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Abstract
Square-wave bursting is an activity pattern common to a variety of neuronal and endocrine cell models that has been linked 
to central pattern generation for respiration and other physiological functions. Many of the reduced mathematical models 
that exhibit square-wave bursting yield transitions to an alternative pseudo-plateau bursting pattern with small parameter 
changes. This susceptibility to activity change could represent a problematic feature in settings where the release events 
triggered by spike production are necessary for function. In this work, we analyze how model bursting and other activ-
ity patterns vary with changes in a timescale associated with the conductance of a fast inward current. Specifically, using 
numerical simulations and dynamical systems methods, such as fast-slow decomposition and bifurcation and phase-plane 
analysis, we demonstrate and explain how the presence of a slow negative feedback associated with a gradual reduction of 
a fast inward current in these models helps to maintain the presence of spikes within the active phases of bursts. Therefore, 
although such a negative feedback is not necessary for burst production, we find that its presence generates a robustness that 
may be important for function.
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1  Introduction

In neuroscience, bursting refers to activity patterns in which 
a cell’s membrane potential alternates repeatedly between 
two phases: an active phase featuring a succession of spikes 
separated by relatively short inter-spike intervals and/or a 
sustained depolarization, and a silent or quiescent phase of 
little or no spiking. It has long been recognized that burst-
ing patterns are closely connected with bifurcations in an 

underlying dynamical system (Rinzel, 1986). The origi-
nal classification and analysis of bursting types relied on 
a fast-slow decomposition approach that falls within the 
realm of geometric singular perturbation theory (Dumortier 
and Roussarie, 2001; Jones, 1995; Wechselberger, 2020). 
Later work generalized the key idea of characterizing burst 
structure based on bifurcations associated with the transi-
tions between active and silent phases (Izhikevich, 2000) 
and classifying bursting patterns in terms of unfoldings of 
higher-codimension bifurcation points (Bertram et al., 1995; 
Golubitsky et al., 2001; Krauskopf & Osinga, 2016; Osinga 
et al., 2012). In fact, these analyses embed bursting within 
a larger class of activity types that includes patterns such as 
relaxation oscillations (ROs; Fig. 1A), which also feature 
abrupt transitions between phases yet lack the spikes that 
occur during the active phases of bursts (Bertram & Rubin, 
2017; Rinzel, 1986).

In this paper, we focus on two specific bursting activity pat-
terns often observed in neural and endocrine cell recordings: 
square-wave (SW) and pseudo-plateau (PP) bursting (Fig. 1B, 
C), which are mathematically classified as fold-homoclinic 
and fold-sub-Hopf bursting, respectively (Izhikevich, 2000). 
These two bursting patterns stem from similar underlying 
bifurcation structures (Osinga et al., 2012; Tsaneva-Atanasova 
et al., 2010); however, in contrast to SW bursting, PP bursting 
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does not produce reliable spiking activity, and often resembles 
an RO pattern (Fig. 1A, C).

Even though certain models are often referred to as 
models for one activity pattern or another, the same model 
can exhibit many different activity patterns, including mul-
tiple types of bursting, as parameters are varied, which the 
unfolding approach to burst analysis recognizes. Indeed, 
some minimal models for SW bursting yield a transition 
to PP (and vice versa) under small changes in parameter 
values (Osinga et al., 2012; Tabak et al., 2007; Teka et al., 
2011a, b; Tsaneva-Atanasova et al., 2010). From a func-
tional perspective, however, this effect may represent the 
emergence of a dysfunctional regime for a cell: the loss 
of spikes in the active phase associated with a transition 
from SW to PP bursting may result in a failure to release 
neurotransmitters or other signaling substances.

Since some cells are observed specifically to exhibit SW 
bursting, while others have been seen to produce both SW and 
PP patterns, we wondered if these differences could result from 
differences in the actual biophysical mechanisms expressed 

in these cells, rather than simply from observation of the 
dynamics within different parameter regimes. Indeed, spike 
production carries a significant energy cost (Shulman et al., 
2004; Sokoloff, 1999), which suggests that when the firing of 
spikes is observed, this behavior is likely to be of functional 
importance and we might expect mechanisms to be present that 
enhance the robustness of spiking across parameter modula-
tions. Similarly, some bursting cells feature fast inward sodium 
currents while others express fast inward calcium currents; 
although these are often considered interchangeable from a 
dynamics perspective (e.g., Izhikevich, 2007), which current 
is present may have implications for the robustness of bursting 
and spiking patterns that cells exhibit. The main motivation for 
this study is to understand what features promote the robust-
ness of SW bursting – both to help explain the mechanisms 
that underlie differences in observed activity across neuron 
types and to guide the development of future models designed 
to capture such data.

In this work, we investigate the utility of a specific bio-
physical mechanism that we have recognized as enhancing 
the robustness of SW bursting in computational models. 
Bursting models feature a voltage-dependent fast inward 
current that helps to sustain the active phase, because it 
provides a fast positive feedback to the membrane poten-
tial (Izhikevich, 2007). We explore the effect on the robust-
ness of SW bursting of adding a slow, voltage-dependent 
negative feedback associated to this inward current, which 
is a feature of fast sodium currents in neurons of certain 
types (Do & Bean, 2003; Milescu et al., 2010) and may also 
arise in fast calcium currents in some cases (Eckert & Chad, 
1984; Zhang et al., 1994).

To carry out this analysis, we consider four classical, low-
dimensional SW bursting models in their original forms, as 
well as with adjustments either to include a slow inactivation 
gate as part of the fast inward current, or to modify the kinet-
ics of an already-present inactivation gate. This collection of 
models was selected to allow for consideration of fast inward 
sodium and calcium currents with a variety of mathematical 
formulations. We show that, over an appropriate range of the 
time constant for the respective inactivation gate, its inclusion 
broadens the range of maximal conductances gca or gna of the 
fast inward current for which SW bursting — or a different 
form of spiking activity that can serve similar functional pur-
poses in the context of a CPG (central pattern generator) cir-
cuit with inhibitory connections between populations (Bucher 
et al., 2015; Rubin & Smith, 2019) — occurs. We also show 
that, outside of this optimal range of inactivation timescales, 
SW bursting loses robustness, and the models easily transi-
tion from SW to PP bursting and other non-spiking patterns, 
including ROs and depolarization block (Fig. 1A, D), for 
which neurotransmitter release would be compromised.

The remainder of the paper is organized as follows. Section 2 
starts with a brief introduction to geometric singular perturbation 

Fig. 1   Non-spiking activity patterns. The voltages traces shown here 
are from the minimal Chay–Keizer model (7) and (8) with default 
parameter values. A Relaxation oscillations (RO) for gca = 1.2 . 
B  Square-wave (SW) bursting for gca = 1.8 . C  Pseudo-plateau (PP) 
bursting for gca = 3.2 . Note that although each active phase features 
an initial spike and a terminal spike, no other significant spiking 
occurs. D Depolarization block resulting from a stable critical point 
at elevated voltage for gca = 3.5
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theory and discusses the bifurcation structure associated with 
SW and PP bursting patterns. We then introduce the four dif-
ferent bursting models in Section 2.1 and show how geometric 
singular perturbation theory is used to understand the various 
burst patterns exhibited by these models when gca or gna is var-
ied. In Section 2.2, we explain how we modify the models for 
our robustness analysis. The analysis of the robustness of SW 
bursting gained by including a slow, voltage-dependent negative 
feedback associated to the inward current follows in Section 3. 
The paper concludes with a discussion in Section 4.

2 � Preliminary analysis

In its simplest form, geometric singular perturbation the-
ory assumes that a general model is defined in terms of an 
explicit fast-slow decomposition of the form

where 0 < 𝜖 ≪ 1 is a small parameter, so that the fast vari-
able is x ∈ ℝ

m and the slow variable is y ∈ ℝ
n . In the limit 

� → 0 , system (1) reduces to a lower-dimensional, so-called 
fast subsystem

where the slow variable y plays the role of a constant param-
eter vector. The equilibria of the fast subsystem (2) form a 
manifold C in (x, y)-space,

which is called the critical manifold of system (1). We 
assume that C is Z-shaped with respect to the component of 
x that represents voltage v. This means that C has (at least) 
three co-existing equilibrium branches, parameterized by y. 
Ordered with respect to their corresponding v-components, 
we refer to these branches as the lower (silent) branch, the 
middle branch, and the upper (active) branch of C.

For both SW and PP bursting, certain additional 
features must be present: firstly, that system  (2) has 
a (lower) saddle-node bifurcation at some critical 
parameter value y��� , at which the lower and middle 
branches of C meet; and secondly, that system (2) has an 
Andronov–Hopf bifurcation along the upper branch of C , 
which gives rise to a family P of periodic orbits of (2) 
parameterized by y. Note that this second requirement 
implies m ≥ 2 ; that is, the fast variable x must be at least 
two dimensional. Crucially, this Andronov–Hopf bifur-
cation is subcritical in the PP case, which means that 
the orbits of P are unstable and, hence, system (2) does 
not produce stable spiking activity for initial conditions 

(1)
{

x� = f (x, y, �),

y� = � g(x, y, �),

(2)x� = f (x, y, 0),

C = {(x, y) ∈ ℝ
m ×ℝ

n ∣ f (x, y, 0) = 0},

along the upper (active) branch of C . For SW bursting, 
on the other hand, there exists a stable family of periodic 
orbits, together with a mechanism that induces a transi-
tion from the active phase to the silent phase. The origi-
nally described and most commonly considered form of 
SW bursting involves a supercritical Andronov–Hopf 
bifurcation for (2) on the upper (active) branch of C and 
a homoclinic bifurcation at which the family P of stable 
periodic orbits collides with a saddle equilibrium on the 
middle branch of C (Rinzel, 1986).

