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Abstract
To understand single neuron computation, it is necessary to know how specific physiological parameters affect neural spiking  
patterns that emerge in response to specific stimuli. Here we present a computational pipeline combining biophysical and 
statistical models that provides a link between variation in functional ion channel expression and changes in single neuron  
stimulus encoding. More specifically, we create a mapping from biophysical model parameters to stimulus encoding  
statistical model parameters. Biophysical models provide mechanistic insight, whereas statistical models can identify asso-
ciations between spiking patterns and the stimuli they encode. We used public biophysical models of two morphologically 
and functionally distinct projection neuron cell types: mitral cells (MCs) of the main olfactory bulb, and layer V cortical 
pyramidal cells (PCs). We first simulated sequences of action potentials according to certain stimuli while scaling individual 
ion channel conductances. We then fitted point process generalized linear models (PP-GLMs), and we constructed a mapping 
between the parameters in the two types of models. This framework lets us detect effects on stimulus encoding of changing 
an ion channel conductance. The computational pipeline combines models across scales and can be applied as a screen of 
channels, in any cell type of interest, to identify ways that channel properties influence single neuron computation.

Keywords  Single neuron stimulus encoding · Compartmental Hodgkin-Huxley model · Point process GLM

1  Introduction

A long-standing challenge in neuroscience is to understand 
how a cell’s physiological properties give rise to single 
neuron stimulus encoding (Gjorgjieva et al., 2016), which 
concerns how information about a stimulus is represented 
in neural spike trains (Paninski et al., 2007). In this paper,  
we aim to build a quantitative bridge from a cell’s biophysi-
cal properties to its functional properties, depicting how 
injected current influences the neuron’s firing rate, includ-
ing the neuron’s self-excitation effect (Pillow et al., 2008). 
A cell’s physiological and computational properties emerge 
from biophysical mechanisms such as its membrane proper-
ties, ion channel expression and distribution, and morphol-
ogy. There is considerable variation in both biophysical 
properties (Jiang et al., 2015; Scala et al., 2019; Gouwens  
et  al.,  2019; Scala et  al.,  2020; Gouwens et  al.,  2020)  
and stimulus encoding properties (Padmanabhan and Urban,  
2014; Angelo and Margrie,  2011; Angelo et  al.,  2012; 
Scala et al., 2020); Gouwens et al., 2020). This is partially  
due to variation in ion channel expression (Padmanabhan and  
Urban, 2014; Angelo and Margrie, 2011; Angelo et al.,  
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2012; Scala et  al.,  2020; Gouwens et  al.,  2020). Even  
in recent patch-seq studies (Scala et al., 2020; Gouwens 
et al., 2020), information about what ion channel subtypes 
are formed and their subcellular distribution is inadequate. 
This lack of information about functional ion channel 
expression makes the link to the computational behavior 
difficult to assess, which is an essential step to understand 
how variation in observed biophysical building blocks con-
tributes to a diverse and flexible neural code in single cells, 
circuits, and ultimately behavior.

This work is motivated by electrophysiological experi-
mentation, where researchers aim to understand how 
pharmacological treatment affects the behavior of firing 
neurons. The current pharmacological approach to treat-
ing many nervous system disorders is by direct or indirect 
modulation of biophysical features, namely ion channels. 
At present, gathering enough experimental data to estimate 
biophysical parameters that govern ion channel properties 
is cumbersome. There are some recent efforts to determine 
subsets of properties individually through experiments (Hay  
et  al.,  2011; Gouwens et  al.,  2018; Keren et  al.,  2005, 
2009; Almog and Korngreen, 2014), but it is still infeasi-
ble to robustly acquire both biophysical and computational 
properties in the same experiment. So in this study, we 
instead employ biophysical simulators using compartmen-
tal Hodgkin-Huxley models. This allows full control and 
interrogation of the underlying mechanisms, as well as an 
ability to simulate complex responses to arbitrary stimuli. 
We use these models as an approximation of how a cell 
would respond to a given stimulus, but with known func-
tional ion channel expression and morphology. We utilize 
existing templates with rigorous fitting and tuning (Keren 
et al., 2005, 2009; Almog and Korngreen, 2014).

Despite their delicate details, biophysical models, such  
as the Hodgkin-Huxley model, leave open for description  
of a neuron’s spike train firing patterns and, thus, its com-
putational function. Statistical models, such as point process  
generalized linear models (PP-GLMs), use a simple set of 
parameters to determine the encoding process (Truccolo et al.,  
2005; Pillow et  al.,  2008; Kass et  al.,  2014), but lack  
mechanistic insight into what drives stimulus encoding pat-
terns. Connecting these two modeling approaches could pro-
vide new insights. In a pair of previous publications (Meng 
et al., 2011, 2014), biophysical model parameters have been 
inferred using statistical models, but our purpose in the  
work reported here is different. This paper provides a novel 
method that links stimulus encoding to a cell’s biophysical 
properties. We leverage the strengths of each type of model 
to create a mapping from one set of parameters to the other, 
which enables us to detect changes in stimulus encoding  
when an ion channel conductance is changed. Because such 
a mapping is typically not analytically tractable, we chose 
a data-driven strategy and we simplified the problem by 

examining the ways that stimulus encoding depends on the 
conductance of individual ion channels (rather than multiple 
channels perturbed together at the moment). We applied the 
pipeline to two morphologically and functionally distinct pro-
jection neuron cell types: the mitral cell (MC) of the mamma-
lian main olfactory bulb (Bhalla and Bower, 1993), and the L5 
cortical pyramidal cell (PC) (Almog and Korngreen, 2014). 
The approach is general and could be applied to any cell type 
of interest for which biophysical models are available. Our 
goal is to suggest a method that could begin to explain how  
a neuron’s functional properties arise from its physiology.

2 � Methods

The goal of the method is to quantify how ion channels 
affect stimulus encoding. Biophysical models, like mor-
phologically detailed compartmental Hodgkin-Huxley 
type models, capture biological mechanisms, but lack clear 
interpretation of stimulus encoding in terms of biological 
mechanisms. Statistical models, like the PP-GLM, repre-
sent stimulus response features and incorporate post-spike 
history in a computationally tractable manner, but lack 
mechanistic insight (Weber and Pillow, 2017). Our method 
links these two types of models by combining biophysical 
model output to fit PP-GLM parameters, and then relating 
PP-GLM parameters to the underlying biophysical param-
eters. The combined analysis pipeline is depicted in Fig. 1. 
Each portion of the analysis pipeline will be expanded 
upon in the following sections. We first set up a realis-
tic compartmental Hodgkin-Huxley simulator and proper 
input signal (Fig. 1A). Next, we perform the biophysical 
simulation to collect the spike trains and repeat the pro-
cess with different channel conductances (Fig. 1B). Last, 
we jointly train the model using the spikes train with dif-
ferent channel conductances and identify which PP-GLM 
features are highly influenced by the channel conductances 
(Fig. 1C). Although we have not done so here, the pipeline  
can be applied to any existing conductance-based bio-
physical model, and may guide further experimental testing  
and validation of novel biological insights (Fig. 1D). Code 
and data of this work are available at https://​github.​com/​
alber​tyuch​en/​bioph​ysical_​ppglm.

2.1 � Biophysical model

In order to understand how functional ion channel expression 
affects stimulus encoding, it is necessary to have confidence 
in many parameters of ion channel dynamics and distribu-
tions. It is experimentally difficult to gather sufficient infor-
mation about both the cell’s functional ion channel expres-
sion and the cell’s stimulus encoding in a typical whole-cell 
patch clamp recording. To overcome these  challenges, we 

https://github.com/albertyuchen/biophysical_ppglm
https://github.com/albertyuchen/biophysical_ppglm
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instead used detailed biophysical models with necessarily 
known functional ion channel expression. Then we simu-
lated somatic membrane voltage ( Vm ) responses to injection 
of pink noise to evaluate the stimulus encoding properties 
of a given model. The biophysical modeling portion of the 
pipeline is shown in Fig. 1A, B. We tailored our biophysical 
model simulations on an idealized version of an actual patch 
clamp experiment to collect spiking data, later used to fit the 
statistical model (Fig. 1C).

Biophysical model simulations were made in NEURON 
v7.4 or 7.6 (Carnevale and Hines, 2006) on a personal com-
puter or the Pitt Center for Research Computing cluster. 
Simulations were performed with fixed time-step integration 
at 40 kHz. We used two previously published neuron mod-
els with code available from ModelDB (Hines et al., 2004). 
These included two distinct cell projection cell types: the 
rodent olfactory bulb MC (Bhalla and Bower, 1993), and the 
rodent L5 PC (Almog and Korngreen, 2014). Each model has 
detailed 3D morphology based on reconstructions and non-
uniformly distributed conductances in the somatic and den-
dritic compartments which have been constrained to data. Ion 

channel kinetics were based on Hodgkin-Huxley type models 
(Hodgkin and Huxley, 1952). We assume here that morphol-
ogy was known, spatial distributions of ion channels were 
known, and that ion channel kinetics were known. Therefore, 
we have not varied any of the existing morphological, dis-
tribution, or kinetics parameters from their previous imple-
mentations. This paper is motivated by electrophysiological 
experimentation and mainly focuses on potassium channels, 
sodium channels, and calcium channels as these are targets 
of commonly used pharmacological treatments, such as TTX 
and Co2+ (Almog and Korngreen, 2014).

