigenvectors 
and compares values between eigenvectors across time (bottom left) 
and across each other to determine the shape of the attractor (bottom 
right) and related Dimension and Volume values
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signals were left unfiltered (No Filter) or band pass filtered 
for theta, slow gamma, fast gamma or SWRs. No main 
effects of age, drug, or location on Dimension or Volume 
were reported by DMDC for the unfiltered or theta filtered 
signal (Fig. 2; significant and non-significant statistics in 
Table 1). An age by drug interaction effect on Volume was 
observed for the theta band [F(1,124) = 3.4358, p = 0.0171]. 
Theta signals from Younger animals receiving CX614 
exhibited decreased Volume compared to age match ani-
mals receiving vehicle (p < 0.05). Conversely, theta signals 
from Older animals receiving CX614 had increased Volume 
compared to age match animals receiving vehicle (p < 0.05).

Dimension for slow gamma was higher for Older ani-
mals compared to Younger animals [main effect of age: 
F(1,124) = 48.0816, p < 0.0001] with no effect of drug or 
location. There were no effects of age, drug, or location 
on slow gamma Volume. In the fast gamma band, signals 
from Older animals showed higher Dimension values 
than signals from Younger animals [main effect of age: 
F(1,124) = 4.7450, p = 0.0314] with no effect of drug or 
location. No effect of age, drug, or location was reported for 
fast gamma Volume. In the SWR band, signals from Younger 
animals showed higher Dimension values than signals 
from Older animals [main effect of age: F(1,124) = 5.6270, 
p = 0.0193] with no effect of drug or location. No effect of 
age, drug, or location was reported for fast gamma Volume. 
Thus, barring one interaction effect, Volume was not sensi-
tive to age, drug, or location and Dimension was affected by 
age only and limited to the slow gamma, fast gamma bands, 
and SWR bands.

Fig. 2   Dimension and Volume outcomes for biologically relevant 
oscillation frequency groups and the no filter control group separated 
by age and drug conditions. A Means and confidence intervals for 
Dimension across frequency groups. LFP signals from Older animals 
exhibited higher Dimension of slow gamma, fast gamma, and SWR 
filters compared to Younger animals. * represents a main effect of 
age. B Means and confidence intervals for Volume across frequency 
groups. Volume was unaffected by age, drug, or location conditions

Table 1   Summary of group effects for unfiltered, theta, slow gamma, 
fast gamma, and SWR signals. Statistically significant results are 
shown in bold red text. F is the ANOVA F ratio. P is the ANOVA 

probability value. NF = no filter. SG = slow gamma. FG = fast gamma. 
SWR = sharp wave ripple

Dimension NF Theta SG FG SWR

F P F P F P F P F P

Age 0.4202 0.5181 2.7314 0.1011 48.0816 0.0001 4.7450 0.0314 5.6270 0.0193
Drug 0.6151 0.4345 0.1810 0.6713 0.0087 0.9257 0.0792 0.7788 0.0166 0.8976
Age x drug 0.2611 0.6103 0.1679 0.6827 0.1341 0.7149 2.7381 0.1006 1.2517 0.2655
Location 0.0739 0.7862 0.0836 0.7730 0.0320 0.8582 0.1185 0.7312 0.6425 0.4244
Age x location 0.0515 0.8209 0.0521 0.8199 0.0121 0.9125 0.0663 0.7972 0.2522 0.6155
Drug x location 0.1572 0.6925 0.0007 0.9795 0.0532 0.8180 0.1039 0.7478 0.0212 0.8845
Age x drug x location 0.8695 0.3530 3.4358 0.0663 0.0616 0.8044 0.2048 0.6517 0.3862 0.5355
Volume F P F P F P F P F P
Age 2.6306 0.1075 0.0354 0.8511 0.6266 0.4302 0.3593 0.5501 1.5680 0.2130
Drug 0.0865 0.7692 0.8486 0.3588 1.0814 0.3005 0.8972 0.3455 1.0693 0.3032
Age x drug 3.8638 0.0517 5.847 0.0171 0.6889 0.4082 0.0007 0.9785 0.3923 0.5323
Location 0.9090 0.3423 0.3270 0.5685 0.1528 0.6966 1.1549 0.2827 0.9737 0.3258
Age x location 0.0080 0.9287 1.2159 0.2724 0.3757 0.5411 0.1405 0.7085 0.0631 0.8021
Drug x location 0.3476 0.5566 0.5963 0.4415 0.6889 0.4082 0.1069 0.7443 1.0668 0.3038
Age x drug x location 0.0057 0.9399 1.0931 0.2979 0.0158 0.9002 0.0343 0.8535 0.0217 0.8830
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3.2 � DMDC performed on control frequency bands 
produced effects that opposed outcomes 
from biologically relevant signal bands

