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Abstract
Recent developments in experimental neuroscience make it possible to simultaneously record the activity of thousands of 
neurons. However, the development of analysis approaches for such large-scale neural recordings have been slower than 
those applicable to single-cell experiments. One approach that has gained recent popularity is neural manifold learning. 
This approach takes advantage of the fact that often, even though neural datasets may be very high dimensional, the dynam-
ics of neural activity tends to traverse a much lower-dimensional space. The topological structures formed by these low-
dimensional neural subspaces are referred to as “neural manifolds”, and may potentially provide insight linking neural circuit 
dynamics with cognitive function and behavioral performance. In this paper we review a number of linear and non-linear 
approaches to neural manifold learning, including principal component analysis (PCA), multi-dimensional scaling (MDS), 
Isomap, locally linear embedding (LLE), Laplacian eigenmaps (LEM), t-SNE, and uniform manifold approximation and 
projection (UMAP). We outline these methods under a common mathematical nomenclature, and compare their advantages 
and disadvantages with respect to their use for neural data analysis. We apply them to a number of datasets from published 
literature, comparing the manifolds that result from their application to hippocampal place cells, motor cortical neurons 
during a reaching task, and prefrontal cortical neurons during a multi-behavior task. We find that in many circumstances 
linear algorithms produce similar results to non-linear methods, although in particular cases where the behavioral complex-
ity is greater, non-linear methods tend to find lower-dimensional manifolds, at the possible expense of interpretability. We 
demonstrate that these methods are applicable to the study of neurological disorders through simulation of a mouse model of 
Alzheimer’s Disease, and speculate that neural manifold analysis may help us to understand the circuit-level consequences 
of molecular and cellular neuropathology.

Keywords  Neural manifolds · Manifold learning · Neural population analysis · Dimensionality reduction · Neurological 
disorders

1  Introduction

While the investigation of single neurons has undoubtedly 
told us much about brain function, it is uncertain whether 
individual neuron properties alone are sufficient for under-
standing the neurobiological basis of behavior (Pang et al., 
2016). In some cases, trial-averaging of single-neuron 
responses may lead to confusing or misleading interpreta-
tion of true biological mechanisms (Sanger & Kalaska, 2014; 
Cunningham & Yu, 2014). Additionally, single-neuron activi-
ties studied in higher-level brain areas involved in cognitive 
tasks (Machens et al., 2010; Laurent, 2002; Churchland 
et al., 2010) are highly heterogeneous both across neurons 
and across experimental conditions even for nominally 
identical trials. And finally, it may well be that task-relevant 
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information is represented in patterns of activity across mul-
tiple neurons, above and beyond what is observable at the sin-
gle neuron level. Unfortunately, characterizing such patterns, 
in the worst case, may require measurement of an exponential 
number of parameters (the “curse of dimensionality”).

However, it appears that in many circumstances, pat-
terns of neural population activity may be described in 
terms of far fewer population-level features than either the 
number of possible patterns, or even the number of neu-
rons observed (Churchland et al., 2012; Mante et al., 2013; 
Chaudhuri et al., 2019; Gallego et al., 2020; Nieh et al., 
2021; Stringer et al., 2019). This underpins a paradigm 
shift in the studies of neural systems from single-neuron 
analysis to a more comprehensive analysis that integrates 
single-neuron models with neural population analysis.

If, as appears to be the case, the spatiotemporal dynam-
ics of brain activity is low dimensional, or at least much 
lower-dimensional than the pattern space, then it stands to 
reason that such activity can be characterized without fall-
ing afoul of the curse of dimensionality, and on reasonable 
experimental timescales. Indeed, in recent years, numer-
ous techniques have been developed to do just that. For 
instance, classification algorithms have been applied to 
neuronal ensembles to predict aspects of behavior (Rigotti 
et al., 2013; Fusi et al., 2016; Rust, 2014; Raposo et al., 
2014). One problem with this is that the common practice 
is to identify “neuronal ensembles” by grouping together 
neurons with sufficiently highly correlated activity during 
the same behaviors or in response to the same stimuli. 
This ignores information that is transmitted collectively 
and might lead to (i) falsely concluding that a group of 
neurons do not encode a behavioral variable (when in fact 
they encode it collectively), (ii) incorrectly estimating the 
amount of information that is being encoded, and/or (iii) 
missing important mechanisms that contribute to encoding 
(Frost et al., 2021).