Our goal is to simulate a whole-cell patch clamp experi-
ment used to ascertain a cell’s stimulus encoding properties. 
Typically this is through the somatic current clamp configu-
ration simultaneously recording somatic Vm and injecting a 
stimulus with a broad range of frequency components. To 
exclude any confounding circuit effects, synaptic activity is 
often blocked pharmacologically, thus our models do not con-
tain any synaptic conductances. All biophysical model simu-
lations were based on the current clamp configuration, with 
somatic stimulus current injection and somatic Vm recording.

ental 
Hodgkin-Huxley model

Simulate responses to pink noise

3 s pink noise + DC

20 - 35 Hz firing rate

100 trials with 
correlated pink noise

Biologically 
realistic trial-to-
trial correlations

Increase and decrease each conductance by a set of relevant scaling factors
Repeat simulations

gk * 0.01 gk * 0.05 gk * 0.2 gk * 0.5 gk * 0.8 gk * 1 gk * 1.2 gk * 1.5 gk * 2 gk * 3

Total change of the statistical model 
features as the channel changes Repeat in more biophysical 

models

Pull out key insights into 
channel relationships to 
stimulus encoding

Make predictions

Guide experiments

0 3 8 14 22 33 47 67 93 127
Stimulus filter basis peaks [ms]

KDRs
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Fig. 1   The combined biophysical and statistical modeling paradigm. A 
Schematic of biophysical modeling approach to simulate spike trains. 
See section  2.1. B Conductance of the kth channel ( gk ) in the model 
multiplied by a scaling factor to globally increase or decrease gk .  
Shading indicates gk increased (red) or decreased (blue) compared to   
the control (gray). See section 2.1, Fig. 2. C A summary of channel con-
ductance influence on stimulus filter. The dot shows the total variance  
of the stimulus filter features across different channel conductances 

(defined in Eq. (8)). Each column indicates a specific stimulus filter 
feature in a certain time range. Darker color means the feature is more 
strongly modulated by channel conductance (see section  2.3, Figs.  4 
and 5). For example, KCa channel strongly modulates neural response 
roughly around 5 to 30 ms post-stimulus. As a contract, KDRs does not 
affect stimulus encoding significantly. Data are fitted with a statistical 
model PP-GLMs (see section  2.2 and Figs.  3  and  4). D Examples of 
next steps for using the pipeline to explore stimulus encoding
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Broadband noise is a rich source of stimuli across a wide 
range of the frequency spectrum often used to approximate 
the collection of synaptic events reaching the soma (Tripathy 
et al., 2013). We used 100 trials of a 3 s stimulus of broad-
band pink noise riding on a direct current (DC) offset. The 
fluctuating stimulus signal was made by Gaussian white noise 
convolved with an alpha function: �(t) = (t∕�) ∗ exp(−t∕�) 
with � = 3 ms (Galán et al., 2008).  The same  signal  is 
repeated over many trials. To mimic biological trial-to-trial 
variability, we produced sets of  pink noise added upon the 
signal that vary from trial to trial, as described previously 
(Burton et al., 2012). Thus each trial’s stimulus is the sum of 
a parent signal and a newly generated noise . The DC offset, 
the noise standard deviation, and the trial-to-trial noise corre-
lation were determined empirically by comparing biophysical 
model outputs to experimental values.

To account for biologically realistic parameter variation, 
we varied individual ion channel conductances globally by a 
scaling factor. A set of conductance scaling factors was cho-
sen to represent a biologically realistic parameter variation 
of about 6-fold (Marder, 2011), while also including nearly 
complete removal (99%) of a conductance. Although the 
complete absence of a conductance may not be likely under 
normal cell-to-cell variation, it may represent a genetic 
ablation, mutation, or near-fully effective pharmacological 
block. The scaling factors set included 0.01, 0.05, 0.2, 0.5, 
0.8, 1.0, 1.2, 1.5, 2.0, 3.0 (Fig. 1b). We simulated Vm in 
response to the same 100 trials of correlated pink noise for 
each ion channel and for each scaling factor (Fig. 1B). The 
resulting spiking data were used to fit the PP-GLMs. The 
spike times were defined as the time when Vm crossed the 
threshold of 0 mV. Then the spike times were binned into 1 
ms intervals. The time bin was small enough that each bin 
contains at most one spike.

2.2 � Statistical model

The PP-GLM has been widely applied in electrophysiological 
recordings to model the patterns of spike trains due to its flex-
ibility, simplicity, and versatility (Kass et al., 2014; Truccolo  
et al., 2005; Pillow et al., 2008; Weber and Pillow, 2017; 
Østergaard et al., 2017). The PP-GLM includes a stimulus 
filter, a post-spike history filter, a baseline, and a nonlinear 
link function as shown in Fig. 3D. The probability of observ-
ing a spike at j’th time bin is [p(i)]j given the stimulus and the 
post-spike history up to time bin j (the conditional notation 
is removed for simplicity). The subscript (i) indicates the 
quantity of ion channel conductance scaling factor gi (see 
section 2.1). For one time bin j, the influence of the stimulus 
is 
∑Tk

t=0
k(t)s(j − t) , Tk is the length of the stimulus filter k. s 

is the vector of the stimulus. The calculation for all time bins 

is equivalent to convolution, so the notation is simplified to 
[k⊗ s]j , where ⊗ denotes the convolution, [⋅]j indicates the 
data at the j’th time bin. Similarly, the influence of the spikes 
is 
∑Th

t=0
h(t)y(j − t) = [h⊗ y]j , Th is the length of the post-

spike history filter h. y is the vector of binary spike trains. 
logit([p(i)]j) is modeled as a linear combination of the vari-
ables, which is also known as the logistic regression.

In this PP-GLM, we need to estimate the baseline, the 
stimulus filter k(i)(⋅) and the post-spike history filter h(i)(⋅) . 
Both filters are fitted using with bases K, H. K has dK bases 
{k1, ..., kdK} , H has dH bases {h1, ..., hdH} . �

K is the subset for 
the stimulus filter, �H is the subset for the post-spike history 
filter. �baseline is a scalar representing the baseline. The 
design of the bases follows (Pillow et al., 2008. These bases 
can be seen as manually engineered features of the neuron 
firing model. As shown in Fig. 4B, the bases are bell-shaped 
curves, each one makes a contribution to the shape of the 
filter in different lag ranges. The bases are narrower in dura-
tion near the spike time (around lag 0 ms), whereas they are 
wider in duration further from the spike time (larger lag). 
This corresponds to a neuron’s dynamics, which are more 
complex close to spike initiation and less complex further 
from the spike initiation. An example of the linear combina-
tion of stimulus bases and coefficients to generate a stimulus 
filter is depicted in Fig. 4A, B. The coefficients can be 
stacked into a vector �(gi) ∶= � (i) ∈ ℝ

dK + 1+ dH . The features 
of PP-GLM in Eq. (1) is stacked into [x(i)]j in Eq. (4) as the 
covariates for regression, so logit([p(i)]j) = [x(i)]

T
j
�(gi) is in 

linear form. The log-likelihood of one spike train with T 
time bins is,

 
Here we use the logit link function because of the binary 

spike trains; in the extreme case, if a time bin has two spikes, 
the count still shows one. The link function differs slightly 

(1)logit([p(i)]j) = [k(i) ⊗ s]j + �baseline
(i)

+ [h(i) ⊗ y(i)]j

(2)k(i)(t) = �K
(i),1

k1(t) + ... + �K
(i),dK

kdK (t)

(3)h(i)(t) = �H
(i),i

h1(t) + ... + �H
(i),dH

hdH (t)

(4)[x(i)]
T
j
∶=

(
[k(i),1 ⊗ s]j, ..., [k(i),dK ⊗ s]j, 1, [h(i),1 ⊗ y(i)]j, ..., [h(i),dH ⊗ y(i)]j

)

(5)

�(i)(�(gi)) =

T∑
j= 1

(
[y(i)]j log[p(i)]j + (1 − [y(i)]j) log(1 − [p(i)]j)

)

=

T∑
j= 1

(
[y(i)]j[x(i)]

T
j
�(gi) − log(1 + exp{[x(i)]

T
j
�(gi)})

)
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from closely related works (Truccolo et al., 2005; Pillow 
et al., 2008; Kass et al., 2014) using the logarithmic link 
function. In high firing rate situations, it is easy to verify that 
Poisson regression introduces bias for modeling the binary 
spike train because the data are right-censored (counts larger 
than one are clipped to one), and the bias is larger when the 
firing rate is larger.

The PP-GLM is a powerful model that can capture a rich 
family of spiking patterns (Weber and Pillow, 2017). We 
applied the PP-GLM to spike trains simulated from each bio-
physical model where an individual ion channel conductance 
was scaled differently for each simulation. Thus, for each 
unique set of ion channel conductances we obtained a set of 
corresponding PP-GLM coefficients ( �(gi) ) that reflect dif-
ferences in firing patterns. However, the trend of the changes 
of coefficients with changing ion channel conductances is 
typically noisy, making it difficult to determine how changes 
in coefficients relate to ion channel conductance. The next 
section discusses a method to overcome this problem by 
jointly training different �(gi) together.