Five control filters were applied to better understand the 
biological relevance of the initial bandpass analyses: 1) high 
pass filter run above 20 Hz (20 Hz HP) to observe the slow 
gamma, fast gamma, and SWR filters together (excluding 
theta), 2) low pass filter run below 100 Hz (100 Hz LP) to 
observe all of the previously studied spatial navigation fil-
ters together, 3) high pass filter was executed above 100 Hz 
(100 Hz HP) to exclude the spatial navigation bands previ-
ously studied, 4) bandpass from 100–135 Hz outside of the 
frequencies ascribed to spatial navigation bands to act as a 
band range control (similar to the band ranges for slow and 
fast gamma), and 5) bandpass from 4–100 Hz in conjunc-
tion with the SWR band pass (SWR + 4–100 Hz). Previous 
research has shown that there may be correlation in activity 
of SWR and the gamma ranges (Carr et al., 2012; Pfeiffer 
& Foster, 2015).

Effects of age, drug, and location on Dimension or Volume 
for these control conditions were sparse (Fig. 3, significant 
and non-significant statistics in Table 2). No main effects of 
age, drug, or location on Dimension or Volume were reported 
by DMDC for the 100 Hz LP or the 4–100 + SWR group. For 
the 20 Hz HP, and in an opposing direction to results from 
individually analyzed slow gamma, fast gamma, and SWRs, 
Younger animals had a significantly higher Dimension 
than Older animals [main effect of age: F(1,124) = 5.4401,  
p = 0.0214] with no effect of drug or location. An age x  
drug interaction effect on Dimension opposite to that 
shown for the theta band was observed for the 20 Hz high  
pass filter [F(1,124) = 4.8780, p = 0.0291]. Dimension 
was increased for signals from Younger animals receiving 
CX614 compared to those receiving vehicle (p < 0.05) and 
decreased for signals from Older animals receiving CX614  
compared to those receiving vehicle (p < 0.05). Volume was 
not impacted by age, drug, or location for the 20 Hz HP  
filtered signals. For the 100 Hz HP group, signals from 
Younger animals had a significantly higher Dimensions 
than Older animals [F(1,124) = 111.1, p < 0.0001] with no 
effect of drug or location. No main effect of age, drug, or 
location on Volume was observed for the 100 Hz HP fil-
tered signals. For the 100 to 135 Hz bandpass, Dimension 
was higher in signals captured from Younger animals than 
it was in signals from Older animals [ main effect of age: 
F(1,124) = 27.8362, p < 0.0001], with no effect of drug or 
location. There was no main effect of age, drug, or location 
on Volume for the 100 to 135 Hz bandpass filtered signals. 
Thus, similar to the DMDC output for biologically relevant 
oscillation bands, Volume was not sensitive to age, drug, or 
location for any of the control filtered signals and Dimen-
sion was affected almost exclusively by age (barring one  

age by drug interaction). Interestingly, main and interaction 
effects observed in the control conditions were all opposite 
of those observed in the biologically relevant signals.

3.3 � More traditional power analyses revealed age 
and location effects for biologically relevant 
oscillation bands that contrasted DMDC outcomes

To compare DMDC output to more traditional power analy-
ses, we calculated average power (Fig. 4A) and event rate 
(Fig. 4B) across biologically relevant oscillation frequency 
bands and compared across frequency ranges, age, drug, and 
location groups. The SWR band was not included because 
the wavelet calculation spans from 1 to 100 Hz to align 
with the analyses performed in McHail and Dumas (2020). 