Alternatively, artificial neural networks (ANN) have been 
increasingly employed, either by (i) using a goal-driven neu-
ral network and using the embedding to compare and pre-
dict the population activity in different brain regions (Russo 
et al., 2018; Mante et al., 2013; Jazayeri and Ostojic, 2021), 
or (ii) modelling the activity of individual neurons as ema-
nating from a feedforward or recurrent neural network archi-
tecture (Elsayed et al., 2016; Rajan et al., 2016). Whilst these 
methods can present powerful ways of inferring neural states 
and dynamics, some issues have been raised on their biologi-
cal interpretability, even though recent work has addressed 
some of them, as we discuss in Section 2.11.

To address these shortcomings, a range of techniques which 
are commonly referred to under the umbrella term of “neu-
ral manifold learning” (NML) have been employed. Some of 
these approaches simply make use of long-established general 
methods for dimensionality reduction (such as principal com-
ponents analysis), whereas others have been developed specifi-
cally to study high-dimensional neural datasets.

Mathematically speaking, a manifold is a topological 
space that locally resembles our usual Euclidean space. If 
we form a multivariate time-series by convolving the spike 
trains of a neural population with a smoothing filter, and 
consider the activity pattern across these time series at each 
time to occupy a point in a neural activity space, then over 
time the activity will excurse a subspace that has often been 
observed to appear like such a manifold. Characterizing the 
geometry of such structures may offer important insights 
into neural computation (Chung & Abbott, 2021). In prac-
tical terms, the “neural manifold” is a low-dimensional 
subspace within the higher-dimensional space of neural 
activity which explains the majority of the variance of the 
neural dynamics (Fig. 1). Of course, real neural population 
dynamics are subject to noise, and in real experiments the 
topological subspace that can be excursed by the dynamics 
of neural activity can only be sampled, often sparsely. We 
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Fig. 1   Schematic showing a typical example of how a manifold learn-
ing algorithm may reduce the dimensionality of a high-dimensional 
neural population time series to produce a more interpretable low-
dimensional representation. A high-dimensional neural population 

activity matrix, � , with N neurons and T time points, is projected into 
a lower-dimensional manifold space and the trajectory visualized in 
the space formed by the first 3 dimensions, c1, c2 and c3
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must make several important comments here: firstly, that 
this characterization of neural systems depends inherently 
upon a description of the system in which the state is con-
tinuous and determined by the instantaneous firing rates of 
each neuron (although those firing rates might be calculated 
from filters implementing shorter or longer time windows). 
And secondly, that what may be observed experimentally is 
typically a “point cloud” - however these points do not them-
selves constitute a manifold; instead they are normally taken 
as indicative of the underlying topological space which they 
sample. And finally, it should be noted that the term “neural 
manifold” is frequently used relatively loosely in neurosci-
ence to refer to any kind of low-dimensional structure which 
may or may not meet the criteria of a mathematical mani-
fold. In this survey article we will not dwell overly on this 
distinction, noting it but considering that utility is at this 
stage more important, and that it is likely that terminology 
will continue to evolve.

Neural manifold learning algorithms are algorithms for 
efficiently extracting a description of such a subspace from 
a sample of multivariate neural activity. Here we review 
how neural manifold learning can be employed to extract 
low-dimensional descriptions of the internal structure of 
ensemble activity patterns, and used to obtain insight into 
how interconnected populations of neurons represent and 
process information. Such techniques have been applied to 
neural population activity in a variety of different animals, 
brain regions and during distinct network states. In this 
review we compare a variety of neural manifold learning 
algorithms with several datasets from multi-electrode array 
electrophysiology and multi-photon calcium imaging experi-
ments, to assess their relative merits in gaining insight into 
the recorded neural dynamics and the computations they 
may be underpinning.