2.3 � Linking biophysical and statistical models

To bridge the biophysical model and the statistical model, 
we create a mapping from the biophysical model parameters 
to the PP-GLM parameters. We want to study how the PP-
GLM features, coefficients �(g) , change as functions of the 
ion channel conductance scaling factor g. This mapping can 
quantify the influence of ion channel conductance on the 
spike train patterns.

Spike trains with different ion channel conductances 
can be fitted separately, but this usually leads to noisy and 
unstable results, see an example in Fig. 4E, J. To create a 
smooth mapping between biophysical model parameters and 
PP-GLM parameters, we developed the following model in 
Eq. (6). An example can be found in Fig. 4, a comparison 
between a non-smoothed model (Fig. 4C, E, G, H) and a 
smoothed one (Fig. 4D, F, K, L). As will be shown later, 
some changes of the statistical model can be shrunk to zero, 
meaning the corresponding spike train pattern is not modu-
lated by the channel conductance.

In the biophysical simulation, the ion channel conduct-
ance is scaled with factors ( g1, g2, ..., gB ) in increasing order 
(section 2.1), and the fitted PP-GLM parameters will change 
accordingly. We aim to discover minimal changes in the sta-
tistical models that can explain the changes in the biophysical 
models while maintaining a good fit. By minimal, we mean 
the smallest amount of change in GLM parameters across 
different channel conductances. The PP-GLM models are fit-
ted jointly in Eq. (6), where a penalty is included with the 
log-likelihood to enforce smooth variation of the parameters 
across successive values of conductance (large changes in 

successive conductances are penalized). The log-likelihood 
�(i) is defined in Eq. (5). The form of the penalty defines 
methods called “trend filtering" in generalized nonparametric 
regression (Kim et al., 2009; Ramdas and Tibshirani, 2016). 
As gi may not be set using equal step sizes due to the experi-
ment settings, the changes of the PP-GLM with larger steps 
are expected to be larger than those with smaller steps. The 
term 1∕(gi+1 − gi) in the penalty is used to normalize the step 
size. The �1-norm in the penalty term forces small estimated 
changes to be set to zero. The �1-norm of a vector with size 
N is ‖x‖1 ∶= �x1� + ... + �xN� . If the penalty hyperparameter 
� = 0 , it is equivalent to fitting each dataset independently. If 
� = ∞ , it is equivalent to fitting each dataset using the same 
set of coefficients ( �(g1) = ... = �(gB) ). The optimization 
uses the alternating direction method of multipliers (ADMM) 
algorithm, see Appendix 5.2. for implementation details. The 
algorithm was coded in Matlab R2018a.

For the selection of the penalty hyperparameter � , there is a 
rough trade-off between the smoothness of the change �(g) as 
a function of g and goodness-of-fit. When � is small, the coef-
ficients �(g) have large fluctuations. When � is large, the coef-
ficients �(g) change smoothly, but it undermines the goodness- 
of-fit. The tuning parameter is selected from the set using grid-
search � ∈ Λ = {�max, �max�, �max�

2, ..., �max�
k−1, 0} , where 

k = 22 and � = e−1 . When � = �max , the estimated vector �(g) 
is a constant of g. (See Appendix 5.2. for details about calcu-
lating the �max .) To get the trend as smooth as possible, while 
maintaining a good fit, � is selected using the following rule. 
It selects � as large as possible, while maintaining a reason-
able performance on the validation dataset that is as good as 
the best one.

where �val
(i)

 is the log-likelihood on the test dataset. 70% trials 
were used for training, and 30% trials were used for testing. 
�(gi, �) is obtained from Eq. (6) with respect to gi under the 
penalty hyperparameter � . The likelihood ratio on the valida-
tion dataset between the one with the largest likelihood value 
and the one selected with �∗ is at most � . 𝜁 > 0 is set as a 
very small value ( � = log 1.0005 ) so that the difference is 
not significant. Thus, � is constrained in range where the 
log-likelihood is greater than −� +max�∈Λ �

val
(i)
(�(gi, �)) to 

ensure the selected model has satisfactory performance. 
Then � is chosen with the largest value among Λ to get the 
smoothest trend possible of �(gi) . In Section 4, we will show 
that this selection strategy can achieve a good channel 

(6)

min
�(g1),...,�(gB)

B�
i= 1

−�(i)(�(gi)) + �

B− 1�
i= 1

1

gi+ 1 − gi
‖�(gi) − �(gi+ 1)‖1

(7)

𝜆∗ = argmax
𝜆∈Λ

{
𝜆 ∶

B∑
i= 1

�
val
(i)

(�(gi, 𝜆)) > −𝜁 +max
𝜂∈Λ

B∑
i= 1

�
val
(i)

(�(gi, 𝜂))

}
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conductance prediction performance as well. The fitted 
response filters k(t, gi) ∶= k(i)(t) , h(t, gi) ∶= h(i)(t) and 
b(gi) ∶= �baseline

(i)
(t) obtained under the �∗ show how the chan-

nel conductance factor g influence the shapes of the filters. 
The shapes of the filters reflect the firing patterns and how 
the neuron responds to the external stimulus and its post-
spike history. Statistical inference for the model can be done 
using bootstrapping. (Hastie and Tibshirani, 2015, sec. 6.2) 
provides a complete recipe for the regression problem with 
�1 penalty. The sensitive analysis of � is shown in Appendix 
5.1.. The model is not sensitive to � between, for example, 
log 1.0001 and log 1.05 , where the conclusion will remain 
the same.

2.4 � Quantifying how ion channel conductance 
affects the statistical model

The PP-GLM captures the statistical features of spike 
train patterns. Scaling ion channel conductances can 
change spike firing patterns, and these changes will be 
reflected in PP-GLM parameters. To quantify the relation-
ship between PP-GLM parameters and varying ion channel 
conductances, we define the sum of slopes (SS) for the 
coefficients �(gi) as follows. The changes in variation are 
compressed to a vector for easy visualization and analysis. 
The change of the coefficients with changing ion channel 
conductance represent the change of the corresponding 
features of the stimulus filter (Eq. (2)) and post-spike his-
tory filter (Eq. (3)).

The subscript [q] denotes the entry index of a vector. 
Under a certain penalty hyperparameter � , some coeffi-
cients �(g) may become constants of g. However, other 
coefficients may have a large variance, indicating that 
these coefficients are more correlated with the ion chan-
nel conductance than those that are constant. Coefficients 
with a large SS indicate features of the PP-GLM that are 
strongly affected by an ion channel conductance and thus 
how an ion channel conductance affects a given feature of 
stimulus encoding. The unit of SS is the unit of � divided 
by the unit of gi . In our case, the unit of � is logit spikes/
sec, the unit for gi is arbitrary as it is the scale of the con-
ductance. We discuss additional methods of quantifying 
relationships between ion channel conductance and PP-
GLM parameters (see section 4).

2.5 � Model verification

To verify that the method of PP-GLM fitting with trend 
filtering technique (Eq. (6)) could recover the trend of the 

(8)SS(�)[q] =

B− 1∑
j= 1

1

gj+ 1 − gj
|�(gj)[q] − �(gj+ 1)[q]|

changes defined in Eq. (8), we designed the following set 
of simulations. We used a sequence of PP-GLM models as 
the true model with smooth transitions, and compared the 
estimation with the true model. The model performed well 
in the simulations. The details are in Appendix 5.1..

3 � Results

Here we will demonstrate the entire combined biophysical 
and statistical modeling pipeline.  While the pipeline can 
screen all channels, we will focus on a subset of ion channels 
to emphasize the advantages of this approach. Specifically, 
we will mainly study the MC model's KA channel as it was 
previously verified through electrophysiological experiment 
that reducing the KA channel's conductance changed neural 
information processing (Padmanabhan and Urban, 2014). 
Note that if tuning an ion channel leads to strong inhibition 
with few or no spikes generated, the PP-GLM model cannot 
be trained well. The following sections detail the considera-
tions and analyses applied to evaluating the role of given ion 
channels in stimulus encoding for each step in the pipeline. 
See the Methods in section 2 for detailed implementation 
instructions.

3.1 � Biophysical modeling

We demonstrate the pipeline using two morphologically 
and functionally distinct projection neuron cell type mod-
els, the MC model (Bhalla and Bower, 1993), and the PC 
model (Almog and Korngreen, 2014). We chose these bio-
physical models due to the strict data-driven constraints 
used to set the morphology and optimize the parameters 
defining each model’s functional ion channel expression. 
Both biophysical models also contain non-uniform subcel-
lular ion channel distributions including active conduct-
ances in dendritic compartments (Fig. 2A-D). Although 
we do not consider dendritic inputs, these models implic-
itly capture any effects active dendritic conductances 
may have on stimulus encoding when driven by somatic 
spiking. Tuning the parameters of biophysical models is 
often underconstrained by data and typically many sets 
of model parameters can fit the data equally well (Taylor  
et al. (2009; Marder and Taylor, 2011). Both the MC and 
PC models used here took advantage of varied electro-
physiological datasets and a reduced parameter fitting 
procedure. Subsets of parameters of ion channels are esti-
mated using datasets where ion channels of interest have 
been isolated. This type of reduced parameter fitting pro-
cedure, or parameter peeling procedure, has been shown 
to greatly reduce the variability of parameter estimates and 
avoid local minima (Keren et al., 2009). The MC model 
used data collected from multiple cells as an average MC 
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model behavior, whereas the PC model uses data collected 
from single cells, taking advantage of more robust param-
eter estimation by using recordings from the somatic and 
dendritic compartments (Keren et al., 2005, 2009). Thus, 
both biophysical models used here have strongly data-
driven morphological and functional ion channel expres-
sion parameters.