While the presence and order of specific bifurcations 
in the fast subsystem (2) help to predict the burst pattern 
exhibited by the full model, the burst pattern also depends 
on the relative location of the nullcline associated with the 
slow variable. In order for models to exhibit SW bursting, 
for example, it is necessary, although not sufficient, for 
the slow nullcline to intersect the middle branch of C at 
an equilibrium point below the homoclinic bifurcation; in 
particular, the full system must have a steady state that is 
of saddle type. We make sure this is the case over a suffi-
ciently large range of parameters for all models considered 
in this paper.

2.1 � Models and parameter‑dependence of bursting 
dynamics

As mentioned in the introduction, we select and study four 
different, low-dimensional SW bursting models with distinct 
formulations of the fast inward current. Each is presented in 
this section in its original form, and we discuss the param-
eter range for the maximal conductance of the fast inward 
current, gca or gna , over which SW bursting occurs.

2.1.1 � Generic endocrine model

Tsaneva-Atanasova et al. (2010) introduced a generic endo-
crine model that exhibits both SW and PP bursting over 
physiologically relevant parameter ranges. The model is a 
system of differential equations for the membrane poten-
tial v, the gating variable n of the K + channel, and the cal-
cium concentration c in the cytosol. The equations take the 
form

for constants cm , �n , fc , � , and kp . The expressions for the 
currents and steady state activation functions are given by:

(3)

⎧⎪⎨⎪⎩

cmv
� = −ICa(v) − IK(v, n) − IK(Ca)(v, c),

n� = (n∞(v) − n)∕�n,

c� = −fc(�ICa(v) + kpc)
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We choose default parameter values as given in Table 1, for 
which the model exhibits the SW bursting pattern shown in 
Fig. 2A. Indeed, non-dimensionalization (see the Appendix) 
shows that the three-dimensional system (3) and (4) readily 
separates into fast and slow equations, because v changes 
at a rate Rv ≈ 716 that is faster than the rate Rn ≈ 33 for n  

(4)

ICa(v) = gca m
2

∞
(v) (v − eca),

IK(v, n) = gk n (v − ek),

IK(Ca)(v, c) = gkca

(
c4

c4 + k4
s

)
(v − ek),

m∞(v) = (1 + e(vm−v)∕sm)−1,

n∞(v) = (1 + e(vn−v)∕sn)−1.

which, in turn, is significantly faster than the rate Rc ≈ 1.7 for 
c. We consider v and n as two fast variables and c as one slow 
variable, so that system (3) and (4) has the lowest possible 
dimensions for SW bursting; the alternative pairing of one fast 
and two slow variables would be relevant for studying canard 
dynamics (Vo et al., 2013), but we do not consider this here. 
More details about the model can also be found in (Tsaneva-
Atanasova et al., 2010).

The fast subsystem, consisting of the (v, n)-equations in (3) 
and (4), and its attractors can be studied by considering the slow 
variable c as a bifurcation parameter. The corresponding bifurca-
tion diagram, shown in Fig. 2B, forms a scaffold for understand-
ing the burst pattern that the full model produces. Specifically, 
based on this fast-slow decomposition, we can assume that any 
general initial position with slow variable c = c0 lies on a tra-
jectory that predominantly evolves under the fast dynamics to 
one of the attractors that exists in the fast subsystem for c = c0 . 
Subsequently, the sign of c′ will determine whether the trajec-
tory drifts to the left or right along the corresponding attractor 
branch until either this branch terminates and a transition to a 
new attractor occurs, the trajectory goes off to infinity, or a sta-
ble state for the full system is reached. In Fig. 2B, for (3) and (4)  
with default parameter values, the c-nullcline (dashed curve) 
cuts through the middle branch of the critical manifold C , just 
below HC in the bifurcation diagram. According to the equation 
for c in (3) and (4), we have c′ < 0 below this nullcline. Hence, 

Fig. 2   Fast-slow decomposi-
tion for the generic endocrine 
model (3) and (4). A SW burst-
ing for default parameter values 
given in Table 1. B Bifurcation 
diagram of the model’s fast 
subsystem with respect to the 
slow variable c, with bifurca-
tion points labeled and the 
burst trajectory, which evolves 
clockwise, overlaid in gray. 
Oscillations start after the tra-
jectory jumps up from the lower 
left saddle node (LSN) and stop 
when it reaches the homoclinic 
(HC). C The model exhibits PP 
bursting when gca is increased 
to 1.5; note that the ranges of 
c in (A) and (C) are different. 
D Bifurcation diagram as in (C) 
but with gca = 1.5 ; the PP burst 
trajectory, which also evolves 
clockwise, is again overlaid in 
gray. The labels SupAH (B) and 
SubAH (D) refer to supercriti-
cal and subcritical Andronov–
Hopf bifurcations, respectively

Table 1   Generic Endocrine Model (3) and (4): default parameter val-
ues

cm 0.00314159 nF gca 0.81 nS
gk 2.25 nS gkca 0.2 nS
ek −65 mV eca 0 mV
vm −22.5 mV vn 0 mV
sm 12 mV sn 8 mV
�n 0.03 s ks 1.25 �M
fc 0.003 kp 5 s −1

� 14 �M∕pC
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c is decreasing during the silent phase and, as suggested by the 
bifurcation diagram of the fast subsystem, the active phase of 
the SW burst starts due to a jump up in potential v from the 
c-value at which the fast subsystem undergoes a saddle-node 
bifurcation (LSN). For this c-value, the attractor of the fast sub-
system at elevated voltage is a periodic orbit, part of a family 
of such orbits that originates in a supercritical Andronov–Hopf 
bifurcation (SupAH). Thus, oscillations result, and they con-
tinue as c increases, according to its equation in (3) and (4), until 
a homoclinic bifurcation (HC) occurs. At that bifurcation, the 
trajectory returns to the silent phase, where it is attracted to the 
stable equilibria on the lower (silent) branch of C.

When gca is increased from its default value of 0.81 to 
gca = 1.5 , the model exhibits the qualitatively different PP 
bursting pattern (Fig. 2C). The bifurcation diagram of the 
fast subsystem with respect to the variable c has changed 
correspondingly (Fig. 2D). In particular, we see that the 
Andronov–Hopf bifurcation point has now moved to a larger 
c-value and has changed criticality to become subcritical 
(SubAH). Therefore, the fast subsystem now has a family 
of unstable periodic orbits. Hence, after the jump up from 
LSN, the trajectory is attracted to the upper branch of the 
critical manifold C , which comprises stable equilibria of the 
fast subsystem. Since these equilibria are foci, the trajectory 
spirals around the upper branch of C while slowly moving to 
the right with respect to c. This behavior generates a voltage 
plateau in the active phase, accompanied by rapidly decaying 
oscillations in lieu of spikes (Fig. 2C). The upper branch of C 
loses stability at SubAH, and after a small delay associated 
with the slow passage through an Andronov–Hopf bifurca-
tion (Baer et al., 1989; Baer & Gaekel, 2008; Neishtadt, 

1987, 1988), the trajectory jumps down to the silent phase 
where it flows back to LSN to complete a burst cycle.

The bifurcation diagrams in Fig. 2 display SW and PP burst-
ing patterns produced by the generic endocrine model (3) and 
(4) for two fixed values of gca . The robustness of these patterns 
and the transition between them can be studied more system-
atically by considering a two-parameter bifurcation diagram. 
Specifically, we can follow the codimension-one bifurcations 
labeled LSN, USN, SupAH, SubAH and HC in Fig. 2B, D as 
curves in the two-parameter (c, gca)-plane. The resulting bifur-
cation diagram is displayed in Fig. 3A.

The two-parameter bifurcation diagram shows how the bifur-
cation points change, and in some cases meet and disappear, 
when gca varies away from its default value of 0.81 (bottom 
dashed line). In particular, the curves SupAH (light blue) and 
HC (green) of supercritical Andronov–Hopf and homoclinc 
bifurcations, respectively, end on the curve USN of saddle-
node bifucation (red) at the codimension-two Bogdanov–Tak-
ens point BT (right black star). Furthermore, the curve SupAH 
transitions to SubAH by changing criticality at the generalized 
Hopf point GH (black star just below gca = 1 on the curve AH 
in the diagram), which occurs when the first Lyapunov coeffi-
cient associated with the Andronov–Hopf bifurcation changes 
sign (Fig. 3B); this first Lyapunov coefficient was computed 
numerically with MATCONT (Dhooge et al., 2003). The curve 
subAH (dark blue) of subcritical Andronov–Hopf bifurcations 
then moves into the V-shaped region between the two curves 
LSN and USN. At the point GH, a curve of saddle-node bifur-
cation of periodic orbits (SNPO) originates and progresses to 
larger c-values as gca continues to increase, until it ends just 
above gca = 1.5 on the curve HC. In the remainder of the paper, 

Fig. 3   Dependence on gca of bifurcation curves for the fast subsystem 
of the generic endocrine model (3) and (4). A Two-parameter bifurca-
tion diagram in the (c, gca)-plane. The locus AH of Andronov–Hopf 
bifurcations (blue) comprises the two curves SupAH and SubAH 
that meet at the generalized Hopf point labeled GH (left black star); 
SupAH and the curve HC of homoclinic bifurcations merge and end 
at a Bogdanov–Takens point (BT; right black star) on the curve USN 

of saddle-node bifurcations (red). The SW and PP bursting regions 
are shaded red and blue, respectively. The black dashed lines corre-
spond to the examples of SW bursting for gca = 0.81 and PP bursting 
for gca = 1.5 shown in Fig. 2. B Lyapunov coefficent along the curve 
AH. The Andronov–Hopf bifurcation is supercritical until this coef-
ficient increases through 0 for gca just below 1, corresponding to the 
point GH, and subcritical for gca-values above that
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we will denote as AH the locus or curve of Andronov-Hopf 
bifurcation comprised of the components SupAH and SubAH.