We envisage that neural manifold learning may not only 
facilitate accurate quantitative characterizations of neural 
dynamics in healthy states, but also in complex nervous sys-
tem disorders. Anatomical and functional brain networks 
may be constructed and analyzed from neuroimaging data in 
describing and predicting the clinical syndromes that result 
from neuropathology. NML can offer theoretical insight 
into progressive neurodegeneration, neuropsychological 
dysfunction, and potential anatomical targets for different 
therapeutic interventions. For example, investigating neural 
populations in the medial prefrontal cortex that are active 
during social situations while encoding social decisions may 
enable hypothesis testing for disorders such as Autistic Spec-
trum Disorder (ASD) or Schizophrenia (Irimia et al., 2018; 
Kingsbury et al., 2019).

In this review, we introduce NML as a methodology for 
neural population analysis and showcase its application to 
the analysis of different types of neural data with differing 
behavioral complexity both in healthy and disease model 

states. For selected algorithms, we visualize how they rep-
resent neural activity in lower-dimensional embeddings and 
evaluate them on their ability to discriminate between neural 
states and reconstruct neural data. We aim to offer the reader 
the prospect of selecting with confidence the type of NML 
method that works best for a particular type of neural data, 
as well as an appreciation of how NML can be leveraged as 
a powerful tool in deciphering more precisely the basis of 
different cognitive impairments and brain disorders.

2 � Neural manifold learning

Neural manifold learning (NML) describes a subset of 
machine learning algorithms that take a high-dimensional 
neural activity matrix � comprised of the activity of N neu-
rons at T time points and embed it into a lower-dimensional 
matrix � while preserving some aspects of the informa-
tion content of the original matrix � - e.g. mapping nearby 
points in the neural activity space � to nearby points in � 
(see Fig. 1) (Cunningham & Yu, 2014; Churchland et al., 
2012; Meshulam et al., 2017; Mante et al., 2013; Harvey 
et al., 2012; Wu et al., 2017). When projected into this 
lower-dimensional space, the set of neural activity pat-
terns observed are typically constrained within a topologi-
cal structure, or manifold, Y , which might have a globally 
curved geometry but a locally linear one. For instance, if the 
reduced dimensionality embedding matrix � is three-dimen-
sional (3D) (often depicted on a two-dimensional (2D) page 
for convenience of illustration), the neural manifold Y might 
describe a closed surface within that 3D space. Another way 
of looking at this is that the data points in � lie on a lower-
dimensional manifold that can be parameterised by a lower-
dimensional coordinate system give by � , and that the task 
of the manifold learning algorithm is to find that coordinate 
system. This approach has found widespread recent use 
across neuroscientific studies (Fig. 2), including for under-
standing neural mechanisms during speech (Bouchard et al., 
2013), decision-making in prefrontal cortex (Mante et al., 
2013; Harvey et al., 2012; Briggman et al., 2005; Stokes 
et al., 2013), movement preparation and execution in the 
motor cortices (Churchland et al., 2012; Kaufman et al., 
2014; Yu et al., 2009; Feulner & Clopath, 2021; Gallego 
et al., 2017) and spatial navigation systems (Chaudhuri et al., 
2019; Nieh et al., 2021; Rubin et al., 2019; Gardner et al., 
2022).

2.1 � Manifold learning algorithms

There are several types of manifold learning algorithms 
that can generally be divided into linear and non-linear 
approaches. Although they have similar goals, they may 
differ in the way they transform the data and in the type of 
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statistical structures or properties they capture and preserve. 
It is important to select the type of method most suitable 
for the type of neural data being analyzed, as this may have 
significant impact on the resulting scientific interpretation.

In this section, we describe some of the more common 
manifold learning methods in use in the neuroscience lit-
erature. To make a fair and informative comparison of each 
algorithm, we implemented them and applied them each to 
a number of different neural datasets, as described in Sec-
tion 3. In order to facilitate comparison of the assumptions 
made by the different algorithms, we have attempted to 
adopt (where possible) a common mathematical terminol-
ogy throughout; this is summarised in Table 1.

2.1.1 � Linear method

Linear manifold learning is accomplished by performing lin-
ear transformations of the observed variables that preserve 
certain optimality properties, which yield low-dimensional 
embeddings that are easy to interpret biologically. Some of 
the most common linear manifold learning techniques are 
discussed below.