Our goal is to use the biophysical models to simulate 
an idealized experiment by which we would collect data 
to fit PP-GLMs, while functional ion channel expression 
is known. The biophysical models are used to simulate 
somatic Vm responses to injected stimulus (Fig. 2E-I). The 
stimulus is broadband and is meant to approximate synaptic 

input summation at the soma (Mainen and Sejnowski, 1995) 
(see section 2). Sticking to idealized experimental con-
straints, we simulate a 3 s stimulus repeated for 100 trials. 
To generate trial-to-trial variation in spike timing in the 
deterministic biophysical models, we incorporate correlated 
noise into the stimulus (see section 2).  In section 4 we 
discuss several other options to introduce the trial-to-trial 
variance besides injecting noisy input. The stimulus DC 
offset, standard deviation, and trial-to-trial stimulus correla-
tion are chosen to reflect experimental firing rates and trial-
to-trial spike time correlations at the control (1.0) scaling 
factor (Fig. 2J-M). We repeat the same biophysical model 
idealized experimental simulation for every ion channel in 
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Fig. 2   Biophysical models. A Morphology of the MC. B MC channel 
conductance parameters in subcellular compartments. C, Morphol-
ogy of the PC. D PC channel conductance parameters in subcellular 
compartments as a function of distance from the soma. E An exam-
ple  stimulus injected into the somatic compartment. F, The simulated 
Vm recorded in the somatic compartment resulting from injected pink 

noise stimulus. G-I Zoomed view of the shaded gray region of E-F of 
the mean stimulus (black lines) and 10 individual stimuli (gray traces) 
(G), with corresponding 10 Vm recordings (H) and raster plot of all 
100 trials (I). J-M, Basic statistics of  the simulated trials as a function 
of ion channel conductance scaling factor for the MC model KA(J, K) 
and the PC model CaHVAchannel (L, M)
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a model, while globally scaling the ion channel conductance 
by a set of scaling factors: 0.01, 0.05, 0.2, 0.5. 0.8, 1.0, 1.2, 
1.5, 2.0, 3.0 (see section 2; Figs. 1B and 3B). Unless oth-
erwise mentioned, through the remainder of the text, black 
traces correspond to control or scaling of 1.0; blue traces 
correspond to decreased scaling factors, with the hue dark-
ening with decreasing scaling; and red traces correspond 
to increased scaling factors, with the hue darkening with 
increased scaling. We then use this idealized experiment 
of the simulated spike times in response to the stimulus 
on each trial as the basis for fitting PP-GLM parameters 
(Figs. 1C and 3D-G).

Focusing on the MC KAchannel and the PC CaHVAchannel 
shows marked differences in scaling each ion channel 
conductance on firing rate and trial-to-trial correlations 
(Fig. 2J-M). However, the spike firing dynamics are vastly 
more complex than these simple measures can capture. 
For instance, examining a portion of the stimulus over all 
trials of all scaling factors for the MC KAchannel, we see 

complicated changes in spike firing patterns between tri-
als, with changes in ion channel conductance scaling factors 
(Fig. 3B, C). When decreasing the MC KAion channel con-
ductance from control, spike firing becomes more regular at 
0.8 scaling factor, but then loses all trial-to-trial structures at 
0.5 scaling, before regaining regular firing when decreasing 
the ion channel conductance further (Fig. 3B). Such changes 
are also captured as continuous PSTHs (Fig. 3C). These 
types of changes are not well captured by simple measures 
such as firing rates or trial-to-trial correlations. Therefore, 
to more accurately and systematically quantify the statis-
tical patterns of the spikes, we introduce the PP-GLM in 
the following sections (Fig. 3D-G). The difference between 
firing patterns will also be depicted by the PP-GLM, while 
capturing the stimulus encoding features in a set of PP-GLM 
parameters. This link between biophysical models with 
known functional ion channel conductance and statistical 
models that capture high-dimensional patterns of stimulus 
encoding is the key advance of this pipeline.
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Fig. 3   PP-GLM – a stimulus encoding model. A-C Examples of MC 
biophysical model simulations of KA channel in the same section of 
simulation time in the column: A, one stimulus trial. B Spike raster 
plot for all 100 trials for the indicated conductance scaling factor. C 
PSTH for conductance scaling of 1.5, 1, and 0.05. D PP-GLM dia-
gram. E-G Fitted PP-GLM stimulus filters, post-spike history filters 

and baselines for different conductances. Colors correspond to the 
conductance scaling factor legend. H, I The differences between 
stimulus filters and post-spike history filters. The filter with scalar 1 
is used as a reference shown in dark. The seemingly small difference 
between filters is critical in the goodness-of-fit as will be shown later
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3.2 � Fitting PP‑GLMs

The stimuli and spike trains from biophysical model simu-
lations described above are used as inputs to fit PP-GLMs 
(see section 2; Fig. 3D-G). As discussed above, the spike 
firing patterns change with scaling the MC KAion channel 
conductance (Fig. 3A-C). The changes in spike firing pat-
terns are reflected in changes of the PP-GLM parameters 
for the stimulus filters, the post-spike history filters, and the 
baseline (Fig. 3E-G).

The effect of MC KAchannel conductance scaling on 
the baseline is marked. Increasing the channel conduct-
ances significantly inhibits the firing rate which matches 
well with the conductance dependence of the overall firing 
rate (Figs. 2j and 3G). Fitted stimulus and post-spike history 
filters are shown in Fig. 3E, F. The details of the differ-
ence are shown by calculating a simple subtraction of the 
control scaling factor from all scaling factors (Fig. 3H, I). 
The control scaling factor subtractions reveal how increasing 
MC KAchannel conductance affects different portions of the 
stimulus filters and post-spike history filters (Fig. 3H, I). 
Some of the changes in PP-GLM filters are seemingly small 

and noisy. Does KAchannel only affect the average firing rate 
(baseline) but not the stimulus response (stimulus filter) or 
inter-spike dependency (post-spike history filter)? We will 
show in the next section that some part of the change is due 
to data noise, even it is large, for example, the beginning 
part of the post-spike history filter. Some part is modulated 
by channel conductance even the change is relatively small, 
but it is critical in the goodness-of-fit as will be shown later. 
Forcing all filters to be the same across different channel 
conductances leads to a very poor fit. Next, we will discover 
the clear trends in the PP-GLM parameters with changing 
ion channel conductances.

3.3 � Fitting PP‑GLMs with trend filtering

When the PP-GLMs for an individual ion channel are 
trained independently across a set of ion channel con-
ductance scaling factors, the changes in the stimulus and 
post-spike history filter shapes with conductance scaling 
are often obscured in noise (Fig. 3H, I). In this section, we 
will show how the trend filtering technique smooths such 
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Fig. 4   Jointly fitted PP-GLM. The example is about the MC model 
KA channel. A The stimulus filter (blue trace; k) constructed from Eq. 
(2) (lower), for the KA channel with conductance scaling factor ( gi ) 
of 1 and penalty hyperparameter � of 0. The relative values of coef-
ficients (colored bars; �K

i
 ) corresponding to the peak times of stimulus 

bases functions ( ki ) as in B. B The bases functions ki or hi in Eqs. 2 
and 3 with peaks identified by dots to correspond to the ith coefficient 
(colored dots; �K

i
 ). The unique set of fitted coefficients combine to 

generate a stimulus filter as in A. C, D The values of all stimulus coef-

ficients as a function of gs with no penalty ( � = 0 ; C) and the selected 
penalty hyperparameter � = �∗ according to Eq. (7). Trace colors cor-
respond to coefficient indices in B. The two plots have the same y-axis 
range. E, F the coefficients for post-spike history filters similar to plots 
C, D. The two plots have the same y-axis range. Overlapped stimulus 
filters and post-spike history filters across channel conductance scaling 
factors with no penalty (G, H) and the optimal penalty (K, L). I, J, 
M, N show the differences between filters by subtracting the filter with 
scaling factor 1 as the reference with respect to G, H, K, L
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changes (technical details in section 2.2).   The full set of 
PP-GLMs across conductance scaling factors for an individ-
ual ion channel are trained simultaneously. Thus, by jointly 
training PP-GLMs, we reduce noise and reveal smooth 
changes in the stimulus and post-spike history filters with 
changing ion channel conductance. The goodness-of-fit of 
the PP-GLM is shown in Appendix 5.8.

 PP-GLMs are trained by optimizing a set of coefficients: 
10 coefficients for the stimulus filter, 10 coefficients for 
the post-spike history filter, and 1 baseline coefficient. The 
stimulus filter and the post-spike history filter are mod-
eled as linear combinations of basis functions (see Eqs 2 
and 3; Fig. 4A,B). The design of the bases follows (Pillow 
et al., 2008) (see section 2; Fig. 4B). An example of how 
the stimulus filter shape arises from coefficients is shown 

in Fig. 4A, where the vertical bars represent the coefficient 
values over the time range of its corresponding basis func-
tion. Throughout this section, the coefficient indices and 
corresponding basis functions are represented according 
to the color legend in Fig. 4B, and the peak positions are 
labeled under the figure in Fig. 5A, B, D, E, F, G.