The lower black dashed line in Fig. 3A corresponds to the 
bifurcation diagram for gca = 0.81 in Fig. 2B that gives rise to 
SW bursting. In the direction of increasing c, we successively 
encounter the supercritical Andronov–Hopf bifurcation SupAH 
(light blue), the saddle-node bifurcation LSN (red), the homo-
clinic bifurcation HC (green), and the other saddle-node bifur-
cation USN (red). If we use c� to denote the c-value at which a 
bifurcation of type � occurs, then the order of bifurcations for 
fixed gca = 0.81 is c����� < c��� < c�� < c��� . This order of 
bifurcations is maintained for lower values of gca , until HC dis-
appears, just below the point BT. Hence, since c����� < c��� , 
the active phase is characterized by stable periodic orbits, and 
persists until c ≈ c�� ; we conclude that these gca-values all give 
rise to SW bursting. Similarly, for larger gca-values, even though 
SubAH and LSN cross, the change in criticality at GH implies 
that the active phase is still characterized by stable periodic orbits 
until the saddle-node bifurcation of periodic orbits SNPO occurs 
after LSN; that is, for SW bursting, we require c���� < c���.

The order of the bifurcations along the black dashed line for 
gca = 1.5 in Fig. 3A, which corresponds to PP bursting shown 

in Fig. 2D, is c��� < c���� < c�� < c����� < c��� ; it is impor-
tant that c���� is only just smaller than c�� , which means that 
this order generates a PP pattern that is qualitatively similar to 
that for gca-values above the point where SNPO ends, which 
feature the bifurcation sequence c��� < c�� < c����� < c��� . 
While we did not check all gca-values, this order of bifurcations 
is maintained until at least gca = 2.

The red and blue shaded regions in Fig. 3A show the ranges  
of gca-values over which the generic endocrine model (3) 
and (4) can potentially exhibit SW and PP bursting, respec-
tively. Choosing parameters in one of these regions is, in fact, 
not sufficient to ensure that the corresponding burst pattern 
occurs, since the actual burst pattern also depends on the posi-
tion of the c-nullcline — which changes with gca due to the 
presence of ICa in the c-equation in (3) and (4) — and the 
speed at which c evolves. We conclude from this diagram, 
however, that SW bursting can at most be maintained for 
0.65 < gca < 1.1.

Figure 4 compares the burst patterns of the generic endocrine 
model (3) and (4) for different values of gca . At gca = 0.75 , the 
model exhibits SW bursting (Fig. 4A) that is very similar to that 
for the default value gca = 0.81 (Fig. 2A). When gca is increased 

Fig. 4   Burst patterns exhib-
ited by the generic endocrine 
model (3) and (4) for different 
values of gca , along with associ-
ated currents. A SW bursting 
at gca = 0.75 . B SW bursting at 
gca = 1.0 with larger amplitude 
spikes than in (A). C PP burst-
ing for gca = 1.6
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to 1.0, the model still exhibits SW bursting (Fig. 4B), but the 
increase in gca strengthens ICa , which results in more elevated 
v values at peaks of the bursts. At this elevated v, the current IK 
activates more strongly compared to the previous case, resulting 
in stronger hyperpolarizations between spikes and fewer spikes 
in the burst. When gca is increased still further to 1.6, the activity 
pattern transitions to PP bursting (Fig. 4C). This case yields the 
strongest ICa activation of the three; indeed, despite the induced 
elevation of v and corresponding strong activation of IK , the latter 
current cannot overcome ICa and cause repolarization. Thus, the 
equilibria on the upper branch of the critical manifold C stabilize 
and spike oscillations during the active phase are prevented.

2.1.2 � Sodium‑potassium minimal model

The sodium-potassium minimal model introduced in (Izhikevich, 
2007) is an example of an SW burster comprised of only the basic 
essentials needed to burst. This model consists of the following 
differential equations:

The expressions for the currents and steady state activa-
tion functions for the model are given by:

Note that IS denotes a potassium current with gating that 
evolves much slower than that for IK . Again, we choose 
default parameter values, given in Table 2, for which the 
model exhibits SW bursting as shown in Fig. 5A. The bifur-
cation diagram of the model’s fast subsystem for default 
parameter values is shown in Fig. 5B. Notice that the order 
of bifurcations, in the direction of increasing s, is the same 
as in Fig. 2B, that is, s����� < s��� < s�� < s���.

By comparing timescales after non-dimensionalization of 
this model (see the Appendix), we find that the timescale con-
stants of v, n and s are approximately Rv ≈ 20 , Rn ≈ 6.57 and 
Rs ≈ 0.005 , respectively. The rate Rv ≈ 20 varies linearly with 
gna as long as gna > 9 = gk ; if gna is decreased below this value, 
Rv ≈ 9 is determined by gk instead and any further decrease in 

(5)

⎧⎪⎨⎪⎩

cm v� = −IL(v) − INa(v) − IK(v, n) − IS(v, s) + I,

n� = (n∞(v) − n)∕�n,

s� = (s∞(v) − s)∕�s.

(6)

IL(v) = gl (v − el),

INa(v) = gna m∞(v) (v − ena),

IK(v, n) = gk n (v − ek),

IS(v, s) = gkm s (v − ek),

m∞(v) = (1 + e(vm−v)∕sm)−1,

n∞(v) = (1 + e(vn−v)∕sn)−1,

s∞(v) = (1 + e(vs−v)∕ss)−1.

gna would not affect Rv . Hence, the variables v and n are consid-
erably faster than s, irrespective of the value for gna.

Even though the sodium-potassium minimal model (5) and 
(6) is designed to exhibit SW bursting, it is capable of other 
activity patterns. For example, Supplemental Fig. 1 shows the 
non-spiking pattern generated for gna = 35 in which all solu-
tions are attracted to a stable steady state at an elevated voltage 
level, which corresponds to a state of depolarization block. For 
this large value of gna , the nullcline of the slow variable s inter-
sects the upper branch of the critical manifold, which gives rise 
to a stable steady state of the full system. However, SW burst-
ing is already lost for smaller gna-values. Figure 5C shows the 
two-parameter bifurcation diagram of the fast subsystem in the 
(s, gna)-plane. As in Section 2.1.1, the ordering of bifurcation 
curves suggests that system (5) and (6) can potentially exhibit 
SW bursting for gna-values between 20 and 25, if the slow 
dynamics is tuned appropriately; this region is again shaded 
red. We computed the first Lyapunov coefficient associated 
with the Andronov-Hopf bifurcation (Fig. 5D) and found that 
it is negative for the default gna and remains so up until a much 
larger value, gna ≈ 65 . Hence, this system does not transition 
to PP bursting, at least not for s ∈ (0, 1) , the physically relevant 
range. Instead, for gna > 32 or so, system (5) and (6) moves 
into a state of depolarization block, which is the region shaded 
light blue in Fig. 5B.

2.1.3 � Minimal Chay‑Keizer model

Next, we consider the minimal Chay–Keizer model 
described in (Rinzel, 1986; Rinzel & Lee, 1986). This model 
takes the form:

The currents and steady state activation functions for the 
model are given by:

(7)

⎧⎪⎨⎪⎩

cm v� = −IL(v) − ICa(v) − IK(v, n) − IK(Ca)(v, c),

n� = (n∞(v) − n)∕�n(v),

c� = −fc (� Ica(v) + kp c).

Table 2   Sodium-Potassium 
Minimal Model (5)–(6): default 
parameter values

cm 1 pF I 5 pA
gl 8 nS gna 20 nS
gk 9 nS gs 5 nS
el −80 mV ena 60 mV
ek −90 mV vm −20 mV
vn −25 mV vs −20 mV
sm 15 mV sn 5 mV
ss 5 mV �n 0.15 ms
�s 200 ms
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We choose the default parameter values given in Table 3, for 
which the model exhibits SW bursting as displayed in Fig. 6A.

(8)

IL(v) = gl (v − el),

ICa(v) = gca m
3

∞
(v) h∞(v) (v − eca),

IK(v, n) = gk n (v − ek),

IK(Ca)(v, c) = gkca
c

1 + c
(v − ek),

am(v) =
0.1 (v + 25)

1 − e−0.1(v+25)
,

bm(v) = 4 e−(v+50)∕18,

m∞(v) =
am(v)

am(v) + bm(v)
,

an(v) =
0.01 (v + 20)

1 − e−0.1(v+20)
,

bn(v) = 0.125 e−(v+30)∕80,

n∞(v) =
an(v)

an(v) + bn(v)
,

�n(v) =
3.33

an(v) + bn(v)
,

ah(v) = 0.07 e−(v+50)∕20,

bh(v) =
1

e−0.1(v+20) + 1
,

h∞(v) =
ah(v)

ah(v) + bh(v)
.

Non-dimensionalization (see the Appendix) shows that 
the timescale constants of v and c in this model are Rv ≈ 1.8 , 
Rc ≈ 0.004 respectively, while the time constant Rn for n depends 
on v and varies between 0.05 to 0.1 over the relevant range of v 
values. In this model, both Rv and Rc depend on gca . We choose 
an upper bound of 4 on gca , which is double the default value. At 
this maximal value, we have Rv ≈ 4 and Rc ≈ 0.008 , or roughly 
twice the default values. Even with these timescale constants, v 
and n can be considered as fast compared to c.