Fig. 3   Dimension and Volume outcomes for control oscillation fre-
quency groups separated by age and drug conditions. A Means and 
confidence intervals for Dimension across frequency groups. LFP sig-
nals from Younger animals exhibited higher Dimension of 20 Hz HP, 
100 Hz HP, and 100–135 Hz filters compared to Older animals. # rep-
resents a main effect of location. B Means and confidence intervals 
for Volume across frequency groups. Volume was unaffected by age, 
drug, or location conditions. Signals recorded from Older animals 
contained more events in the theta band than signals recorded from 
Younger animals. * represents a main effect of age
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Average power differed across frequency range groups 
[F(2,249) = 98.4353, p < 0.0001]. Average power was higher 
in theta than slow gamma (p < 0.05) or fast gamma (p < 0.05) 
and average power in slow gamma was higher than fast 
gamma (p < 0.05). This outcome was expected since the 1/f 
relationship of frequency and power in natural signals usu-
ally results in higher power at lower frequencies. There was a 
location effect for both slow [F(1,82) = 12.4241, p = 0.0007] 
and fast gamma bands [F(1,82) = 29.0083, p < 0.0001]. Slow 
gamma power was increased in animals in the center of the 
maze compared to animals in the outer portion of the maze 
(p < 0.05), while fast gamma power was decreased for ani-
mals in the center of the maze compared to animals in the 
outer portion of the maze (p < 0.05). There was no main 
effect of age, drug, or location on average power in the theta 
band. There were no interaction effects on average power 
seen amongst the three filters.

There was a significant difference in event rate 
between the three frequency ranges [F(2, 249) = 158.6187, 
p < 0.0001] (Fig. 4B). The theta frequency range had more 
events than the slow gamma (p < 0.05) or fast gamma 
(p < 0.05) and slow gamma had more events than fast 
gamma (p < 0.05). Signals recorded from Older animals 
contained more events in the theta band [main effect of age: 
F(1,82) = 8.8462, p = 0.0039], but there was no effect of drug 
or location. There was also an interaction effect of age x 
drug on theta event rate [F(1,82) = 4.4891, p = 0.0374]. Sig-
nals from Older animals receiving CX614 contained more 
events in the theta band compared to animals receiving vehi-
cle (p < 0.05), while Younger animals receiving CX614 had 
a lower event rate than vehicle counterparts (p < 0.05). There 

was no main effect of age, drug, or location on slow or fast 
gamma event rate. Thus, mean power and event rate results 
from more traditional analyses identify location but not age 
effects better than DMDC.

3.4 � DMDC does not differentiate between alternation 
and non‑alternation trials

We next determined if DMDC could distinguish between trials 
in which the animal subsequently alternated or did not alternate 
in its maze arm selection. Signals from outer arm regions were 
omitted and signals collected when the animal was facing the 
maze center were compared across age, drug, and alternation 
versus non-alternation categories for all filter types applied 
to the prior location comparisons. DMDC did not report any 
effect of alternation versus non-alternation on Dimension or 
Volume in the unfiltered, theta, slow gamma, fast gamma, 
SWR, 20 Hz High Pass, 100 Hz LP, 100 Hz HP, 100–135 Hz, 
or 4–100 Hz + SWR conditions (Table 3). Combined with the 
initial DMDC outcomes, it appears that DMDC better identifies 
more static or holistic features of the LFP signals (age) than 
short-term signal dynamics (location, alternation).

3.5 � DMDC reveals different dimensions 
and volumes for different LFP filters

Since different filtering types revealed differences in age 
and drug effects, we examined the contribution of filtering 
itself to the DMDC outcomes by directly comparing across 
filter types (unfiltered, theta, slow gamma, fast gamma, 
SWR, 20 Hz HP, 100 Hz LP, 100 Hz HP, 100–135 Hz, 

Table 2   Summary of comparative statistics for Dimension and Volume values extracted from differently filtered control LFPs. Statistically sig-
nificant results are shown in bold red text. F is the ANOVA F ratio. P is the ANOVA probability value