The effect of the trend filtering  is made clear when 
comparing the changes in the stimulus filter coefficients 
(Fig. 4C, D) and the post-spike history filter coefficients 
(Fig. 4E, F) across the set of ion channel conductance 
scaling factors. The variation in coefficient values with 
ion channel conductance scaling is much  larger without  
any smoothness penalty ( � = 0 ; Fig. 4C, E) than the case 
with the optimal trend filtering penalty hyperparameter 
( � = �∗ ; Fig. 4D, F). Trend filtering penalizes changes in 
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results for other channels. A, B SS for stimulus filter (A) and post-
spike history filter (B) coefficients with different choices of penalties. 
SS is defined in Eq. (8), describing how large the coefficients change 
across different channel conductances. The x-axis indicates the peaks 
of the basis, the order is the same as Fig.  4B. The optimal tuning 

parameter �∗ is indicated by a horizontal line. C The log-likelihood 
for model fits with different penalties. The log-likelihood is divided 
by the number of trials. D-G SS for different channels in the MC 
model and the PC model with stimulus coefficients in blue and post-
spike history coefficients in green. The results all use the optimally 
selected penalty hyperparameter
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coefficients between adjacent ion channel conductance 
scaling factors. Therefore, at a moderate penalty, varia-
tion in coefficients with ion channel conductance scaling 
is reduced overall. This reduces variation to near zero for 
coefficients with small, less meaningful variation, whereas 
variation in coefficients with substantial, more meaningful 
variation remains. However, as the penalty hyperparameter 
increases, trend filtering eventually  forces no variation in 
any coefficients, which is undesirable for the goodness-
of-fit (Fig. 5C). Thus, we select an optimal trend filtering 
penalty hyperparameter �∗ to balance smooth variation in 
coefficients with ion channel conductance scaling while 
maintaining goodness-of-fit (Eq. (7); Fig. 5C). We demon-
strate the clarity afforded by the trend filtering technique 
by comparing the stimulus and post-spike history filters 
across the set of MC KAchannel conductance scaling fac-
tors (before applying the trend filtering Fig. 4G, H versus 
after applying the trend filtering Fig. 4K, L). The changes 
are amplified in Fig. 4I, J, M, N correspondingly. Changes 
in the shapes of the stimulus and post-spike history filters 
are much more clear, including in the trends from decreas-
ing to increasing MC KAchannel conductances (Fig. 4G-J). 
After imposing smoothness of fitted parameters across suc-
cessive conductances, the variance at the tail of the stimu-
lus filters, the beginning of the post-spike history filters, 
and the tail of the post-spike history filters become much 
smaller, which are not essential to explain the changing 
firing patterns across different channel conductances. With 
trend filtering at the optimal penalty hyperparameter, it 
is now possible to relate changes in the spike firing pat-
terns (Fig. 3B) to the shapes of the stimulus and post-spike 
history filters (Fig. 4M, N). For instance, with increasing 
MC KAchannel conductance, the post-spike history filter 
decreases, leading to a longer refractory period and inter-
spike intervals (Weber and Pillow, 2017). This change is 
reflected in the widening of spike timing with increas-
ing MC KAchannel conductance (Fig. 3B). Because the 
changes in Fig. 4G, H, K, L are seemingly small, we ask 
whether those changes are really necessary for good model 
fitting. If all filters are forced to be the same, which cor-
responds to the scenario � = �max in Fig. 5C, the fits are 
poor, so the additional small variation is critical in order 
to distinguish the firing patterns. We further verify the dis-
tinctions by simulating spikes from fitted GLM, the gener-
ated spikes have a good match to the biophysical spike train 
patterns. See details in Appendix 5.8.

3.4 � Trend filtering reveals important coefficients

As expected, the qualitative changes in stimulus and post-
spike history filters we describe above are reflected in the 
variation of stimulus and post-spike history coefficients 

(Fig. 4C-F). Trend filtering at the optimal penalty hyper-
parameter, also reveals the coefficients which are most 
important for an individual ion channel. For instance, the 
stimulus coefficients representing the early to mid time 
range ( 5-30 ms) basis functions remain after trend filtering 
at optimal penalty hyperparameter, suggesting that the MC 
KAchannel is particularly important for early to mid time 
range stimulus encoding (Fig. 3H). Similarly, the medium 
range ( 20-60 ms) post-spike history coefficients are most 
important. Here we develop a quantitative measurement 
of the relative importance of coefficients as revealed by 
trend filtering.

First, we need a simple quantitative measure to capture the 
overall variation for each coefficient as a function of ion channel 
conductance scaling. We assign a single value, the SS, to each 
coefficient. As defined in Eq. (8), for a model parameter indexed 
by [q], SS[q] ∶=

∑B− 1

j= 1
1∕(gj+ 1 − gj)��(gj)[q] − �(gj+ 1)[q]� . 

The sum of slopes SS captures the absolute value of variation 
in a coefficient with ion channel conductance scaling: a low SS 
value indicates low coefficient variation as a function of ion 
channel conductance, whereas a high SS value indicates high 
coefficient variation as a function of ion channel conductance.  
SS values are almost uniformly high when � = 0 , and SS values 
decrease to 0 when � = �max (Fig. 4K, L). This corresponds 
to the changes in coefficient variation from  � = 0 to  � = �∗ 
(Fig. 4C-F).

Our method allows for a low-dimensional quantitative 
representation of how a given ion channel affects specific 
features of stimulus encoding. We can easily compare how 
scaling different ion channel conductances affects stimulus 
encoding (Fig. 5D-G). By comparing the effects of differ-
ent ion channels within the same biophysical model, it is 
clear how scaling each ion channel conductance affects dif-
ferent features of stimulus encoding. It is an obvious con-
clusion that scaling different ion channels affects stimulus 
encoding in unique ways. The SS measure allows for direct 
comparisons of specific stimulus encoding parameters. For 
instance, the MC KAchannel prominently impacts early to 
medium stimulus coefficients and only weakly impacts post-
spike history coefficients (Fig. 5D, E). In contrast, the MC 
CaLchannel has a greater effect on most post-spike history 
filter components. This type of difference suggests that the 
MC CaLchannel is far more important in encoding post-spike 
history effects than the MC KAchannel. Similar differences 
are apparent in the PC model when comparing  the PC IHand 
CaHVAchannels (Fig. 5F, G). Overall, quantifying coefficient 
SS after trend filtering provides an accurate and intuitive 
measure of the roles of different ion channels in stimulus 
encoding. Furthermore, this low dimensional measure can 
easily compare how scaling different ion channel conduct-
ances affects stimulus encoding.

To verify the method of selecting the optimal trend filter-
ing penalty hyperparameter, we perform a set of simulations 
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based on a known set of PP-GLM parameters and determine 
whether this method can recover the known values (see sec-
tion 2). Using a set of known PP-GLMs, we simulated 100 
spike trains for each of the ion channel conductance scaling 
factors. Then we used the simulated spike trains to train new 
PP-GLMs using trend filtering and �∗ selection (Appendix 
Fig. 6). We found that our method of trend filtering and �∗ 
selection found SS values very close to those of the true 
PP-GLM SS values (Appendix Fig. 6A, B). We repeated 
this simulation 100 times to determine the error and vari-
ance of our trend filtering and �∗ method. We found that the 
error and variance between the true PP-GLM parameters 
and our PP-GLM parameters from simulated spike trains 
reached a minimum at �∗ (Appendix Fig. 6D). Importantly, 
when 𝜆 > 𝜆∗ the error and variance increased, supporting our 
selection of the optimal trend filtering penalty hyperparam-
eter (Appendix Fig. 6D).

4 � Discussion

We have combined biophysical and statistical models to 
construct a pipeline for discovering connections between 
physiological and functional properties of neurons. Through 
two cell types, the MC and PC models, we demonstrated the 
ability of the method to identify ways that ion channel con-
ductances affect encoding of stimulus features. We did not 
carry out a detailed investigation aimed at strong scientific 
conclusions, which would require larger sets of data-driven 
models. Rather, our goal was to illustrate the potential utility 
of the approach.

It is feasible to run the entire combined biophysical 
and statistical modeling pipeline on a standard modern 
desktop computer. Indeed, although we took advantage of 
available local computer clusters, many of the tests and 
preliminary results were generated on desktop comput-
ers. Morphologically detailed biophysical models with 
non-uniform active ion channel conductances through-
out the dendritic tree are computationally expensive. The 
full set of biophysical simulations for the MC model can 
be finished in about nine hours using an Intel Core i7 
desktop. The PC model contains about three times more 
compartments and therefore takes around three times as 
long to complete, but is still feasible to run on a desktop 
computer. Biophysical models are highly parallelizable, 
with simulation time nearly linear in the number of cores 
available. PP-GLMs are less computationally expensive 
than biophysical models. In our study it took about an hour 
to finish the calculation for one ion channel dataset with 
different penalty hyperparameters.