2.2 � Principal component analysis (PCA)

One of the most common linear manifold learning methods is 
Principal Component analysis (PCA) (Jolliffe, 2002; Jackson, 

2005; Ivosev et al., 2008). It reduces the dimensionality of 
large datasets while preserving as much variability (or sta-
tistical information) as possible. To obtain a neural manifold 
� , PCA performs an eigendecomposition on the covariance 
matrix of the neural activity matrix � in order to find uncor-
related latent variables that are constructed as linear combina-
tions of the contributions of individual neurons, while succes-
sively maximising the variance. The computed eigenvectors, 

Fig. 2   Neural manifolds across different species and brain regions. 
a Population activity in the mouse head-direction circuit (Chaudhuri 
et al., 2019). i During waking, the network activity directly maps onto 
the head orientation of the animal. ii Comparison between population 
activity during waking (dark blue) and nREM sleep (mustard yellow); 
the latter does not follow the same one-dimensional waking dynam-
ics. b  Population activity in the mouse hippocampus during an evi-
dence accumulation and decision making task in virtual reality (Nieh 
et  al., 2021). Task-relevant variables such as i  position and ii  accu-
mulated evidence are encoded in the manifold. c The motor cortical 

population activity underpinning a reaching task in monkeys is stable 
over days and years (Gallego et al., 2020). d Prefrontal cortical pop-
ulation activity in macaque monkeys during a visual discrimination 
task spans a low-dimensional space. Task-relevant variables such as 
the dots’ direction and strength of motion, colour, and the monkey’s 
choice are encoded in the manifold (Mante et al., 2013). e Population 
activity in the mouse primary visual cortex in response to gratings of 
different orientations, indicated by color (Stringer et  al., 2021). The 
panel is adapted from Jazayeri and Ostojic (2021)

Table 1   Summary of mathematical notation used throughout this 
manuscript

Notation Description

N Number of neurons
T Number of time samples
t Sample timestamp
� Population activity matrix
�
�

Network activity state at timestamp t
k Number of dimensions in the embedding
� Manifold embedding matrix
Y Manifold - a topological structure within �
� Dissimilarity matrix (MDS)
� Graph of population activity
� Graph Laplacian (LEM)
� Diagonal matrix (LEM)
� Adjacency matrix (LEM)
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or principal components (PCs), represent the directions of the 
axes that capture the most variance, and the corresponding 
eigenvalues yield the amount of variance carried by each PC.

Although PCA has been used to great effect to reduce 
the dimensionality of high-dimensional neural data (Church-
land et al., 2010; Mazor & Laurent, 2005; Gao & Ganguli, 
2015; Ahrens et al., 2012), its caveat is that it captures all 
types of variance in the data, including spiking variability, 
which may obscure the interpretation of latent variables. For 
example, neurons with higher firing rates typically exhibit 
higher variance (spike count variance being proportional to 
mean spike count for cortical neurons Tolhurst et al. (1983)), 
and therefore may skew the orthogonal directions found by 
PCA by accounting mostly for highly active neurons. Addi-
tionally, cortical neurons respond with variable strength to 
repeated presentations of identical stimuli (Tolhurst et al., 
1983; Shadlen & Newsome, 1998; Cohen & Kohn, 2011). 
This variability is often shared among neurons, and such 
correlations in trial-to-trial responses can have a substantial 
effect on the amount of information encoded by a neuronal 
population. To minimise the effects of spiking variability, 
trial averaging or temporal smoothing of spike counts is usu-
ally done prior to performing PCA. However, this may not 
always be applicable to all analyses.

2.3 � Multidimensional scaling (MDS)

Classical multidimensional scaling is another linear dimension-
ality reduction technique that aims to find a low-dimensional 
map of a number of objects (e.g. neural states) while preserv-
ing as much as possible pairwise distances between them in 
the high-dimensional space (Kruskal & Wish, 1978; Venna & 
Kaski, 2006; Yin, 2008; France & Carroll, 2010).