The minimal Chay–Keizer model (7) and (8) exhibits SW 
bursting for the default parameter values given in Table 3 
and PP busting when gca increases to 3.2; see Fig. 6A, C. 
The corresponding bifurcation diagrams of the model’s 
fast subsystem with respect to the slow variable are shown 
in Fig.  6B, D. The two-parameter bifurcation diagram 
in the (c, gca)-plane shown in Fig. 7A illustrates how the 

Fig. 5   Dynamics and bifurca-
tion structure for the sodium-
potassium minimal model (5) 
and (6). A SW bursting for the 
default parameters given in 
Table 2. B Bifurcation diagram 
of the model’s fast subsystem 
with respect to the slow variable 
s for default parameter values, 
with the SW burst overlaid 
in gray. C Two-parameter 
bifurcation diagram of the fast 
subsystem in the (s, gna)-plane; 
colors are as in Fig. 3A and the 
SW bursting region is shaded 
red. For realistic values ( s < 1 ), 
this model does not transition 
to PP. The light-blue shaded 
region corresponds to gna-values 
for which the full system has a 
stable steady state at elevated 
v. D Lyapunov coefficient 
along the curve SupAH. The 
Andronov–Hopf bifurcation 
is supercritical until around 
gna = 65 , which lies outside the 
range shown in panel (C)

Table 3   Minimal Chay–Keizer Model  (7) and (8): default param-
eter values

cm 1 �F/cm2 gl 0.006985 mS/cm2

gca 1.79934 mS/cm2 gk 1.69765 mS/cm2

gkca 0.0104998 mS/cm2 ek −75 mV
eca 100 mV el −40 mV
kp 0.00513 ms−1 fc 0.0058
� 0.02591 �M∕nC
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bifurcations of the fast subsystem depend on gca . Based on 
the relative order of the bifurcation curves, we conclude that 
the minimal Chay–Keizer model (7) and (8) can potentially 
exhibit SW bursting for 1.5 < gca < 2.8 (red shaded region) 
and PP bursting for gca near 3.2 (narrow blue shaded region). 
When gca is increased further, the Andronov–Hopf bifurca-
tion moves to larger values of c, such that the nullcline of 
the slow variable c intersects the upper branch of the critical 
manifold at a stable equilibrium point. In doing so, the full 
system now has a stable steady state and hence, for suffi-
ciently large gca-values, the system exhibits depolarization 
block with voltage suspended at an elevated level (light-blue 
shaded region).

2.1.4 � Butera model

The Butera model is a seminal minimal model used to study 
rhythm generation in respiratory neurons (Butera et al., 1999). 
This model consists of the following differential equations:

(9)

⎧⎪⎪⎨⎪⎪⎩

cm v� = −IL(v) − INa(v, n) − IK(v, n)

− INaP(v, p) − Iton(v),

n� = (n∞(v) − n)∕�n,

p� = (p∞(v) − p)∕�p(v),

where INaP denotes a persistent sodium current. The expres-
sions for the currents and steady state activation functions 
are as follows:

We choose default parameters as given in Table 4, such 
that the model exhibits SW bursting as shown in Fig. 8A.

Non-dimensionalization (see the Appendix) shows 
that the timescale constants of v, n and p are Rv ≈ 1.33 , 
Rn ≈ 0.17 and Rp ∈ [0.0001, 0.003] , respectively. Decreasing 
gna decreases Rv , but Rp remains much smaller than Rv and 
Rn . Hence, we can again consider v and n as fast variables, 
with p the slow variable for this model.

(10)

IL(v) = gl (v − el),

INa(v, n) = gna m
3

∞
(v) (1 − n) (v − ena),

IK(v, n) = gk n
4 (v − ek),

INaP(v, p) = gnap m p∞(v) p (v − ena),

Iton(v) = gton (v − esyn),

m∞(v) = (1 + e(vm−v)∕sm)−1,

n∞(v) = (1 + e(vn−v)∕sn)−1,

mp∞(v) = (1 + e(vmp−v)∕smp)−1,

p∞(v) = (1 + e(vp−v)∕sp)−1,

�n(v) = �n (cosh((v − vn)∕(2sn)))
−1,

�p(v) = �p (cosh((v − vp)∕(2sp)))
−1.

Fig. 6   Dynamics and bifurca-
tion structure for the minimal 
Chay–Keizer model (7) and (8). 
A SW bursting for the default 
parameters given in Table 3. 
B Bifurcation diagram of the 
model’s fast subsystem with 
respect to the slow variable c 
for the default value of  gca . The 
SW burst trajectory is overlaid 
in gray. C The model exhib-
its PP bursting for gca = 3.2 ; 
note the difference in c-range 
between (A) and (C). D The 
bifurcation diagram as in (B) 
but with gca = 3.2
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Figure 8B shows the bifurcation diagram of the fast 
subsystem for the default parameter values. Observe that, 
even though the Andronov–Hopf bifurcation is subcritical, 
a family of stable periodic orbits (blue) originates from a 
saddle-node bifurcation of periodic orbits (SNPO). The SW 
burst trajectory (gray) is overlaid in Fig. 8B and evolves 
counterclockwise.

Figure 8C shows the two-parameter bifurcation diagram 
for the fast subsystem in the (p, gna)-plane. Notice that, 
in this figure, the order for the curves LSN and USN is 
reversed compared to the other models; compare also with 
Fig. 8B, where USN occurs at a negative value of p and is, 
hence, not visible in the view that is shown. For the Butera 
model (9) and (10), the SW bursting region (shaded red) 
persists as gna increases, because there always exists a family 
of stable periodic orbits of the fast subsystem in the region 
bounded by the curves HC and LSN. Indeed, even though 
the Andronov–Hopf bifurcation (blue) changes criticality 
at GH and is subcritical for gna > 7.3 (Fig. 8D), the curve 
SNPO of saddle-node bifurcation of periodic orbits that 
emanates from GH persists and stays to the right of LSN 
(leftmost red curve). Hence, the fast subsystem always fea-
tures a family of stable oscillations, which originate from 
SNPO and end (as p decreases) at HC (green). These stable 
oscillations support spiking in the active phase.

2.2 � Model modifications to include slow negative 
feedback

The biophysical mechanisms behind spiking for the 
canonical Hodgkin–Huxley model  (Hodgkin & Huxley,  
1952) include (i) a fast activating, more slowly inactivating  
inward sodium current that results in the upstroke of the 
spike and (ii) an outward, negative feedback potassium 

current, which activates on a timescale similar to that of the 
sodium inactivation and is responsible for the downstroke 
of the spike  (Tabak et al., 2011). Typical bursting models 
feature (i) and (ii) and also add in a third, slowest current or 
variable that helps to modulate the burst between its active 
and silent phases (Izhikevich, 2007). These components 
arise, in particular, in the neural and endocrine models pre-
sented in Section 2.1, which exhibit SW bursting in some 
region of parameter space. In the case of the generic endo-
crine model (3) and (4), for example, the calcium current ICa 
is an inward current with fast activation and, hence, provides 
fast positive feedback to v, while the potassium current IK 
is an outward current with a slower activation gate n that 
provides the slow negative feedback; moreover, the slowest 
variable c, corresponding to the calcium concentration in the 
cell, modulates the burst.

Compared to the other models presented in Section 2.1, 
the Butera model (9) and (10) maintains SW bursting over 
a broad range of parameter values, as can be seen in Fig. 8C 
(red shaded region). The fast current in the Butera model is 
a sodium current, which is different from the fast calcium 

Fig. 7   A  Two-parameter bifurcation diagram of the fast subsystem 
of the minimal Chay–Keizer model  (7) and (8) in the (c, gca)-plane; 
colors are as in Fig. 3A and the SW bursting region is shaded red, the 
narrow PP region is shaded blue, and the light-blue shaded region just 
above that corresponds to a state of depolarization block. B Lyapunov 

coefficient along the curve AH, comprised of SupAH and SubAH. 
The Andronov–Hopf bifurcation is supercritical for gca below the axis 
crossing close to gca = 2.5 and subcritical for larger gca . Note that the 
curve ends at a  gca-asymptote

Table 4   Butera Model (9) and 
(10): default parameter values cm 21 pF gl 2.8 nS

gna 28 nS gk 11.2 nS
gnap 2.8 nS gton 0.3 nS
gsyn 0 nS el −65 mV
ena 50 mV ek −85 mV
esyn 0 mV vn −29 mV
vm −34 mV vmp −40 mV
vp −48 mV sm −5 mV
sn −4 mV sp 6 mV
smp −6 mV �n 10 ms
�p 10000 ms
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currents in the generic endocrine and minimal Chay–Keizer 
models, as well as the sodium current in the sodium-potassium 
minimal model, because INa has a slow inactivation gate in 
this model. Past work has highlighted the roles of positive 
and negative feedback terms in tuning the features of neural 
spiking (Franci et al., 2013) and the potential importance of 
slow positive feedback in enhancing the robustness of burst-
ing (Franci et al., 2018).

In this vein, we hypothesized that the robustness of SW 
bursting in the Butera model could relate to the fact that the 
additional negative feedback present in the model is slow 
relative to the fast activation. To test this idea, we modified 
each of the other three models to include a slow, voltage-
dependent inactivation gate as part of the fast inward cur-
rent, which allowed us to study how the inclusion of such a 
component alters each model’s dynamics.