Dimension 20 Hz HP 100 Hz LP 100 Hz HP 100–135 Hz 4–100 Hz + SWR

F P F P F P F P F P

Age 5.4401 0.0214 0.4420 0.5075 111.12  < 0.0001 27.8362  < 0.0001 0.0707 0.7908
Drug 0.0006 0.9799 0.4876 0.4864 2.6472 0.1064 0.3246 0.5699 0.9502 0.3317
Age x drug 4.8780 0.0291 1.115 0.2939 2.9328 0.0894 0.1002 0.7522 1.0759 0.3017
Location 0.3452 0.5580 0.5395 0.4641 0.0149 0.8997 1.3949 0.2400 0.0307 0.8327
Age x location 0.0193 0.8899 0.0590 0.8086 0.0196 0.8889 0.5136 0.4750 0.0448 0.8327
Drug x location 0.0557 0.8138 0.0107 0.9177 0.0001 0.9934 0.0765 0.7825 0.3140 0.5763
Age x drug x location 0.2506 0.6176 0.0013 0.9718 0.0567 0.8122 0.0925 0.7616 1.0542 0.3066
Volume F P F P F P F P F P
Age 0.8213 0.3666 2.1751 0.1429 1.8044 0.1818 0.0694 0.7927 0.0707 0.7908
Drug 0.3986 0.5290 0.0069 0.9337 1.6460 0.2020 2.2187 0.1390 0.9502 0.3317
Age x drug 3.1194 0.0800 3.9053 0.0505 0.0735 0.7868 0.2910 0.5906 1.0759 0.3017
Location 2.0886 0.1511 0.0975 0.7544 0.0517 0.8206 0.8321 0.3635 0.0307 0.8612
Age x location 0.0936 0.7601 0.0001 0.9905 0.0006 0.9807 0.0867 0.7689 0.0448 0.8327
Drug x location 0.0184 0.8923 0.2095 0.6480 0.0166 0.8978 0.3260 0.5691 0.3140 0.5763
Age x drug x location 2.1128 0.1487 0.0707 0.7908 0.1461 0.7030 0.0008 0.9776 1.0542 0.3066
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and 4–100  Hz + SWR) after collapsing across age, 
drug, location, and alternation variables. DMDC found 
multiple significant effects of filter type on Dimension 
[F(9,1250) = 1646.967, p < 0.0001] (Table 4). The only 
filter groups that did not differ were the no filter group 
compared to the fast gamma or 4–100 + SWR group. Also, 
the fast gamma group did not differ from SWR and the 
100–135 Hz group did not differ from 4–100 + SWR.

DMDC also reported a main effect of filter type on 
Volume [F(9,1250) = 107.7878, p < 0.0001] (Table  5). 
Significant pairwise comparisons were more limited than 
for Dimension. Volume for the 20 Hz HP and SWR filter 
groups differed most frequently from the other filter groups 
(p < 0.0001 compared to all other filter groups but not each 
other). Volume for the slow gamma and fast gamma groups 
also differed from the 100 Hz HP group (each at p < 0.0001) 
(Fig. 5B) (Tables 4 and 5).

When Volume was plotted against Dimension (Fig. 6), 
filters that included higher frequency ranges, like the 20 and 
100 Hz high pass, the SWR band pass, appeared to have 
the highest Dimension while filters that included the lowest 
frequency ranges, such as theta, seemed to have the lowest 
Dimension (Fig. 6A).

This trend for a relationship between frequency range 
and Dimension was apparent for Volume as well (Fig. 6B), 
though linear regressions for central tendency of the filter 
group [Dimension: R2 = 0.365, t(9) = 2.15, p = 0.641; Volume: 
R2 = 0.287, t(9) = 1.79, p = 0.1105] or variance of the filter 
group [Dimension: R2 = 0.296, t(9) = 1.83, p = 0.1042; Vol-
ume: R2 = 0.190, t(9) = 1.37, p = 0.2079] versus Dimension or 
Volume were not significant (Fig. 7).

4 � Discussion

Overall, DMDC appears to provide a relatively conserva-
tive view of differences in LFP signals based on age, drug 
treatment, spatial location, or alternation decision during 
free exploration in a Y-maze. Dimension was affected by 
age (increased in slow and fast gamma bands in Older 
subjects), but not drug condition, location, or alterna-
tion decision in biologically relevant oscillation bands. 
Volume was not sensitive to any of these independent 
variables (except one age by drug interaction in the theta 
band). Slow and fast gamma oscillations are mediated by 
separate synaptic inputs into area CA1 with slow gamma 
more closely tied to input from area CA3 and fast gamma 
linked to increases in activity from the entorhinal cor-
tex (Charpak et al., 1995; Colgin et al., 2009). As such, 
increased Dimension in the slow and fast gamma bands 
might reflect continued maturation of CA3 and TA inputs 
into area CA1 across the ages tested. Some age effects 
on Dimension present in control filter conditions may 
reflect age effects in the original bandpass set (age effect 
on Dimension for 20 Hz HP, age x drug interaction for 
Dimension of 20 Hz HP). Age effects were opposite in 
direction of effects seen in the biologically relevant bands 
possibly due to combining biologically relevant frequency 
bands with each other or with intervening frequency 
bands (ex. 20 Hz HP or 100 Hz HP). Lack of effects for 
various control frequency ranges strengthen the notion 