In the case of neural data, given an N × T activity matrix, � , 
a T × T distance matrix, � , is first obtained by measuring the 
distance between the population activity vectors for all t using 
a dissimilarity metric (Krauss et al., 2018). Examples of such 
metrics include both the Euclidean distance and the cosine dis-
similarity. We will employ the latter for the MDS embeddings 
shown throughout this paper. For a pair of vectors �,� separated 
in angle by � , the cosine dissimilarity is

The dissimilarity matrix � is formed from the cosine dissimi-
larities between the neural activity patterns �t at each time t for 
all pairs of times measured. A lower-dimensional mapping, 
� ∈ ℜk×T , where k << N , is then found by minimising a 
loss function, called the strain, so that the mapped inter-point 
distances are as close as possible to the original distances in 
� . From the eigen-decomposition of the distance matrix � , 
the MDS components (i.e. dimensions) are revealed by the 

D
�,� = cos(�) = 1 −

�.�

‖�‖‖�‖
.

eigenvectors, which are a linear combination of the distances 
across the T population activity vectors, while their respective 
eigenvalues report the amount of variance explained.

Multidimensional scaling has been used to study changes 
in neural population dynamics in both large-scale neural 
simulations (Phoka et al., 2012) and in neural population 
recordings (Luczak et al., 2009). It has been applied for char-
acterizing glomerular activity across the olfactory bulb in 
predicting odorant quality perceptions (Youngentob et al., 
2006), integrative cerebral cortical mechanisms during 
viewing (Tzagarakis et al., 2009), neuroplasticity in the pro-
cessing of pitch dimensions (Chandrasekaran et al., 2007), 
emotional responses to music in patients with temporal lobe 
lesions (Dellacherie et al., 2011), and structural brain abnor-
malities associated with autism spectrum disorder (Irimia 
et al., 2018).

2.3.1 � Non‑linear methods

The algorithms described above can only extract linear (or 
approximately so) structure. Non-linear techniques, on the 
other hand, aim to uncover the broader non-linear structure 
of the neural population activity matrix � . These insights, 
can come at the expense of weaker biological interpretation, 
as the discovered manifold is not given by a linear combina-
tion of some observed variable (e.g. individual neurons). 
Non-linear algorithms often attempt to approximate the 
true topology of the manifold Y within the reduced dimen-
sionality representation � by finding population-wide vari-
ables that discard the relationship between faraway points 
(or neural states) on � and focus instead on conserving the 
distances between neighbors.

2.4 � Isomap

One of the most commonly used non-linear manifold learning 
algorithms is Isomap (Tenenbaum et al., 2000). Non-linear 
techniques aim to uncover the broader non-linear structure 
of the neural manifold embedding of the neural population 
activity, � , by approximating the true topology of the neural 
manifold, Y . To do so, Isomap first embeds � into a weighted 
graph � , whose nodes represent the activity of the neuronal 
population at a given time �t , and the edges between them rep-
resent links to network states �i, �j, ... that are the most similar 
to �t , i.e., its neighbors.

The k-nearest neighbors algorithm is usually used to esti-
mate the neighbors for all network states �1, ..., �T . These 
neighboring relations are then encoded in a weighted graph 
with edges d

�
(i, j) between neighboring states i,  j that 

depends on the distance metric d
�
 used. � can then be used 

to approximate the true geodesic distances on the manifold 
dY(i, j) between any two points i, j (i.e. network states �i, �j ) 
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by measuring their shortest path length d
�
(i, j) in the weighted 

graph � using an algorithm such as Dijkstra’s (Dijkstra et al., 
1959).

MDS is then applied to the matrix of shortest path lengths 
within the graph �

�
= {d

�
(i, j)} to yield an embedding of 

the data in a k-dimensional Euclidean space � that best pre-
serves the manifold’s estimated geometry. The quality of 
the reconstructed manifold Y depends greatly on the size 
of the neighborhood search and the distance metric used to 
build � . Isomap is a conservative approach that seems well 
suited to tackle the non-linearity inherent to neural dynamics 
and it has in fact been used in a variety of studies, even just 
for visualization purposes (Mimica et al., 2018; Chaudhuri 
et al., 2019; Sun et al., 2019).