The modified calcium current ICa for the generic endo-
crine model (3) and (4) is given by

and the modified sodium current INa for the sodium-potassium  
minimal model (5) and (6) takes the form

where h in equations (11) and (12) is the voltage-dependent 
inactivation gating variable governed by the equation

(11)ICa(v) = gca m
2

∞
(v) h (v − eca),

(12)INa(v) = gna m∞(v) h (v − ena),

with

In its original form, the minimal Chay–Keizer 
model (7)–(8) has a fast inactivation term h = h∞(v) associ-
ated with ICa . So to study this model, we changed the inac-
tivation to a slow one by modifying the calcium current to 
take the form

where h again evolves according to equation (13).
Since h is a dimensionless variable that takes values 

between 0 and 1, the coupling of the h-dynamics via equa-
tions (11), (12) or (14) does not affect the timescale con-
stants of the other variables in the models. The timescale 
constant for (13) is Rh ≈ Qt∕�h = 1∕�h , which can be derived 
similarly to the timescale of n (see the Appendix). For each 
model, we will explore how the dynamics and bifurcation 
structure change as �h is varied over a range of values. In 
each case, we choose this range to be roughly compara-
ble with the model’s respective �n-value, such that h and n 
evolve on similar timescales.

For the modified generic endocrine model (3), (4), (11), 
and (13), the half-inactivation value vh was selected to be 

(13)h� = (h∞(v) − h)∕�h

h∞(v) = (1 + e(vh−v)∕sh )−1.

(14)ICa(v) = gca m
3

∞
(v) h (v − eca),

Fig. 8   Dynamics and bifurca-
tion structure for the Butera 
model (9) and (10). A SW 
bursting for the default 
parameters given in Table 4. 
B Bifurcation diagram of the 
model’s fast subsystem with 
respect to the slow variable 
p, together with the SW burst 
trajectory for the default param-
eters given in Table 4 overlaid 
in gray (evolution is counter-
clockwise). C Two-parameter 
bifurcation diagram of the fast 
subsystem in the (p, gna)-plane; 
colors are as in Fig. 3A and the 
SW bursting region is shaded 
red. The inset is an enlargement 
of the indicated region near BT 
and GH. D Lyapunov coefficent 
along the curve AH, comprised 
of SupAH and SubAH. The 
Andronov–Hopf bifurcation is 
supercritical only for gna < 7.3 , 
but a saddle-node of periodic 
orbits SNPO occurs at GH 
that generates a family of stable 
periodic orbits necessary for 
SW bursting
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−30 , which is approximately in the middle of the range of 
v-values corresponding to the spiking phase of SW bursting 
in Fig. 2A. For simplicity, sh was kept constant at −1 . In the 
Butera model (9) and (10), the inactivation of INa is approxi-
mated as 1 − n where n is the activation variable of IK . Fol-
lowing this idea, vh and sh of the modified sodium-potassium 
minimal model (5), (6), (12), and (13) were chosen as −25 
and −5 , respectively, to match the values associated with 
corresponding terms for IK in that model. For the modi-
fied minimal Chay–Keizer model (7), (8), (13), and (14), 
we retained the default definitions and parameter values for 
h∞(v) given in Table 3.

3 � Results

In this section we investigate the robustness of SW bursting to 
variation of the fast inward current conductance for each of the 
three modified models. We first analyze how this robustness 
depends on the the timescale constant �h . For the values that  
we include, all of the modified models can be considered as 
fast-slow systems with fast variables v, n, and h and a single 
slow variable. Hence, we can apply a similar fast-slow analysis 
to these modified models to that employed in Section 2. We also  
consider the effect of varying the conductance gk associated 
with the potassium current that is present in all four models and 
complete our results with a two-parameter analysis with respect 
to gk and the inverse �−1

h
 of the timescale constant.

3.1 � Bifurcation diagrams of modified models

Figure 9 shows two-parameter bifurcation diagrams of the 
respective fast subsystem for each of the three modified 
models for a fixed �h value; here, we plot the slow variable 
(c or s) on the horizontal and the conductance of fast inward 
current ( gca or gna ) on the vertical axis. These bifurcation 
diagrams should be compared to Figs. 3, 5, and 7, respec-
tively. Notice that in all of these diagrams, the curve AH of 
Andonov–Hopf bifurcations is pushed out far to the left of 
the leftmost saddle-node curve LSN as gca or gna increases. 
This arrangement of bifurcations ensures the existence 
of a family of stable periodic orbits in the fast subsystem 
over a larger range of gca or gna , which prevents a transi-
tion to PP bursting. Instead, the pattern exhibited in each 
case is either SW bursting or slow spiking, depending on 
the position of the curve HC of homoclinic bifurcations. 
Specifically, if the curve HC does not reach the curve LSN 
and the Andronov–Hopf bifurcation is supercritical (or sub-
critical with a curve SNPO of saddle-node bifurcations of 
periodic orbits located even farther away from LSN), then 
SW bursting results. On the other hand, if the homoclinic 
curve reaches LSN, which induces a so-called SNIC regime 

(saddle-node bifurcation on invariant cycle) (Ermentrout, 
1996), then the model exhibits slow spiking. In all of the 
two-parameter diagrams shown in Figure 9, the SW and slow 
spiking regions are shaded red and purple, respectively.

The bifurcation diagram for the modified generic endo-
crine model (3), (4), (11), and (13) in the (c, gca)-plane with 
�h = 0.033 (Fig. 9A) shows a clear expansion in the range of gca
-values for which the model exhibits SW bursting relative to the 
original model (cf. Fig. 3). Indeed, when the Andronov–Hopf 
bifurcation switches from supercritical to subcritical for gca just 
above 1 (Fig. 9B), a saddle-node bifurcation of periodic orbits 
(SNPO) occurs to the left of the curve AH and therefore stable 
oscillations persist, extending in the direction of increasing c 
until the curve HC is reached. Consequently, a transition to PP 
bursting is now prevented. Instead, when SW bursting is lost 
for gca just below 2, due to the transition from HC to SNIC, the 
modified model generates slow spiking.

In the case of the modified sodium-potassium minimal 
model (5), (6), (12), and (13), the two-parameter bifurcation  
diagram in the (s, gna)-plane with �h = 0.125 (Fig. 9C) features 
a slightly expanded SW bursting range. Recall that SW bursting 
for the original sodium-potassium minimal model (Fig. 5B) is  
not especially robust to parameter changes. Even though SW 
bursting never transitions to PP bursting for the original form of 
this model, when gna is increased above the SW range, the origi-
nal model exhibits some intermediate patterns and then transi-
tions to a stable steady state of the full system at elevated voltage. 
In the modified model, on the other hand, when SW bursting is 
lost, the system switches to slow spiking through the transition 
to a SNIC (Fig. 9C). There is also no longer a change in critical-
ity of the Andronov–Hopf bifurcation in this modified model, at 
least not over the range of gna-values considered (Fig. 9D).

The modified minimal Chay–Keizer model (7), (8), (13), and 
(14) with �h = 1.111 shows an expansion in its SW region in 
the (c, gca)-plane relative to the original version of the model 
(compare Fig. 7 with Fig. 9E) and, similarly to the other modi-
fied models, it no longer supports PP bursting. Instead, the SW 
regime features a curve SubAH of subcritical Andronov-Hopf 
bifurcation (Fig. 9F), with an associated family of stable periodic 
orbits originating at the curve SNPO. Although these bifurca-
tion curves lie at non-physiological, negative c-values, the stable 
periodic orbits extend to positive c and terminate at the curve 
HC in the SW bursting regime. The modified model transitions 
directly from SW bursting to spiking as gca is increased, organ-
ized by the switch to the SNIC mechanism.

Figure 10 compares the burst patterns of the modified 
generic endocrine model (3), (4), (11), and (13) for pro-
gressively increasing values of gca . The first two panels are 
very similar to those of Fig. 4 for the unmodified model. 
With the modification, h can decay on each spike, but that 
has little qualitative impact on burst features for these gca
-values. Once gca becomes large enough that PP burst-
ing would have occurred in the original model, however, 
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a more significant difference emerges (Fig. 10C). In this 
case, the large gca and corresponding ICa yield a strong 
voltage elevation and IK activation as previously. How-
ever, when the strong IK activation is combined with h 
inactivation that weakens ICa , the outward current over-
whelms the inward current, as can be seen from the posi-
tive value of IK + ICa on the tail end of the spike. Hence, v 
is now pushed down to a hyperpolarized state, and burst-
ing is replaced by the generation of an isolated spike.

3.2 � Effects of varying �h

As we and many others have discussed (Ermentrout & 
Terman, 2010; Izhikevich, 2007), bursting in neuronal and 
endocrine models relies on a balance of voltage-dependent 

positive and negative feedback contributions to the volt-
age equation, acting on appropriate timescales. More spe-
cifically, consider SW bursting in a model for which the 
fast inward current does not inactivate. If the conductance 
of this inward current is increased sufficiently then the 
strengthened positive feedback disrupts the balance of cur-
rents in the system. As a consequence, the slower negative 
feedback current cannot overcome the fast positive cur-
rent to induce the downstroke needed for a spike, so the  
model ceases to exhibit spiking during its active phase and, 
instead, transitions to a state of depolarization block or a 
PP burst. Therefore, we hypothesize that the enhancement 
of SW bursting, and the prevention of PP bursting and 
depolarization block, can be achieved by modifications 
to a model in such a way that the balance of currents is  

Fig. 9   Two-parameter bifur-
cation diagram of the fast 
subsystem for each of the 
three modified models with 
respect to the corresponding 
slow variable and the con-
ductance of its fast inward 
current. A Modified generic 
endocrine model (3), (4), (11), 
and (13). B Lyapunov coef-
ficent associated with the curve 
AH (composed of SupAH and 
SubAH) in (A), plotted versus 
gca with �h = 0.033 . C Modi-
fied sodium-potassium minimal 
model (5), (6), (12), and (13) 
with �h = 0.125 . D Lyapunov 
coefficent associated with the 
curve SupAH in (C), plotted 
versus gna . E Modified minimal 
Chay–Keizer model (7), (8), 
(13), and (14) with �h = 1.111 . 
F Lyapunov coefficent associ-
ated with the curve AH in (E), 
plotted versus gca . All of the 
modified models show broader 
parameter ranges over which 
they exhibit SW bursting 
(shaded red) compared to those 
in Figs. 3, 5, and 7 for the 
unmodified models. Moreover, 
unlike all of the originals, none 
of the modified models yield 
transitions to PP bursting or 
depolarization block
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maintained as certain parameters vary. We achieved this by 
adding a slow inactivation gate to a positive current, such 
that this inward current gradually weakens, even when its 
maximal conductance gca or gna is high. In this section, we 
report on achieving an optimal balance by choosing the 
most suitable value for �h , the time constant for the slow 
inactivation gate.

