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1 Introduction

LTP can be induced by a variety of stimulation protocols 
in a variety of conditions (Citri & Malenka, 2008). For 
instance, in the hippocampal CA1 neurons, theta-burst 
stimulation (TBS) applied to the entorhinal perforant path-
way synapses at the distal apical tuft dendrites induces LTP 
that is strictly dependent on Na-dSpikes (Kim et al., 2015). 
Hence, we will refer to this form of LTP as a suprathreshold 
LTP with respect to the threshold for Na-dSpike initiation. 
Furthermore, subthreshold LTP has also been observed at 
synapses formed by the CA3 Schaffer collaterals on CA1 
pyramidal cells under a low-frequency stimulation protocol. 
This protocol does not lead to the appearance of Na-dSpikes 
for a certain number of stimulated synapses, but LTP is still 
induced (Magó et al., 2020). In this short communication, 
we would like to show the potential of a single parsimoni-
ous principle, in which a postsynaptic plasticity threshold is 
crossed either by dSpikes or by spatio-temporal summation 
of cooperating synapses, to model these seemingly contra-
dictory findings (Fig. 1).
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Abstract
Long-term potentiation (LTP) is a synaptic mechanism involved in learning and memory. Experiments have shown that 
dendritic sodium spikes (Na-dSpikes) are required for LTP in the distal apical dendrites of CA1 pyramidal cells. On the 
other hand, LTP in perisomatic dendrites can be induced by synaptic input patterns that can be both subthreshold and 
suprathreshold for Na-dSpikes. It is unclear whether these results can be explained by one unifying plasticity mechanism. 
Here, we show in biophysically and morphologically realistic compartmental models of the CA1 pyramidal cell that these 
forms of LTP can be fully accounted for by a simple plasticity rule. We call it the voltage-based Event-Timing-Dependent 
Plasticity (ETDP) rule. The presynaptic event is the presynaptic spike or release of glutamate. The postsynaptic event is 
the local depolarization that exceeds a certain plasticity threshold. Our model reproduced the experimentally observed LTP 
in a variety of protocols, including local pharmacological inhibition of dendritic spikes by tetrodotoxin (TTX). In sum-
mary, we have provided a validation of the voltage-based ETDP, suggesting that this simple plasticity rule can be used to 
model even complex spatiotemporal patterns of long-term synaptic plasticity in neuronal dendrites.
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2 Methods

2.1 Compartmental models of a CA1 pyramidal 
neuron

All simulations were performed using NEURON, which is 
embedded in Python 2.10 (Hines et al., 2009). The back-
ward Euler method was used for numerical integration 
with a time step of 0.025 ms. Two full-morphology com-
partmental models of rat CA1 pyramidal cells (Kim et al., 
2015; Magó et al., 2020) were used for the simulations of 
the LTP experiments. The simulation files of the Kim et 
al. (2015) CA1 model were downloaded from ModelDB 
(https://modeldb.science/), accession number 184054. 
We added 150 excitatory synapses, randomly distributed 
on the apical tuft dendrites of the model (Fig. 2a). While 
spines were not explicitly modelled, the associated surface 
area was accounted for by adjusting the specific mem-
brane resistivity (Rm) and specific membrane capacitance 
(Cm) of compartments located more than 100 μm from the 
soma, which were multiplied by a factor of two. Each syn-
apse was composed of an AMPA and an NMDA conduc-
tance, simulated by the sum of two exponential functions 
with rise time and decay time constants of 0.2 and 2 ms 

for AMPA (Katz et al., 2009) and 1 and 50 ms for NMDA 
(Spruston et al., 1995). Initial peak conductances were 
randomly selected from a lognormal distribution (mean 
0.18, sigma 0.35 nS) for both AMPA and NMDA synapses 
(Rößler et al., 2023). The voltage-dependent magnesium 
block of the NMDAR was simulated using the equation: 
gMg =

[
1 + 0.2801×Mg2+ext × exp (−0.062× (V − 10))

]−1

, where Mg2+ext = 1 mM is the Mg2+ concentration in the 
bath and V  is the local dendritic voltage (Kim et al., 2015). 
In addition, we decided to modify the model by turning off 
the slow inactivation of Nav channels, which resulted in a 
better fit to the experimental data. This modification is sup-
ported by a review of the literature and published models 
of CA1 cells (Bloss et al., 2018; Jarsky et al., 2005), as the 
presence or absence of slow inactivation in sodium channels 
varies across different neuronal models and experimental 
observations.