Our current pipeline only considers the scaling of indi-
vidual conductances. In practice, multiple types of pharma-
cological treatments can be applied simultaneously (Keren 
et al., 2009), and it would be important to understand how 
multiple ion channel conductances jointly affect stimulus 
encoding and firing patterns. To include consideration of 
multiple conductances simultaneously our pipeline would 
face two immediate challenges: first, this would greatly 
increase computational complexity; second, the mapping 
from a high-dimensional biophysical parameter space to 
a statistical model parameter space may have identifiabil-
ity issues (Taylor et al., 2009; Marder and Taylor, 2011). 
Designed as a data-driven approach, our method can dis-
cover relationships between particular biophysical properties 
and features of the resulting spike trains. Although it does 
not provide a mechanistic interpretation for such relation-
ships, it does limit conceptions of the physiological cor-
relates of biophysical parameters and may offer high-level 
guidance for further study.

The outcome of our work depends on the quality and 
quantity of samples. There are some caveats in using this 
framework as guidance for electrophysiological experiments. 
Besides the difficulty of collecting large samples, quality 
control of the data is another challenge, as it is hard to trace 
all the sources of uncertainties and artifacts, such as insta-
bility of recordings, decay of in vitro neurons, inconsistent 
human factors (for example slice preparation, electrode fab-
rication, solution preparation), etc. Thus, it is not guaranteed 
that the changing of spike train patterns are due solely to 
the biophysical properties of interest. Analysis of optimal 
experimental design, or sampling efficiency in the presence 
of noise and outliers, might alleviate the problems caused 
by these potential issues.

Spectral analysis provides another perspective to under-
stand the stimulus encoding process (Tripathy et al., 2013). 
The idea is to compare the original stimulus and the recon-
structed stimulus from spike trains via the fitted GLM. We 
were able to show, for example, that the scaling of the MC 
KAconductance affects encoding in beta frequencies, with 
smaller effects in theta and gamma frequencies. This sug-
gests a possible role for the MC KAchannel in processing 
information in beta frequencies. Detailed analysis is in 
Appendix 5.6.

The main text focuses on the mapping from the biophysi-
cal model parameter space to the statistical model parameter 
space. Appendix 5.7. extends our framework to the inverse 
mapping: how to infer the biophysical properties given the 
observed spike trains. As the topic is complicated, we only 
briefly discuss the formulation of the problem and present 
a simple example.
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The Hodgkin-Huxley model is deterministic, with the 
membrane voltage following the dynamics of injected cur-
rent, channel conductance, and gating variables (the fraction 
of open channel subunits). It is straightforward to convert it 
into a stochastic model by adding noise to the three compo-
nents (Goldwyn and Shea-Brown, 2011). In this paper, we 
choose the simplest way by disturbing the injected current 
(Tripathy et al., 2013). Some other methods can be found 
in (Goldwyn and Shea-Brown, 2011). The simulation pipe-
line is not limited to the Hodgkin-Huxley model and the 
pharmacological treatments, and it can be replaced by other 
biophysical simulators as well.

A small change in the biophysical model or the PP-GLM 
can give rise to a big change in spike train patterns. The 
change of firing patterns or the types of firing rate, such as 
tonic or bursting spikes, are not always continuous when 
the underlying biophysical parameters change continuously 
(Alonso & Marder, 2019; Ori et al., 2018; Gerstner et al., 
2014, sect. 6.2). A similar phenomenon also exists in PP-
GLM studies (Weber and Pillow, 2017; Chen et al., (2019). 
The spike trains with a scaling factor of 0.5 in Fig. 3B are 
more diffused than other spike trains. A model with a scal-
ing factor of 0.5 may be on the margin between phases of 
different spike train patterns. We leave for future work the 
exploration of phase-changing boundary and the relation 
between such phase-changing of the biophysical model and 
PP-GLMs.

Appendix

The appendix includes additional simulation experiments, 
detailed implementation of the algorithm, stimulus recon-
struction analysis, goodness-of-fit tests, and a discussion 
about the inverse mapping.

A. Simulation study

First, we created a series of PP-GLMs with coefficients 
�0(g), g ∈ {g1, ..., gB} . These parameters corresponded to the 
models with different ion channel conductance scaling factors. 
Differences between adjacent models �0(gi) and �0(gi+1) were 
small and the trend was smooth. The parameters came from a 
previous fit. Then for each �0(gi) , we simulated 100 3-second 
spike trains according to Eq. (1). The simulated spike trains 

were then used to fit new PP-GLMs in Eq. (6), and the penalty 
hyperparameter � was selected as described above in Eq. (7). 
We expected to see that after applying the trend filtering tech-
nique, the model could recover the trend of changes despite 
the Poisson-like noise from the spike trains. We repeated the 
above procedures 100 times to acquire the mean and the vari-
ance of the error. Besides trend recovery simulation, we also 
checked the goodness-of-fit using KS test based on time res-
caling theorem (Brown et al., 2002; Haslinger et al., 2010). 
All fitted models had good performance (data not shown). The 
results are shown in Fig. 6.

Figure 7 shows the distribution of selected hyperparameter 
�∗ with different threshold � using the same set of simula-
tions as in Fig. 6. The selection method is in Eq. (7). When 
log 1.0001 ≤ � ≤ log 1.001 , the distribution of �∗ almost 
remains the same. When � ≥ log 1.05 is a large value, the 
selected �∗ is shifted toward right a little, but the value of �∗ 
does not become much larger. This is because when the pen-
alty becomes stronger, the performance or the  log-likelihood 
drops dramatically. This implies the hyperparameter selection 
method is not sensitive to the threshold � between log 1.0001 
and log 1.05.

B. ADMM optimization algorithm for training 
PP‑GLMs with trend filtering

B.1. Update rules

Training PP-GLMs with trend filtering (Eq. (6)) can be 
optimized using alternating direction method of multipliers 
(ADMM) (Boyd et al., 2011; Ramdas & Tibshirani, 2016). It 
can be rewritten as,

where � = (�T
(g1)

, ..., �T
(gB)

)T  , �(i)(�(gi)) is defined in Eq. 
(5), D represents the difference operator between blocks of 
� , each block has dimension d × d.

(9)min
�(g1)

,...,� (gB)

B�
i= 1

−�(i)(�(gi)) + �‖D�‖1

(10)⟺ min
�(g1)

,...,� (gB )
,z

B�
i= 1

−�(i)(�(gi)) + �‖z‖1

(11)subject to z − D� = 0
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The augmented Lagrangian is,

w is the scaled dual variable (scaled by 1∕� ). �(gi) ∈ ℝ
d , 

D ∈ ℝ
(B−1)d×Bd , D(i) ∈ ℝ

(B−1)d×d , z,w ∈ ℝ
(B−1)d . The aug-

mented term is introduced to increase the robustness of the 
calculation by changing the target into a strict convex prob-
lem. Note that � = 0 is equivalent to the standard Lagrangian 
problem. The ADMM update rules are,

L�(�, z,w) =

B�
i= 1

−�(i)(�(gi)) + �‖z‖1 + �

2
‖z − D� + w‖2 − �

2
‖w‖2

=

B�
i= 1

−�(i)(�(gi)) + �‖z‖1 + �

2

������
z −

B�
i= 1

D(i)�(gi) + w

������

2

−
�

2
‖w‖2

Broadcast 
for i = 1, ...,B.

Gather 

(12)

�(gi)
(k+1) = argmin

�(gi)

− �i(�(gi)) +
�

2

‖‖‖z
(k)

−
∑

j∈[B]⧵{i}

D(j)�(gj)
(k) −D(i)�(gi) + w

(k)‖‖‖
2

,

(13)

z
(k+1) = argmin

z

�‖z‖1 + �

2

������
z −

B�
i= 1

D(i)�(gi)
(k+1) + w

(k)

������

2

Fig. 6   Simulations verification 
for the joint training model 
6. A, B, and C provide one 
example fit. D summarizes 
100 repeated fits. SS values for 
PP-GLM fits of simulated spike 
trains for (A) the stimulus and 
(B) post-spike history coeffi-
cients, and C the log-likelihood 
all as a function of � . True SS 
values are shown at the bottom 
of A and B. Panels are similar 
to Fig. 3K-M, except that the 
true model refers to a known 
set of PP-GLMs with coef-
ficients �0(g), g ∈ {g1, ..., gB} . 
When � = �∗ (gray dashed 
line), the SS values are very 
close to the true SS values, 
thereby validating our trend 
filtering penalty hyperparameter 
selection method. D SS error 
between true PP-GLM and 100 
separate sets of simulated spike 
trains from the true PP-GLM as 
a function of aligned � index. 
Since different runs may choose 
different optimal tuning param-
eter, so the tuning parameters 
along the x-axis, the index � , 
are aligned to the optimal �∗ at 
index 0. The index in the plot is 
normalized by � − �∗
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Fig. 7   Sensitivity analysis. The histogram presents the distribution of 
selected hyperparameter �∗ with different threshold � (as in Eq. (7)) using 
the same set of simulations as in Fig. 6. The penalty � is selected among 

a set of discrete values � ∈ Λ = {�max, �max�, �max�
2, ..., �max�

k−1, 0} , 
where k = 22 and � = e−1
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Equation (12) can be calculated using Newton’s method. 
Define the target Eq. (12) as R(�(gi)) , �(i) =

1

1+exp{−X(i)�(gi)}
 . 