Fig. 4   Mean power and event rate outcomes for biologically relevant 
oscillation frequency groups separated by age and location condi-
tions. A Means and confidence intervals for average power across 
frequency groups. Slow gamma power was greater in LFP signals 
recorded in the inner portion of the arms. Fast gamma power was 
greater in signals recorded in the outer portions of the maze arms. * 
represents a main effect of location. B Means and confidence inter-
vals for event rate across frequency groups. * represents a significant 
main effect of age. # represents a significant main effect of location. 
** represents significant post hoc results for filter type
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Table 3   Summary of comparative statistics for average power and event rate for biologically relevant LFP signals. Statistically significant results 
are shown in bold red text. F is the ANOVA F ratio. P is the ANOVA probability value. SG = slow gamma. FG = fast gamma

Power Theta SG FG

F P F P F P

Age 0.3961 0.531 1.2566 0.2658 0.6980 0.4061
Drug 0.0158 0.9003 0.3703 0.5447 0.0797 0.7785
Drug x age 0.0146 0.9041 0.0016 0.9683 0.0997 0.7531
Location 2.388 0.1264 12.4241 0.0007 29.0083  < 0.0001
Age x location 0.0261 0.8721 0.3752 0.5420 0.2472 0.6205
Drug x location 1.2691 0.2635 1.6480 0.2031 2.3177 0.1321
Drug x age x location 0.6489 0.423 0.2968 0.5876 0.1589 0.6913

Event Rate Theta SG FG

F P F P F P

Age 4.4891 0.0039 1.4513 0.2321 0.6573 0.4201
Drug 0.0776 0.7814 0.1130 0.7367 0.0003 0.9868
Drug x age 8.8462 0.0374 0.0859 0.7702 0.1472 0.7023
Location 3.1809 0.0785 0.6359 0.4277 3.54282 0.0634
Location 3.1809 0.0785 0.6359 0.4277 3.54282 0.0634
Drug x location 1.7549 0.1892 1.6452 0.2035 2.4954 0.1183
Drug x age x location 0.1920 0.6625 0.2756 0.6011 0.0001 0.9905

Table 4   Tukey tests results 
comparing Dimension values 
across filters. * represents a 
p-value equal to or less than 
0.05, ** represents a p-value 
less than 0.01, *** represents 
a p-value less than 0.0001, 
and n.s. represents any p-value 
greater than or equal to 0.05. 
NF = no filter. SG = slow 
gamma. FG = fast gamma. 
SWR = sharp wave ripple

NF Theta SG FG SWR 20 HP 100 LP 100 HP 100–135 4–
100 + SWR

NF *** *** n.s *** *** *** *** ** n.s
Theta *** *** *** *** *** *** *** *** ***
SG *** *** *** *** *** ** *** *** **
FG n.s *** *** n.s *** *** *** ** ***
SWR *** *** *** n.s *** *** *** ** ***
20 HP *** *** *** *** *** *** *** *** ***
100 LP *** *** ** *** *** *** *** *** ***
100 HP *** *** *** *** *** *** *** *** ***
100–135 *** *** *** ** *** *** *** *** *
 4–100 + SWR n.s *** ** *** *** *** *** *** ***

Table 5   Tukey tests results 
comparing Volume values 
across filters. * represents a 
p-value equal to or less than 
0.05, ** represents a p-value 
less than 0.01, *** represents 
a p-value less than 0.0001, 
and n.s. represents any p-value 
greater than or equal to 0.05. 
NF = no filter. SG = slow 
gamma. FG = fast gamma. 
SWR = sharp wave ripple

NF Theta SG FG SWR 20 HP 100 LP 100 HP 100–135 4–
100 + SWR

NF * n.s ** *** *** * *** n.s n.s
Theta * n.s n.s *** *** n.s *** n.s n.s
SG n.s n.s n.s *** *** n.s *** n.s n.s
FG ** n.s n.s *** *** n.s *** n.s n.s
SWR ** *** *** *** n.s *** *** *** ***
20 HP *** *** *** *** n.s *** *** *** ***
100 LP * n.s n.s n.s *** *** *** n.s n.s
100 HP *** *** *** *** *** *** *** *** ***
100–135 n.s n.s n.s n.s *** *** n.s *** n.s
4–100 + SWR * n.s n.s n.s *** *** *** *** n.s
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that, when LFP signals are appropriately filtered, DMDC 
identifies network oscillation frequencies that are altered 
during postnatal development and that may not be appar-
ent using traditional analyses.