The model of Magó et al. (2020) from the ModelDB 
(accession number 265511) included synaptic conduc-
tances: AMPA had a rise time of 0.1 ms, a decay time 
of 1 ms, and a maximum conductance of 0.6 nS, while 
NMDA had a rise time of 2 ms, a decay time of 50 ms, 
and a maximum conductance of 0.8 nS. The voltage-depen-
dent magnesium block was simulated using the equation 

Fig. 1 The Event-Timing-Dependent Plasticity rule. On the left is the 
nearest-neighbor implementation of ETDP, where each presynaptic 
event (pre) is paired with a postsynaptic event (post) that occurred 
before and one that occurred after the presynaptic event. The resulting 

synaptic weight change is the sum of the two. On the right, a presyn-
aptic event is detected when a presynaptic spike or glutamate release 
occurs, and a postsynaptic event is detected when the EPSP at the site 
of the synapse exceeds a threshold value of -37 mV
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Fig. 2 Simulations of suprathreshold LTP in apical tuft dendrites of the 
CA1 pyramidal cell. (a) Random placement of 150 excitatory synapses 
with AMPA and NMDA receptors along the apical tuft dendrites. (b) 
Comparison of the plasticity results obtained from the simulations of 
four different theta-burst stimulation (TBS) protocols with experimen-
tal results from Kim et al. (2015). The average LTP 1 min after TBS 
is shown as the mean of all synaptic weights ± SEM for each protocol. 

(c) Detailed analysis of the first burst under different stimulation pro-
tocols. Synaptic weight changes are shown as a function of time. (d) 
Effect of TTX on Na-dSpike generation. Sodium currents were mea-
sured from the same dendritic location in both control and TTX condi-
tions. (e) Model predictions for LTP as a function of distance from the 
soma for different stimulation protocols, including those under TTX 
conditions
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ETDP synaptic plasticity rule (Fig. 1). In the ETDP, a 
presynaptic event is a presynaptic spike, while a post-
synaptic event is detected when the voltage at the synap-
tic site exceeds the threshold of -37 mV (Jedlicka et al., 
2015). Nearest-neighbor pairing was used to match pre-
synaptic and postsynaptic events, where each presynaptic 
event was paired with a postsynaptic event that occurred 
before it and one after it. Weight change is calculated 
using the formula: w (t + δt) = w (t)× (1 + ∆wp −∆wd), 
where ∆wp  is positive weight change (potentiation, LTP) 
and ∆wd  is negative weight change (depression, LTD). 
Potentiation occurs when the presynaptic event preceded 
the postsynaptic event. Conversely, depression occurs 
when the postsynaptic event precedes the presynaptic 
spike. Thus, ∆wp  and ∆wd  are calculated according to 
the formula: ∆wp (∆t) = Ap × exp (−∆t/τp)  if ∆t > 0  
and ∆wd (∆t) = Ad × exp (∆t/τd) if ∆t < 0 , where 

gMg = g0
(
1 +Mg2+ext/4.3× exp (−0.071× V )

)−1 where 
Mg2+ext = 1 mM is the Mg2+ concentration in the bath and 
V  is the local dendritic voltage (Magó et al., 2020). In this 
model, synapses were placed on high-impedance dendritic 
spines consisting of a spine neck (length: 1.58 μm; diam-
eter: 0.077 μm) and a spine head (length: 0.5 μm; diameter: 
0.5 μm) with a total neck resistance of ~ 500MΩ (Harnett et 
al., 2012). Two, three, four or eight spines were placed on 
distal dendritic segments of 5 selected perisomatic dendrites 
(x = 0.96, Fig. 3a). To account for spines, Cm was increased, 
and Rm was decreased by a factor of 2 in dendritic compart-
ments beyond 100 μm from the soma (Magó et al., 2020).

2.2 ETDP synaptic plasticity rule

To model synaptic plasticity, the AMPA conductance rep-
resenting synaptic weight was modified according to the 

Fig. 3 Simulations of the subthreshold and suprathreshold LTP in 
the perisomatic dendrites of the CA1 pyramidal cell. (a) Location of 
high-impedance dendritic spines with activated synapses (red dots) at 
the distal ends of highlighted perisomatic dendrites (dark blue). (b) 
Summary plot of induced LTP compared with experimental data from 

Magó et al. (2020) (mean ± SEM). (c) Evolution of synaptic weights 
of individual synapses for different scenarios. (d) Voltage traces from 
one spine head. (e) Dendritic voltage (top panel) with the − 37 mV 
threshold horizontal line and the evolution of the corresponding syn-
aptic weights during the entire stimulation protocol
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Figure 2c shows a detailed illustration of the first burst 
of TBS consisting of five presynaptic spikes delivered at 
a frequency of 100 Hz (top panel). For the 2stim_3xTBS 
protocol, only one Na-dSpike per one burst was detected as 
a postsynaptic event by the ETDP rule. The 5stim_3xTBS 
protocol elicited two Na-dSpikes while the 5stim_3xTBS 
protocol under somatic voltage clamp, i.e., 5stim_3xTBS_
VClamp, elicited three Na-dSpikes per one burst. The 
5stim_3xTBS_IClamp protocol involved three brief somatic 
current injections and also resulted in three Na-dSpikes per 
one burst. As in the experiment, there was no statistically 
significant difference between the average LTP induced 
by all these 5stim_3xTBS protocols (p > 0.05, one-way 
ANOVA). However, the 2stim_3xTBS protocol resulted in 
a significantly smaller LTP magnitude compared to the three 
5stim_3xTBS (p < 0.05, one-way ANOVA).