The gradient and the Hessian matrix are the following,

Equation (13) is equivalent to,

where S�∕�(⋅) is the coordinate-wise soft-thresholding opera-
tor with threshold �∕� . For j-th entry

There are other ways to update the equations above in 
practice. As suggested by (Boyd et al., 2011, sect. 3.4.5), the 
algorithm updates each �(gi) in turn multiple times before 
performing the dual variable update.

B.2. Stopping rules

We determine the convergence of the algorithm using pri-
mal residuals and dual residuals (Boyd et al., 2011), which 
stem from the primal feasibility and dual feasibility.

Primal feasibility

Dual feasibility 

where �f  is the subgradient operator of a function f. Note that 
we use the rescaled ADMM, u is the original dual variable.

Primal residual 

Here � is a stack of �(gi).

Dual residual  Since z(k+1) achieves the minimum value of 
Eq. (13), so

(14)w
(k+1) = w

(k) + z
(k+1) −

B∑
i=1

D(i)�(gi)
(k+1)

(15)
∇R = XT

(i)
(�(i) − Y(i)) + �DT

(i)

( ∑
j∈[B]⧵{i}

D(j)�(gj)
(k)

+D(i)�(gi) − z
(k) − w

(k)
)

(16)∇2R = XT
(i)
diag

(
𝜇(i) ⊙ (1 − 𝜇(i))

)
X(i) + 𝜌DT

(i)
D(i)

z
(k+1) = S�∕�

(
B∑

i= 1

D(i)�(gi)
(k+ 1) − w

(k)

)

[St(x)]j =

⎧⎪⎨⎪⎩

xj − t, xj > t

0, − t ≤ xj ≤ t

xj + t, xj < −t

z
⋆ − D�⋆ = 0

0 ∈ 𝜕

B�
i= 1

−�i(�(gi)
⋆) − 𝜌DT (u⋆∕𝜌), w⋆ ∶= u

⋆∕𝜌

0 ∈ 𝜕‖z⋆‖1 + 𝜌(u⋆∕𝜌), w
⋆ ∶= u

⋆∕𝜌

(17)r
(k+ 1) ∶= z

(k+ 1) − D� (k+ 1)

We can see that z(k+1) and w(k+1) always satisfy this part 
of the dual feasibility. This is also the reason why we set the 
learning rate as �.

As �(k+1) achieves the minimum value of Eq. (12), so

This means that, the following can be viewed as the 
dual residual.

B.3. Warm start

ADMM is notorious for slow convergence, especially when 
� and � is large. When � = �max , we know the lasso penalty 
term ‖D�‖1 = 0 as it shrinks all entries toward zero. So at 
� = �max we have,

All blocks of �(gi) are unified. And it achieves the mini-
mum value of the target Eq. (9).

At the optimal value, by the stationary condition of w⋆ 
we also have,

Next we can derive the w⋆ using the stationary condition 
of �⋆.

0 ∈ ��‖z(k+ 1)‖1 + �
�
z
(k+ 1) − D�(k+ 1) + w

(k)
�

= ��‖z(k+ 1)‖1 + �w(k+ 1)

0 ∈∇�

B∑
i= 1

−�(i)(�(gi)
(k+ 1)) − �DT

(
z
(k) − D� (k+ 1) + w

(k)
)

=∇�

B∑
i= 1

−�(i)(�(gi)
(k+ 1)) − �DT

(
z
(k+ 1) − D�(k+ 1) + w

(k)
)
+ �DT

(
z
(k+ 1) − z

(k)
)

=∇�

B∑
i= 1

−�(i)(�(gi)
(k+ 1)) − �DT

w
(k+ 1) + �DT

(
z
(k+ 1) − z

(k)
)

⟹ �DT
(
z
(k) − z

(k+ 1)
)
∈ ∇�

B∑
i= 1

−�i(�(gi)
(k+ 1)) − �DT

w
(k+ 1)

(18)s
(k+1) ∶= �DT

(
z
(k) − z

(k+1)
)

(19)�(g1) = ... = �(gB) = �⋆

g

(20)

�⋆

g
= argmin

�g

B∑
i= 1

−�(i)(�g)

⟹
𝜕

𝜕�g

B∑
i= 1

�(i)(�g) = 0

z
⋆ = D�⋆ = 0

�⋆

g
= argmin

�(gi )

− �i(�(gi)) +
𝜌

2
‖z⋆ −

�
j∈[B]⧵{i}

D(j)�
⋆

g
− D(i)�(gi) + w

⋆‖2

⟹ 0 =
𝜕

𝜕�(gi)

�
−�i(�(gi)) +

𝜌

2
‖z⋆ −

�
j∈[B]⧵{i}

D(j)�
⋆

g
− D(i)�(gi) + w

⋆‖2
�������(gi ) = �⋆

g

⟹ 0 = −
𝜕

𝜕�(gi)
�i(�(gi))

������(gi ) = �⋆
g

− 𝜌DT
(i)

�
z
⋆ − D�⋆ + w

⋆
�

⟹ 0 = −
𝜕

𝜕�(gi)
�i(�(gi))

������(gi ) = �⋆
g

− 𝜌DT
(i)
w

⋆
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∀i = 1, ...,B . Now we define,

where X(i),�(i), Y(i) are defined the same as Eq. (15), and 
the gradient of the PP-GLM log-likelihood function is cal-
culated in the same way. From the stationary condition we 
know,

We also need to consider the stationary condition of Eq. 
(13). As

The last equality must hold as the definition of �max in Eq. (22) 
guarantees the zero solution. Then we use the optimal solution 
{�⋆, z⋆,w⋆} as the initial values for the ADMM when � is large. 
When � = �max , it takes only one iteration to converge of course.

� is an optimization parameter instead of a statistical param-
eter. Under very general conditions, the ADMM algorithm con-
verges to optimum for any fixed value of � (Boyd et al., 2011). 
In practice, the rate of convergence and the numerical stability 
can strongly depend on the choice of � (Ramdas & Tibshirani, 
2016). Large � values impose a large penalty on violations of 
primal feasibility in Eq. (12), so the algorithm favors diminish-
ing the primal residual. Conversely, the definition of s(k+1) in 
Eq. (18) suggests that small � values reduce the dual residual 
(Boyd et al., 2011). So we adopt an adaptive strategy to balance 
the primal and dual residuals as the following,

Since we use a rescaled dual variable, we need to change 
the w as well to maintain the same dual variable,

�max can be derived via KKT conditions (Ramdas &  
Tibshirani, 2016).

v =

⎛
⎜⎜⎜⎝

−
�

��(g1)
�i(�(g1))

...

−
�

��(gB)
�i(�(gB))

⎞
⎟⎟⎟⎠
=

⎛⎜⎜⎝

XT
(1)
(�(1) − Y(1))

...

XT
(B)
(�(B) − Y(B))

⎞
⎟⎟⎠

𝜌DT
w

⋆ = v

⟹ w
⋆ =

1

𝜌
(DDT )−1Dv

z
⋆ = argmin

z

𝜆‖z‖1 + 𝜌

2
‖z − D�⋆ + w

⋆‖2

⟹ z
⋆ = S𝜆∕𝜌

�
D�⋆ − w

⋆
�
= 0

⟹ z
⋆ = S𝜆∕𝜌

�
−w⋆

�
= 0, 𝜆 = 𝜆max

𝜌(k + 1) =

⎧⎪⎨⎪⎩

𝜏incr𝜌(k), if ‖r(k)‖2 > 𝜇‖s(k)‖2
1

𝜏decr
𝜌(k), if ‖s(k)‖2 > 𝜇‖r(k)‖2

𝜌(k), otherwise

w
(k+1) =

⎧⎪⎨⎪⎩

1

𝜏incr
w(k), if ‖r(k)‖2 > 𝜇‖s(k)‖2

𝜏decrw
(k), if ‖s(k)‖2 > 𝜇‖r(k)‖2

w(k), otherwise

For some v,

So that we get

where

the �⋆ is obtained in Eq. (20).

C. Stimulus reconstruction

We have presented a method that links channel conductance 
to specific stimulus filter or post-spike history filter features 
in time-domain. Next, we will provide a frequency-domain 
method which is an alternative analysis of how ion chan-
nel conductance affects stimulus encoding. We study the 
frequency properties of the spike-decoded stimulus, which 
is reconstructed by trained PP-GLMs (Pillow et al., 2008). 
The decoded stimulus presents the information that has been 
encoded in the spike train. Stimulus reconstruction provides 
an intuitive method to investigate how ion channel conduct-
ances affect stimulus encoding by comparing the reconstructed 
stimulus to the actual input stimulus. The method follows the 
steps in (Tripathy et al., 2013). The stimulus is reconstructed 
using the maximum a posterior (MAP) estimation of the 
stimulus given a fitted PP-GLM (Pillow et al., 2008; Tripathy 
et al., 2013), shown as the following,

where s is the vector of full stimulus; y(i) is the spike train 
for the neuron with channel conductance factor gi ; �(gi) are 
the coefficients of the PP-GLM in Eq. (1), P(y(i)|s;�(gi)) 
is the likelihood function given in Eq. (5); and P(s; �) is 
the prior of the stimulus with parameters � . As described 
in section 2.1, the stimulus is the white noise convolved 
with an alpha function as we introduced in section 2.1. 
The white noise has a Normal distribution N(0, �2I) . The 

0 ∈
�

��

B�
i= 1

−�(i)(�(gi)) + ��‖D�‖1

⟺
�

��

B�
i= 1

�(i)(�(gi)) = �DT
v

(21)vi ∈

⎧
⎪⎨⎪⎩

{1}, if (D�)i > 0

{−1}, if (D�)i < 0

[−1, 1], if (D�)i = 0

(22)�max = ‖(DDT )−1Dv‖∞

v ∶=
𝜕

𝜕�

B∑
i= 1

�i(�(gi)
|||�=�⋆

)

(23)max
s

P(s|y(i); �(gi), �) = max
s

P(y(i)|s;�(gi))P(s; �)
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convolution is a linear transform of the white noise, its cor-
responding convolution matrix is A. So the prior distribution 
is P(s; �) = N(0, �2AAT ) . We assume the noise variance � 
and the alpha function is known.