Figure 11 shows the burst patterns of the original generic 
endocrine model (3) and (4) as well as of its modification 
with (11) and (13) for gca = 1.1 and different values of �h . 

When gca = 1.1 , the original model, without inactivation of 
the Ca2+-channel, exhibits SW bursting (Fig. 11A); this cor-
responds to setting �h = ∞ , with h ≡ 1 constant, in the modi-
fied generic endocrine model. Note that the value gca = 1.1 
is at the top end of the gca-range at which the original model 
can potentially produce SW bursting (cf. Fig. 3). We now 
impose dynamics on the inactivation gate to the calcium 
channel and show how the balance of voltage-dependent 
positive and negative feedback is controlled by the timescale 
constant �h associated with this inactivation gate.

Fig. 10   Burst patterns exhib-
ited by the modified generic 
endocrine model (3), (4), (11), 
and (13) for different values 
of gca , along with associated 
currents. A SW bursting at 
gca = 0.81 . B SW bursting 
at gca = 1.2 . C Spiking for 
gca = 2.0 . Note that, as gca 
increases, the amplitude of the 
initial spike increases

Fig. 11   Activity patterns exhib-
ited by the modified generic 
endocrine model (3), (4), (11), 
and (13) at gca = 1.1 with  
�h varying. A SW bursting 
for the original model, which 
is equivalent to the modified 
model with �h = ∞ and h ≡ 1 . 
B Slow spiking for �h = 0.2 . 
C SW bursting for the default 
value �h = 0.03 . D PP bursting 
for �h = 0.01

252



Journal of Computational Neuroscience (2023) 51:239–261 

1 3

When �h = 0.2 (Fig. 11B), the dynamics of h is not fast 
enough during the first spike to cause any spike attenua-
tion. Hence, v reaches a level at which the outward cur-
rent IK turns on to full strength. As the spike terminates, the 
combination of the small decrease in h and corresponding 
decrease in ICa together with the strong IK result in a net 
outward current flow that pulls the voltage back down out 
of the active phase into a full after-hyperpolarization. Thus, 
when the inactivation is slow, SW bursting is replaced by 
slow spiking.

Decreasing �h to the default value �h = 0.03 for the mod-
ified model (as used in Fig. 9A) corresponds to a faster, 
although still slow, rate of change of h. In this case, h reduces 
fast enough that the amplitude of the first spike is lowered, 
as seen in Fig. 11C; indeed, notice that the spikes max out 
at a lower voltage than in Fig. 11A, B. The reduced maximal 
voltage leads to a weaker IK activation, which cannot induce 
a full hyperpolarization or return to the silent phase. Hence, 
additional spikes occur, even though h is gradually decreas-
ing, resulting in a spiking active phase and restoration of a 
SW bursting pattern.

Decreasing �h further, however, accelerates the ICa inac-
tivation rate, which means that the amplitude of the first 
voltage peak is lowered even more and, consequently, 
IK activation is significantly weakened. Eventually, the 
outward IK current is not strong enough to pull down the 
voltage and form a spike. This effect corresponds to con-
vergence to the depolarized (upper) branch of the critical 
manifold. Hence, voltage jumps up to the branch of C with 
stable equilibria of the fast subsystem, which leads to tran-
sient depolarization block and the emergence of PP burst-
ing patterns (e.g., Fig. 11D for �h = 0.01 ), or else sustained 
depolarization block.

If we now increase gca to gca = 1.5 then the original 
generic endocrine model (3) and (4) exhibits PP bursting 
(cf. Fig. 3); the burst pattern is shown in Fig. 12A, with 
the other panels illustrating burst patterns for the modi-
fied generic endocrine model (3), (4), (11), and (13) with 
gca = 1.5 and different values of �h . We select �h = 0.2 
(Fig. 12B), �h = 0.02 (Fig. 12C), and �h = 0.015 (Fig. 12D), 

which produce a sequence of patterns that suggest a similar 
transition from spiking via SW bursting to PP bursting (cf. 
Fig. 11), even though the original model exhibits only PP 
bursting at this higher gca-value. The explanation is entirely 
analogous to that detailed for Fig. 11; for example, when 
�h = 0.2 , the inactivation gate is very slow and h does not 
change enough during the first spike to cause any reduc-
tion in peak spike amplitude. With the slow inactivation of 
ICa , however, the resulting increase in IK is strong enough 
to pull the voltage back to full hyperpolarization after the 
first spike.

We observe the same effect when varying �h for differ-
ent choices of gna in the modified sodium-potassium mini-
mal model and for different choices of gca in the modified 
Chay-Keizer model. In other words, for all three modified 
models, there exists an intermediate range of �h-values for 
which the SW burst regime is significantly extended into 
higher values for gca or gna and PP bursting is prevented. 
Figure 13 illustrates this enlarged robustness with two-
parameter bifurcation diagrams of all three modified mod-
els that show the regimes for different activity patterns with 
respect to the conductance of the fast inward current, gca or 
gna , and 1∕�h . We use the inverse 1∕�h rather than �h itself so 
that the activity patterns of the original generic endocrine 
model (3) and (4) and the original sodium-potassium mini-
mal model (5) and (6) appear on the line 1∕�h = 0 . For the 
minimal Chay–Keizer model (7) and (8), the inclusion of 
h∞(v) in ICa corresponds to an instantaneous negative feed-
back component of this current. Therefore, this model is 
represented as 1∕�h = ∞ (“inf”) in Fig. 13C.

For each fixed value of �h , the activity patterns exhibited 
by the modified models were analyzed by considering two-
parameter bifurcation diagrams with respect to the fast inward 
current conductance parameter and the slow variable, as in ear-
lier figures (e.g., Fig. 3). In each panel, the gray shaded region 
corresponds to SW bursting or fast spiking patterns, both of 
which would yield synaptic transmission. Fast spiking is exhib-
ited by the modified sodium-potassium minimal model (5), 
(6), (12), and (13) for �h values above 11 and sufficiently large 
gna . In this case, the full model has a stable periodic orbit with 

Fig. 12   Activity patterns exhib-
ited by the modified generic 
endocrine model (3), (4), (11), 
and (13) at gca = 1.5 with �h 
varying. A PP bursting for  
the original model, which is 
equivalent to �h = ∞ and h ≡ 1 . 
B Slow spiking for �h = 0.2 . 
C SW bursting for �h = 0.02 . 
D PP bursting for �h = 0.015
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s ≈ 1 ; for example, see Supplemental Fig. 2. Observe that, for 
all three modified models, the largest interval of conductances 
that spans this region occurs at the cross-section for an inter-
mediate value of 1∕�h (and, thus, of �h ). Indeed, for Fig. 9, we 
selected �h values near the optimum for each model. When �h is 
sufficiently small, all three modified models exhibit relaxation 
oscillations that transition to PP bursting as the fast inward cur-
rent conductance is increased. From there, as �h is made larger, 
an interval of conductances that support SW bursting emerges 
and grows (Fig. 13A–C) and PP bursting, over a large range of 
�h , is prevented.

We remark that the analysis of the corresponding bursting 
patterns for most of the range of �h-values considered can be  
done by assuming that the model has three fast and one slow  
variables. However, at sufficiently large values of �h , the time-
scale of h becomes comparable to that of the slow variable,  
which means that the models should be analyzed as systems 
with two fast and two slow variables. Our numerical explora-
tions for each of the three modified models suggest that on 
the intermediate range of �h that extends the SW regime, �h 
does not yet become comparable to the timescale of the slow 
variable. We leave a more detailed multi-timescale analysis 
of the regime of large �h for future work.

3.3 � Varying gk  

Varying the parameter gk changes the timescale of v but 
leaves the timescales of the other variables unchanged (see 
the Appendix). Hence, the modified models can be analyzed 
for varying gk by considering a fast-slow decomposition with 
three fast and one slow variables, as long as v remains fast, 
and also �h for each modified model is chosen such that the 
h-kinetics evolves at a significantly faster timescale than that 
of the slowest variable in the corresponding original model.

For a general SW bursting model, a reduction of gk leads 
to a transition from SW bursting to a PP pattern; qualita-
tively, it has the same impact as increasing gna or gca (Teka 
et al., 2011b). Therefore, we expect that the robustness of 
SW bursting with respect to changes in gk is maximal for the 
modified models if �h is chosen from an intermediate range. 
This is confirmed in Fig. 14, where we show two-parameter 
bifurcation diagrams in the (gk, 1∕�h)-plane for each of the 
modified models.