In Fig. 2d, the top panel shows the local dendritic volt-
age for the 5stim_3xTBS, while the bottom panel shows 
the sodium current from the same dendritic location in both 
control and TTX conditions. In the control condition, two 
Na-dSpikes were observed, as evidenced by the inward 
sodium current. To simulate the effect of locally applied 
TTX, we reduced the sodium conductance in the dendrites 
by half. This manipulation prevented the induction of the 
Na-dSpike, as evidenced by the absence of significant 
changes in the dendritic voltage and sodium current under 
the TTX condition in agreement with Kim et al. (2015).

The predictions of the model are presented in Fig. 2e, 
which shows the distribution of potentiated synapses with 
the distance from soma. On average, we can see the stron-
gest LTP in the middle part of the apical tuft based on a 
parabolic fit.

3.2 Simulations of subthreshold and 
suprathreshold LTP in perisomatic dendrites

Using the low-frequency stimulation (LFS) protocol 
described in Methods, we modelled four scenarios in which 
we activated two, three, four, or eight synapses located at 
the distal ends of perisomatic dendrites (red dots on high-
lighted branches in Fig. 3a). The resulting LTP shown in 
Fig. 3b (green bars) represents the average LTP across all 
simulations for a given scenario and comparison with the 
experimental data of Magó et al. (2020) (the seventh min-
ute after HFS ± SEM from Fig. 3e for 3 or 4 synapses and 
from Fig. 5b for 8 synapses, grey bars). The results showed 
that LTP was induced when three or more synapses were 
activated, which is consistent with the results of Magó et al. 
(2020). For all numbers of spines, there was no significant 
difference in the magnitude of LTP between simulated and 
experimental data (Student’s t-test, p > 0.05). Figure 3c and 
d show that when three or more synapses were stimulated, 

∆t = tpost − tpre , Ap  and Ad  are potentiation and depres-
sion amplitudes, respectively, τp  and τd  are decay constants 
for the time windows of plasticity. The values of Ap = 0.009

Ad = 0.0012 for the TBS protocol, Ap = 0.0035, Ad = 0.001 
for the LFS protocol and τp = τd = 15ms  for both proto-
cols were optimized by hand. The model is very sensitive 
to the value of the postsynaptic event threshold, while LTP 
and LTD amplitudes and decay constants only influence the 
quantitative match.

2.3 Stimulation protocols

For suprathreshold LTP, the 2stim_3xTBS stimulation proto-
col consisted of 3 trains of 2 pulses delivered at 100 Hz with 
a theta (5 Hz) interburst frequency repeated 3 times at 4 s 
intervals. The 5stim_3xTBS stimulation protocol consisted 
of 3 trains of 5 pulses delivered at 100 Hz with a theta (5 Hz) 
interburst frequency, repeated 3 times at 4 s intervals. Each 
5stim_3xTBS protocol was simulated: (1) paired with brief 
(2 ms) somatic current injections at 50 Hz to elicit 3 action 
potentials during each burst (5stim_3xTBS_IClamp), (2) 
with the soma voltage clamped at − 70 mV (5stim_3xTBS_
VClamp), or (3) alone (5stim_3xTBS) (Kim et al., 2015). 
The protocol used to induce subthreshold and suprathresh-
old LTP in perisomatic dendrites consisted of delivering 50 
quasi-synchronous stimulations of selected spines (with a 
stimulus interval of 0.1 ms between spines) at a frequency 
of 3 Hz. Before and after the stimulation protocol, a set of 
four spines was stimulated separately, with a 200 ms inter-
val between spines, and the trials were repeated at 0.5 Hz 
(Magó et al., 2020). Each simulation involved clustered 
spines on a single distal dendritic segment, with multiple 
simulations conducted for different dendrites to include the 
impact of spine positioning on synaptic plasticity.

3 Results

3.1 Simulations of suprathreshold LTP in apical tuft 
dendrites

Figure 2b summarizes the plasticity results from the com-
partmental model and compares them with the experimental 
results obtained by Kim et al. (2015), using the parameter 
configuration described above. The results of the simula-
tions are given as averages of 5 runs (± SEM). The experi-
mental results are taken from Fig. 6b of Kim et al. (2015) as 
average LTP from all synapses 1 min after TBS ± SEM. For 
all protocols, there was no significant difference p > 0.05 in 
the magnitude of LTP between simulated and experimental 
data. Student t-tests were performed using the NumPy and 
SciPy packages.
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