Dimension results partially conform with outcomes from 
more traditional analyses previously applied (McHail & 
Dumas, 2020) in that increased Dimension for fast gamma 
recorded in Older subjects parallels an age-related increase 
in fast gamma event rate determined by Morlet wavelets. 
Additionally, an age by drug interaction existed for theta 
Volume and theta event rate following reanalysis with tradi-
tional methods. Theta Volume and event rate decreased after 
administration of CX614 in the Younger group while Vol-
ume and event rate increased after administration of CX614 
in the Older group. However, reanalysis by more traditional 

approaches also revealed location effects that were not cap-
tured by DMDC and produced opposing effects of location 
for slow gamma (higher at choice points) and fast gamma 
power (lower at choice points) and increased theta event 
rate in Older animals. During periods of immobility prior 
to movement to a known goal location, slow gamma power 
in hippocampal area CA1 increases (Leung, 1998) along 
with the frequency of SWRs (Buzsáki et al., 2003; Pfeiffer 
& Foster, 2015). In contrast, fast gamma power increases 
more during spatial navigation (Cabral et al., 2014). Thus, it 
might be expected that slow, but not fast gamma power was 
increased at the Y-maze choice points as we observed. Dif-
ferences between prior and current results for average power 
and event rate may stem from differences in temporal ranges 
used for analyses or different selection criteria for samples. 
In the previous analyses, the entire trial was previewed, 
regardless of animal state or location, and then samples that 
reached event threshold were analyzed (McHail & Dumas, 
2020). Instead, we categorized by position, independent of 
signal quality, and then performed our analyses.

Dimension refers to the minimum number of dimensions 
across which the signal must be projected so as to elimi-
nate any overlapping points in the attractor. Although higher 

Fig. 5   Dimension and Volume outcomes across oscillation frequency 
groups collapsed across age, drug, location, and alternation condi-
tions. A Means and confidence intervals for Dimension across fre-
quency groups. B Means and confidence intervals for Volume across 
frequency groups

Fig. 6   Dimension plotted against Volume when collapsed across age, 
drug, location, and alternation conditions. A Volume versus Dimen-
sion for biologically relevant frequency groups and the no filter con-
trol group. B Volume versus Dimension for control frequency groups
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dimensions provide more degrees of freedom, they may or 
may not be more “complex”. Thus, increased Dimension 
in the slow gamma, fast gamma, and SWR bands of Older 
subjects may suggest a greater number of dynamic states 
the hippocampus is able to achieve within these oscillation 
bands with increasing age. Alternatively, increased Dimen-
sion in slow and fast gamma oscillations with increasing age 
may reflect a more prominent higher dimension state or low 
and high state dimensional embedding. Dimension does not 
align with behavioral attributes (location, alternation choice) 
supporting the idea that the manifolds produced by DMDC 
best reflect more stationary aspects of the LFP signal and 
less so for dynamics that vary within the signal epoch. 
However, the finding that DMDC identified age effects on 
Dimension for slow gamma, fast gamma, and SWR oscil-
lations but not for the unfiltered signal argues that DMDC 
views these oscillation bands differently when isolated or 
when embedded in a more complex signal and may require 
more data to be accurately disentangled when unfiltered. A 
better understanding of the LFP signal parameters that influ-
ence Dimension and Volume may be gleaned by 1) apply-
ing DMDC to artificial LFP signals of known properties 
and measuring the sensitivity to various signal components 
and 2) comparing DMDC outcomes to results from similar 

unsupervised machine learning approaches, such as hidden 
Markov models (Masaracchia et al., 2023).

The filter conditions that tended to yield the highest Dimen-
sion scores were the higher frequency filters. When combined 
with lower frequency oscillations, it might be expected that  
high frequency components enable encoding of more detailed 
information over a fixed epoch. This is consistent with the fact that 
slow gamma oscillations are often embedded in and modulated 
by theta oscillations (Lisman & Jensen, 2013). Thus, the greater  
the coupling between the lower and higher frequency signals, 
the more influence the higher frequency signal may have on 
the Dimension output. Alternatively, the increase in Dimension 
with increasing frequency band could also indicate that separate 
attractors underlie the activity in lower and higher frequency 
ranges that then combine to produce the filtering effect.