Figure 14A corresponds to the modified generic endo-
crine model  (3), (4), (11), and (13). Notice that in the  
original model, without inactivation (i.e., 1∕�h = 0 ), the 
burst pattern transitions to PP (blue dots) as gk decreases 

Fig. 13   Two-parameter bifurca-
tion diagrams of the modified 
models with respect to gca 
or gna and 1∕�h . A Modified 
generic endocrine model (3), 
(4), (11), and (13). B Modified 
sodium-potassium minimal 
model (5), (6), (12), and (13). 
C Modified minimal Chay–
Keizer model (7), (8), (13), 
and (14). Notice that in all the 
three modified models, SW is 
most robust over an intermedi-
ate range of 1∕�h-values (and, 
hence, of �h-values)
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below gk ≈ 1.7 . Over a range of 1∕�h-values that are nei-
ther too large nor too small, this transition is completely 
prevented. The modified sodium-potassium minimal 
model (5), (6), (12), and (13) in Fig. 14B yields a quali-
tatively similar result. Recall that the original minimal 
Chay–Keizer model (7) and (8), with its instantaneous 
ICa inactivation gate, corresponds to 1∕�h = ∞ (“inf”) in 
Fig. 14C; the burst pattern transitions to depolarization 
block (light blue) as gk decreases, via only a very small 
interval of PP activity. The modified minimal Chay–Keizer 
model with additional Eqs. (13) and (14) maintains this 
property for large 1∕�h-values, but the transition via PP to 
depolarization block is prevented over a much larger range 
of gk for an intermediate interval of 1∕�h-values.

3.4 � Effect of slow negative feedback on the location 
of AH

The additional inactivation gate and associated h-dynamics 
affect the location of the critical manifold for the fast subsys-
tem (2), but this location change does not fully explain the 
increased robustness seen at intermediate values of the 

timescale constant �h . For example, consider the modified 
generic endocrine model (3), (4), (11), and (13) for the default 
parameters as given in Table 1, with various choices of �h . 
Provided that �h remains small enough, e.g., 1

𝜏h

> 10 , the modi-
fied model has three fast variables (v, n and h) and one slow 
variable (c). Then the critical manifold is defined implicitly by 
the equation:

with n = n∞(v) and h = h∞(v) . Hence, the critical manifold 
does not depend on �h at all. Similarly, the saddle-node bifur-
cations LSN and USN, which are determined by the local 
minima and maxima of (15), respectively, when viewed as a 
curve in the (v, c)-plane, do not depend on �h . However, the 
Jacobian matrix of the full four-dimensional system, evalu-
ated along the critical manifold, does depend on �h ; this 
means, in particular, that the location of the Andronov–Hopf 
bifurcation (AH) is potentially affected by variations in �h.

For example, consider an equilibrium of the fast subsys-
tem that lies on the upper, high-voltage branch of the critical 
manifold C on the part that coexists with its middle branch 
and (part of) its lower branch; hence, its c-coordinate satisfies 

(15)ICa(v, h∞(v)) + IK(v, n∞(v)) + IK(Ca)(v, c) = 0,

Fig. 14   Two-parameter bifurca-
tion diagrams of the modified 
models with respect to gk 
and 1∕�h . A Modified generic 
endocrine model (3), (4), (11), 
and (13). B Modified sodium-
potassium minimal model (5), 
(6), (12), and (13). C Modi-
fied minimal Chay–Keizer 
model (7), (8), (13), and (14)
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c��� ≤ c ≤ c��� . Figure 15 shows how the real parts of a pair 
of complex-conjugate eigenvalues for this equilibrium point 
change with 1∕�h for fixed gca = 0.81 . As can be seen from 
the figure, for relatively small �h values (i.e., for large 1∕�h ), 
the equilibrium is stable. That is, the Andronov–Hopf bifur-
cation, denoted AH here, that stabilizes points on the upper 
branch of  C occurs at a c-value above the c-coordinate of this 
equilibrium point. On the other hand, as �h becomes larger, 
corresponding to a slower negative feedback, the equilibrium 
becomes unstable. In this case, the Andronov–Hopf bifurca-
tion point AH must occur at a lower c-value than that of this 
equilibrium point. For a model to exhibit PP bursting or depo-
larization block, the point AH must lie at c > c��� . Increas-
ing �h pushes this bifurcation to c-values below c��� ; that is, 
the calcium inactivation must be sufficiently slow to move the 
Andronov–Hopf bifurcation AH to a location where PP burst-
ing and depolarization block are prevented for this value of gca.

4 � Discussion

In this work, we compared bursting patterns across four well- 
established, relatively low-dimensional mathematical neuron 
models of Hodgkin–Huxley type, namely, a generic endo-
crine model (3) and (4) (Tsaneva-Atanasova et al., 2010), a 
sodium-potassium minimal model (5) and (6) (Izhikevich, 
2007), a minimal Chay–Keizer model (7) and (8) (Rinzel, 
1986; Rinzel & Lee, 1986), and the Butera model (9) and 
(10) (Butera et al., 1999). Observing the distinctive robust-
ness of SW bursting in the Butera model, which features a 

slow inactivation component in the fast inward current that 
drives spiking, we modified the three other models, which 
exhibit less robust SW bursting in their original forms. Spe-
cifically, we included slow inactivation dynamics in their fast 
inward currents, and examined the effects on the robustness 
of their SW bursting dynamics. Previous literature has stud-
ied the transition between SW and PP bursting patterns with 
changes in fast inward current conductances (Osinga et al., 
2012; Tabak et al., 2007; Teka et al., 2011a, b; Tsaneva-
Atanasova et al., 2010). To our knowledge, however, this is 
the first time that the effect of slow negative feedback has 
been studied in relation to the robustness of SW bursting. 
The point of this analysis is not to propose an adjustment to 
these bursting models; rather, we use the comparison of the 
original and modified models as a tool to explore the role 
of the slow inactivation of the inward current. Our results 
provide insight into why some neurons in biological systems 
might have slowly inactivating inward currents, despite their 
seeming redundancy because of the presence of outward cur-
rents that activate on similar timescales.

We employed standard dynamical systems methods of 
fast-slow decomposition and bifurcation analysis for this 
investigation. Our analysis shows that the addition of slow 
inactivation dynamics expands the ranges of parameter 
values over which the modified models exhibit SW burst-
ing, while eliminating or curtailing PP bursting, depolari-
zation block, and relaxation oscillations. This finding led 
us to the novel hypothesis that inward currents featuring 
slow inactivation should be prevalent for neurons that rely 
on bursts with spikes for synaptic transmission and the 
activation of associated calcium currents (e.g., Phillips 
et al. 2019).

The bifurcation techniques and fast-slow analysis used in 
this work depend heavily on the timescale separation of the 
variables in these models. We showed that the modified mod-
els exhibit optimally robust SW bursting if the timescale con-
stant associated with the inward current inactivation lies in a 
range that is similar to that of the activation variable for a pri-
mary outward current (e.g., IK ). When the slow inactivation 
is too fast in these relative terms, we observed that the inward 
current can become too weak to recruit the outward current 
and induce the corresponding hyperpolarization needed to 
sustain repeated spiking, in which case patterns such as PP 
bursting are more likely (e.g., Fig. 13A, large 1∕�h ). This find-
ing is analogous to the result that a fast-activating negative 
feedback provided by a BK potassium current promotes PP 
bursting in pituitary cells (Vo et al., 2014). When the slow 
inactivation is too slow, the inward current can become too 
strong, so that even with full outward current activation, the 
cell does not repolarize. Thus, there is a “Goldilocks zone” 
for tuning the timescale of the inward current inactivation 
where it is most effective at sustaining spiking and associated 
synaptic transmission.

Fig. 15   Dependence on �h of two complex-conjugate eigenvalues 
associated with an equilibrium of the fast subsystem with c > c��� on 
the upper branch of the critical manifold  C for the modified generic 
endocrine model  (3), (4), (11), and  (13) with gca = 0.81 . Shown are 
their real parts versus 1∕�h . The stability changes at an Andronov–
Hopf bifurcation (AH) for an intermediate value of 1∕�h . Hence, 
below this value, the system will not exhibit depolarization block or 
PP bursting
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We linked these ideas with specific mathematical prop-
erties of the models by studying how this inactivation rate 
affects the stability of equilibria in the fast subsystem at 
elevated voltage and the location in parameter space of the 
Andronov–Hopf bifurcation points at which these equilibria 
change stability. Here we made use of the fact that there is 
generally a single slow variable for the considered values 
or ranges of the relevant system parameters. It remains an 
interesting subject of future mathematical work to calculate 
bounds on the optimal range of inactivation timescales for 
maximal robustness of SW. This will likely require the con-
sideration of parameter ranges where one finds two slow var-
iables, in addition to ranges where there is just one. Another 
direction for future analysis would be to consider effects on 
robustness due to variation of other model parameters that 
are affected by neuromodulation or are relevant to patholo-
gies involving alterations to neural bursting; for example, see 
(Goldman et al., 2001; Kubota & Rubin, 2011; Loucif et al., 
2008; Städele & Stein, 2022).

The values for the half-inactivation parameters vh and sh 
in (13) for the models that we studied were chosen to match 
analogous values used in other models with inactivation 
gates for the inward current (Butera et al., 1999; Rinzel, 
1986; Rinzel & Lee, 1986). Changing these values yields a 
quantitatively different optimal timescale range over which 
SW bursting is most robust, but our numerical explorations 
suggest that this does not change the phenomenon that we 
revealed (e.g., see Supplemental Fig. 4). We considered only 
four models that were known to exhibit SW bursting, two 
with a fast inward sodium current and two with a fast inward 
calcium current. Despite our focus on a small selection of 
models, the mechanistic aspects of the results that we have 
explained strongly suggest that our results will naturally gen-
eralize beyond these specific examples.