The optimization of this model is the following. The log pos-
terior of for stimulus reconstruction (Eq. (23)) can be written as,

The above log-posterior is a convex function of s, thus the 
maximum a posterior (MAP) estimation can be done using 
Newton’s method. The gradient is,

The Hessian matrix is,

K, H are the convolution matrices for the stimulus filter and 
the post-spike history filter. Kj and Hj are the j’th row of the 
matrices. �baseline is the baseline, it belongs to the parameter 
�(gi)) . C is the constant which is not a function of s. �(⋅) is 
the sigmoid function. The operators �(⋅) , exp(⋅) and log(⋅) 
are element wise, the output has the same dimension as the 
input. With the gradient and the Hessian matrix, one can 
use gradient descent method or Newton’s method to get the 
optimal s. The posterior is a convex function of s, thus it is 
guaranteed to get the globally optimal solution.

The original stimulus and reconstructed stimulus were 
compared using the spectrum coherence in different fre-
quency bands. The spectrum analysis was implemented 
with Welch’s method (MathWorks, 2020). First, the signal 
was split into overlapping segments. The window length 
was 256 data points (256 ms width), with 32 data points 
overlapping. Each window was masked with a Bartlett win-
dow. Second, the periodogram was calculated for each win-
dow using the discrete Fourier transform, then computed 
the squared magnitude of the output. All the periodograms 
were then averaged. Third, we estimated the magnitude-
squared coherence, which is a function of frequency with 

logP(y(i)|s; �(gi))P(s;�)

=

T∑
j= 1

y(i),j(Kjs + Hjy(i) + �baseline) −

T∑
j= 1

log(1 + exp{(Kjs

+ Hjy(i) + �baseline)}) −
1

2
sT (�2AAT )−1s + C

= yT
(i)
Ks − 1

T log(1 + exp{Ks + Hy(i) + �baseline})

−
1

2
sT (�2AAT )−1s + C

�

�s
logP(y(i)|s; �(gi))P(s;�) = KTy(i) − KT�

(
Ks + Hy(i)

+ �baseline
)
− (�2AAT )−1s

�2

�s�sT
logP(y(i)|s; �(gi))P(s;�)

= −KTdiag
(
�
(
Ks + Hy(i) + �baseline

))

K − (�2AAT )−1

values between 0 and 1, indicating how well the input sig-
nals x matched to y at each frequency. The estimator for the 
coherence is the following (Kramer, 2013),

where Ŝxy(f ) is the estimated cross-spectral density between 
x and y, Ŝxx(f ) and Ŝyy(f ) are the estimated auto-spectral 
density. The estimated spectral densities were estimated by 
averaging the periodograms of all windows.

Another way to examine the PP-GLM, which is an encod-
ing model, is through decoding. Decoding is the process of 
estimating a reconstruction of the original stimulus given a 
spike train and a trained PP-GLM (Eq. (23); Fig. 8A). We 
then compare the reconstructed stimulus to the original stim-
ulus by measuring the coherence as a function of the signal 
frequency (Fig. 8B, C). We consider only stimulus recon-
structions from PP-GLMs trained with optimal trend filter-
ing penalty hyperparameter, as the reconstructed stimuli for 
PP-GLMs trained without trend filtering were nearly identi-
cal (data not shown). This is expected, as the goodness-of-fit 
is nearly identical between � = 0 and � = �∗ (Fig. 5C). The 
coherence analysis allows estimation of specific frequency 
components that are, or are not, encoded when scaling dif-
ferent ion channel conductances (Fig. 8B). Here we evaluate 
how ion channel conductance scaling affects the coherence 
between the reconstructed stimulus and the original stimu-
lus, by measuring the difference between scaled ion chan-
nel conductances and the control ion channel conductance 
(Fig. 8C). For example, when scaling the MC KAchannel, 
increasing KAchannel conductance generally reduces coher-
ence across the frequency spectrum, whereas decreasing 
MC KAchannel conductance shows increased coherence at 
specific frequencies 35-50 Hz and 70 Hz (Fig. 8C). Gen-
erally, the coherence measures are fairly noisy, which we 
can smooth by averaging over well characterized frequency 
bands (Fig. 8D-F). The MC KAchannel conductance scaling 
affects the encoding of mid range, beta frequencies (Fig. 8D-
F), with only moderate effects on low range, theta frequen-
cies and high range, gamma frequencies. This suggests a 
prominent role for the MC KAchannel in the encoding of mid 
range, beta frequencies. Overall, the additional approach of 
examining stimulus reconstructions further reveals how dif-
ferent ion channel conductance scaling affects the encoding 
of specific stimulus features.

D. Inverse mapping

The main text focuses on the mapping from the biophysical 
model parameter space to the statistical model parameter 
space. This section discusses the inverse mapping: how to 
predict biophysical properties using observed spike trains. 

(24)Ĉxy(f ) =
|Ŝxy(f )|2

Ŝxx(f )Ŝyy(f )
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Let �bio be the parameters of the biophysical model and �glm 
be the parameters of PP-GLM, which can be estimated with 
some level of uncertainty. A natural method of implementing 
the inverse mapping is building the probability p(�bio|�glm) , 
where �glm comes from the GLM fitted to spike trains with 
unknown biophysical properties.

Before inferring the biophysical parameter, p(�bio|�glm) 
needs to be learned, which can be approximated as,

where Spikessim
l

 are samples indexed by l coming from 
the biophysical simulator with biophysical parameter 
�bio . This requires a biophysical simulator for model 
training. Equivalent real experiments need to collect a 
training dataset with both spike trains and the underlying 
biophysical properties. In the above equation, marginal-
izing out the spike trains is approximated by summing 
over generated spike trains. The prior p(�bio) is assumed 
to be a uniform distribution within a reasonable range. 
Given spike trains and biophysical parameters, corre-
sponding GLM parameters can be calculated using the 
method in the main paper. In summary, we can draw sam-
ples (�bio, �glm) from their joint distribution with a cer-
tain approximation. But this can not be directly used to 
infer �bio given arbitrary �glm , that needs one more step 
to approximate the probability through some parametric 
form. Here is one example,

where ‖ ⋅ ‖F is the Frobenius norm. Approximating the above 
distribution is equivalent to training � with the samples 
drawn from p(�bio, �glm).

Finally, we run a simple experiment to estimate MC 
KAconductance with the linear approximation. The estimation 
error of the channel achieves 0.01 (the unit is scaling factor).

(25)
p(�bio|�glm) ∝ p(�bio, �glm) = p(�glm|�bio)p(�bio)

≈
∑
l

p(�glm|Spikessiml , �bio)p(Spikes
sim
l

|�bio)p(�bio)

(26)
p(�bio��glm) ∝ p(�bio, �glm) ∝ exp

�
−‖�bio − �T�glm‖2F

�

A

B

C

D

E

F

Fig. 8   Stimulus reconstructions and spectral coherence. A An exam-
ple stimulus reconstruction for conductance scaling of 1.5, 1.0, and 0.5 
(colored lines) compared to the actual stimuli (gray line) for the MC 
KAchannel. B Magnitude squared coherence between the stimulus 
reconstruction and the mean stimulus for conductance scaling of 1.5, 
1.0, and 0.5. C The difference in coherence between the conductance 
scaling and control scaling of 1.0. D-F The mean coherence across 
indicated frequency bands as a function of conductance scaling factor. 
The gray dotted line represents control scaling factor. All panels are for 
the MC KAchannel
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Fig. 9   Goodness-of-fit test. The dashed line is the 95% uniform CI. The figure shows an example of MC KAchannel. Different subplots corre-
sponds to different scaling factors indicated by the title. The curve staying within the CI implies a good fit
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E. Goodness‑of‑fit

The goodness-of-fit of the model is evaluated using the KS 
test based on the time-rescaling theorem (Kass et al., (2014; 
Haslinger et al., 2010; Brown et al., 2002). The results of 
MC cell KAchannel is shown in Fig. 9. The model shows 
good fit for all different scaling factors.

Besides the KS test, we also compare the biophysical 
spike trains and the spike trains generated by the fitted PP-
GLM as shown in Fig. 10. Both the spike train raster plots 
and the PSTHs show a good match.
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