Interpretation of Volume may be more straightforward. The 
Volume that DMDC reports is the average length that the attrac-
tor takes to complete an average period. For example, if within a 
sample DMDC detects multiple attractor cycles, the algorithm 
averages the lengths of these cycles to produce a Volume score. 
As this is a one-dimensional temporal signal, Volume is cor-
related to the average period of the events within the signal, 
not necessarily the average frequency detected within a signal 
since events can occur over a number of oscillations. Given that 
Volume tends to increase with the frequency of oscillations in 
these data adds credence to the notion that higher frequencies 
encode more complex events.

It should be noted that the variability in Dimension and Vol-
ume values within groups in the current is much lower than 
would be expected given results from prior applications of 
DMDC (Berry et al., 2013). To explain the reduced error in the 
current study, we should consider how DMDC models an attrac-
tor given the signal input. DMDC compares multiple hypotheti-
cal attractor loops against each other to determine a mean Dimen-
sion and Volume for the attractor of the signal. For example, for 
a 2500 ms signal, if DMDC models an attractor with a Volume 
of 100 ms then it will attempt to determine the dimensionality of 
the 25 periods of the attractor throughout the signal. If Volume 
is short relative to the duration of the signal, it will return a fairly 
consistent measurement when it does indeed capture an attrac-
tor, as it has seen sufficient cycles be able to produce a reliable 
estimate. Thus, the low degree of variance in Volume scores is 
supportive of accurate identification of attractors.

Dimension scores were sometimes higher than expected 
given the length of the input signal (Berry et al., 2013). While 
it is possible that this could indicate complex processes occur-
ring in these frequency ranges, it is more likely that DMDC is 
capturing strong uncorrelated noise where the random vari-
ations in the signal fill the embedding space and produces a 
higher Dimension. This latter scenario appears more likely, as 
a reliable characterization of high dimensional signals (4 +) 
from one dimensional data typically requires sample times that 
contain hundreds of periods of the dynamics. Although our 

Fig. 7   Regression calculation and 95% confidence limits for filter 
range versus mean Dimension or Volume or variability in Dimension 
or Volume. A Linear regression for Dimension Mean plotted against 
filter range. B Linear regression for Volume Mean plotted against 
filter range. C Linear regression for Dimension interquartile range 
(IQR) plotted against filter range. D Linear regression for Volume 
interquartile range (IQR) plotted against filter range
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segments are too short to properly interrogate high dimensional 
dynamics, the more fundamental issue lies in the fact that the 
neuronal state may not persist long enough to acquire the requi-
site observations. It should still be possible to investigate these 
higher dimensional states by concatenating a large number of 
observations of the same state. However this procedure requires 
the initial segregation of the data into different dynamics, which 
presents its own issues. Moreover, multiple electrodes could 
be used to capture sufficient data over short epochs to resolve 
higher dimensions. Regardless, we believe we have shown that 
DMDC reveals signal properties that traditional frequency 
analyses do not and can serve as a complimentary tool to use 
in conjunction with other forms of LFP frequency analyses.

While we used DMDC to combine two different filter bands 
of the same signal (4–100 Hz + SWR), when applied to separate 
recordings from different brain regions or hippocampal subre-
gions, this approach might reveal interstructural attractor states 
(Ventrucci et al., 2014). For instance, area CA1, the subiculum, 
and the entorhinal cortex (EC) work together to both retrieve 
and consolidate spatial memories (Chrobak & Buzáki, 1996; 
Colgin, 2016; Joo & Frank, 2018). In an orthograde direction, 
area CA1 projects separately to the subiculum and the EC and 
the subiculum projects to the EC (Naber et al., 2001). Antidro-
mically, the subiculum projects to area CA1. These pathways 
are likely differentially active both with respect to cognitive 
state. However, it is unclear how and when these structures are 
interacting to retrieve or consolidate spatial memories in awake 
subjects. Thus, separating LFP epochs corresponding to differ-
ent stages of training or memory retrieval trials and analyzing 
the signals from these three sites concurrently via DMDC might 
reveal Dimension and/or Volume outputs that better define dif-
ferent cognitive states.
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