We note that the same fast subsystem bifurcation struc-
ture that supports SW bursting can also yield sustained, fast, 
tonic spiking, depending on the position of the slow nullcline 
(e.g., Supplemental Figs. 2 and 3). However, we found that 
the occurrence of this type of spiking is quite rare in the 
models that we studied, although it does show up in one 
case (Fig. 13 B, orange dots). In other models that include a 
slow negative feedback on the fast inward current, SW burst-
ing could be lost to this fast spiking more commonly under 
parameter variation. In a CPG (central pattern generator) 
circuit, however, this activity could serve a similar function 
as SW bursting. To see this, suppose that two or more intrin-
sically spiking neurons are coupled by synaptic inhibition 
and one is actively spiking, leading to the inhibition of the 
others. If one of these other neurons becomes active, such as 
through recovery from adaptation, and starts spiking, then 
it could inhibit and shut off the formerly spiking neuron. 
When this process occurs repeatedly, it results in bursting 
spike patterns (cf. Rubin & Smith 2019). Interestingly, CPG 

circuits with reciprocal inhibition can exhibit phase transi-
tions based on a release mechanism, controlled by neurons 
in the active phase, or an escape mechanism, controlled by 
neurons in the silent phase. In the former case, the synap-
tic threshold is likely to be elevated, such that spiking is 
important for circuit oscillation properties, whereas in the 
latter case, the synaptic threshold is likely to be lower, such 
that the presence of spikes within each phase of depolarized 
membrane potential becomes less important (Sharp et al., 
1996); hence, our work suggests that the presence of inward 
currents with slow inactivation might be an indicator that a 
circuit operates in release mode.

Ideally, in future work, a more general theory can be 
developed that will cast our results in terms of assumptions 
on a general Hodgkin–Huxley type model. For the time 
being, we can at least observe that the results of this study are 
consistent with past work on neuronal bursting (Izhikevich, 
2007) in that we also find that, for a neuron with slow inward 
current inactivation, it is not important whether sodium or 
calcium ions are carried in this current. Interestingly, how-
ever, a key prediction emerges: fast currents with slow inacti-
vation, which are usually sodium currents, will represent the 
dominant, fast inward current in rhythmic neurons for which 
spiking is important; non-inactivating sodium currents and 
calcium currents or the presence of fast negative feedback 
(Vo et al., 2014), on the other hand, will tend to be associated 
with neurons for which spiking is less important than simple 
depolarization. Correspondingly, in neurons for which func-
tion is unknown, the characterization of the dominant, fast 
inward current gives us a prediction about the importance of 
spiking for these cells.

Appendix

Non-dimensionalization of a model is a form of scaling that 
expresses the rate of change of each model variable as the 
product of a dimensionless speed and a function of con-
strained magnitude. The dimensionless speeds are appropri-
ate to be compared across all variables to evaluate their rela-
tive rates of change. In this process, each original variable 
is represented as a fraction of a nominal value, often taken 
to be the maximum of the range over which that variable is 
observed to evolve in the dynamics of interest. The equa-
tions are then expressed in terms of these non-dimensional 
fractions and the magnitudes of the corresponding unitless 
speeds represent their timescale constants; note that gating 
variables are already non-dimensional fractions with maxi-
mal values of one, so no scaling is needed for their equa-
tions. We derive the scaled equations in detail for the generic 
endocrine model (3) and (4); a similar derivation leads to 
the scaled equations for the other three models, which are 
merely stated for reference.
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Generic endocrine model

Note that the variable n for the generic endocrine model (3) 
and (4) is a gating variable. Hence, we represent the other 
two variables v and c as v = V Qv and c = CQc , with dimen-
sionless variables V and C, respectively. Here, Qv and Qc are 
constants, representing the nominal values of v and c, 
respectively. We now derive differential equations for V and 
C using that V � =

1

Qv

v� and C� =
1

Qc

c� . We start with the 
equation for V ′:

where ēca =
1

Qv

eca , ēk =
1

Qv

ek , and k̄s =
1

Qc

ks . We now define 
gmax = max (gca, gk, gkca) , so that the rescaled equation for 
V becomes

which is of the form

with f an O(1) function, because at least one of the ratios 
gca∕gmax , gk∕gmax , and gkca∕gmax equals 1; indeed, the form 
of m∞(V Qv) , defined in (4), does not significantly affect the 
speed associated with the calcium current as it is a function 
on the unit interval. Hence, Rv = gmax∕cm is the constant 
that represents the timescale on which V evolves. We apply 
similar steps to the other two equations so that we obtain 
dimensionless model equations of the form

V � =
1

Qv

v�

= −
1

Qv cm

(
ICa(v) + IK(v, n) + IK(Ca)(v, c)

)

= −
1

Qv cm

(
gca m

2

∞
(v) (v − eca) + gk n (v − ek) + gkca

c4

c4 + k4
s

× (v − ek)

)

= −
1

cm

(
gca m

2

∞
(V Qv) (V − ēca) + gk n (V − ēk) + gkca

C4

C4 + k̄4
s

× (V − ēk)

)
,

V � = −
gmax

cm

(
gca

gmax

m2

∞
(V Qv) (V − ēca) +

gk

gmax

n (V − ēk) +
gkca

gmax

C4

C4 + k̄4
s

× (V − ēk)

)
,

V � = Rv f (V , n,C),

⎧⎪⎨⎪⎩

V � = Rv f (V , n,C),

n� = Rn g(V , n,C),

C� = Rc h(V , n,C),

where the functions f, g and h are all O(1).
Recall that n is already in non-dimensional form and it 

has timescale constant Rn = 1∕�n ; using the same arguments 
as for m∞(V Qv) , the expression n∞(V Qv) (also defined 
in (4)) has a negligible effect on the order of the right-hand 
side for n.

The non-dimensonalization process for the C′-equation is 
less straightforward. Applying similar steps, however, we find:

The r ight-hand side of this equation suggests 
Rc = fc �Qv gca∕Qc , but this is only true if the two com-
ponents in the brackets sum to an O(1) function. We again 
use the form of m∞(V Qv) to claim that the first compo-
nent is O(1) . Note that the second component is linear  
in C with coefficient fc kp∕Rc = 0.015∕Rc for the default 

C� =
1

Qc

c�

= −
fc

Qc

(
𝛼 ICa(v) + kp c

)

= −
fc

Qc

(
𝛼 gca m

2

∞
(V Qv) (V Qv − eca) + kp C Qc

)

= −
fc 𝛼Qv gca

Qc

(
m2

∞
(V Qv) (V − ēca) +

kp Qc

𝛼Qv gca
C

)
.
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parameter values given in Table 1. Hence, as long as Rc is at 
least of order 10−2 , this coefficient is at most 1, as required.

During the analysis, we find that v ∈ [−65, 10] and 
c ∈ [0, 2] . Therefore, we choose nominal values Qv = 100 
and Qc = 2 for the variables v and c, respectively. The 
default parameters from Table 1 then give:

Note that Rc is sufficiently large to justify the factorization 
for the C′-equation.

Sodium‑potassium minimal model

Using the same calculations as performed for the generic 
endocrine model above, we obtain the dimensionless 
sodium-potassium minimal model (5) and (6). Since both 
n and s are gating variables in this model, only the equation 
for v needs to be scaled. Again setting v = V Qv , we find

w h e r e  ēL =
1

Qv

eL  ,  ēna =
1

Qv

ena  ,  ēk =
1

Qv

ek  ,  a n d 
gmax = max (gL, gna, gk, gkm) . Note that the actual timescale 
constants for the sodium-potassium minimal model do not 
depend on the chosen value for Qv ; indeed, m∞(V Qv) as 
defined in (6) has no significant effect for the same reasons 
as in the generic endocrine model, and we can assume Qv is 
chosen such that 1∕(gmax Qv) ≤ 1 . By setting all parameters 
to their default values given in Table 2, we find timescale 
constants

which represent the relative speeds of v, n and s, respectively.

(16)

Rv =
max (gca, gk, gkca)

cm
≈ 716,

Rn = �
−1
n

≈ 33,

Rc =
fc �Qv gca

Qc

≈ 1.7.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

V � = −
gmax

cm

�
gL

gmax

(V − ēL) +
gna

gmax

m∞(V Qv) (V − ēna) +
gk

gmax

n (V − ēk) +
gkm

gmax

s (V − ēk) −
1

gmax Qv

I

�
,

n� =
1

𝜏n

�
n∞(V Qv) − n

�
,

s� =
1

𝜏s

�
s∞(V Qv) − s

�
,

Rv =
max (gL, gna, gk, gkm)

cm
≈ 20.0,

Rn = �
−1
n

≈ 6.6,

Rs = �
−1
s

≈ 0.005,

Minimal Chay–Keizer model

The equations in terms of dimensionless variables for the mini-
mal Chay–Keizer model (7) and (8) are derived in complete 
analogy to the other derivations. The only difference is that the 
timescale constant in the equation for the gating variable n is 
now a function of v, denoted �n(v) . Since v ∈ [−65, 0] and 
c ∈ [0, 6] , we choose nominal values Qv = 100 for V =

1

Qv

v 
and Qc = 6 for C =

1

Qc

c . Observing from the analysis that 
�n(v) = �n(V Qv) ∈ [10, 20] , we find for the default parameters 
given in Table 3:

Note that the timescale constant Rc for the slow vari-
able c requires fc kp∕Rc ≤ 1 , but with fc = 0.0058 and 
kp = 0.00513ms−1 in Table 3, this is certainly satisfied if 
Rc is of order 10−3.

Butera model

Again in complete analogy to the earlier models, we find 
timescale constants representing the relative speeds for the 
variables v, n, and p in the Butera model (9) and (10). Based 
on the default parameter values given in Table 4, we find 
timescale constants:

Rv =
max (gca, gk, gkca)

cm
≈ 1.8,

Rn =
1

�n(V Qv)
∈ [0.05, 0.1],

Rc =
fc �Qv gca

Qc

≈ 0.004.

Rv =
max (gL, gna, gk, gnap, gton)

cm
≈ 1.33,

Rn = �
−1
n

≈ 0.17,

Rp =
1

�p(V Qv)
∈ [10−4, 10−3].
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