2.5 � Locally linear embedding (LLE)

LLE is another non-linear manifold learning technique 
that attempts to preserve the local geometry of the high-
dimensional data � , by separately analyzing the neighbor-
hood of each network state �t , assuming it to be locally 
linear even if the global manifold structure is non-linear 
(Roweis and Saul, 2000). The local neighborhood of each 
network state is estimated using the steps described in 
Section 2.4 and is connected together to form a weighted 
graph � . The location of any node i in the graph corre-
sponds to the network state �i , which can then be described 
as a linear combination of the location of its neighboring 
nodes �j, �k, ... . These contributions are summarised by a 
set of weights, � , which are optimised to minimise the 
reconstruction error between the high-dimensional net-
work state �i and the neighborhood linear estimation. The 
weight wij summarizes the contribution of the jth network 
state to the reconstruction of the ith state. To map the high-
dimensional dataset � onto a lower-dimensional one � , 
the same local geometry characterized by � is employed 
to represent the low-dimensional network state �i as a 
function of its neighbors �j, �k, ....

A significant extension of LLE was introduced that makes 
use of multiple linearly independent weight vectors for each 
neighborhood. This leads to a Modified LLE (MLLE) algo-
rithm that is much more stable than the original (Zhang & 
Wang, 2007). Unlike Isomap, LLE preserves only the local 
geometry of the high-dimensional data � , represented by the 
neighborhood relationship, so that short high-dimensional dis-
tances are mapped to short distances on the low-dimensional 
projection. In contrast, Isomap aims to preserve the geom-
etry of the data at all scales, long distances included, possibly 
introducing distortions if the topology of the manifold is not 
estimated well. For neural data, though, Isomap has gener-
ally been preferred for its theoretical underpinnings and more 
intuitive approach.

2.6 � Laplacian eigenmaps (LEM)

LEM, also referred to as Spectral Embedding, is another 
non-linear technique similar to LLE (Belkin, 2003). The 
algorithm is geometrically motivated as it exploits the 
properties of the neighboring graph � generated from the 
high-dimensional data � , as in Section 2.4, to obtain a 
lower-dimensional embedding � that optimally preserves 
the neighborhood information of �.

In the graph � , any two connected nodes (network 
states) i and j are connected by a binary edge using a 
neighborhood method as in 2.4, or by a weighted edge 
computed via a kernel parametrising the exponential 
relationship of the weights with respect to the distance 
between the nodes in the high-dimensional space �i − �j . 
The resulting graph edges form the adjacency matrix � 
that is used, together with the diagonal matrix � contain-
ing the degree of each node of � , to obtain the graph 
Laplacian � = � −� . The spectral decomposition of � 
reveals the structure and clusters on � . The k eigenvectors 
with the smallest non-zero eigenvalues of � are, in fact, 
the k dimensions of the manifold embedding � . Similar to 
LLE, Laplacian eigenmaps preserve only the local geom-
etry of the neural population activity � and are therefore 
more robust to the construction of � . Indeed LEM has 
been successfully used to unveil behaviorally relevant neu-
ral dynamics (Rubin et al., 2019; Sun et al., 2019).

2.7 � t‑distributed stochastic neighbor embedding 
(t‑SNE)

t-SNE is another non-linear method that aims to match 
local distances in the high-dimensional space � to the 
low-dimensional embedding � . This is obtained by first 
constructing a probability distribution over pairs of high-
dimensional points �i, �j in such a way that nearby points 
are assigned a higher probability while dissimilar points 
are assigned a lower probability. Then t-SNE defines a 
similar probability distribution over the points �i, �j in the 
low-dimensional space, and it minimizes the Kullback-
Leibler divergence between the two distributions (Van der 
Maatea & Hinton, 2008). The Euclidean distance is used 
in the original algorithm to evaluate the similarity between 
data points, but any appropriate metric can be employed 
as well. This method has been applied in a wide range of 
domains, from genomics to signal processing, including 
multiple neuroscientific settings (Dimitriadis et al., 2018; 
Panta et al., 2016). It usually considers up to three embed-
ding dimensions for visualization constraints, and for 
exploiting the Barnes-Hut approximation, which reduces 
the computational cost to O(N logN) from O(N2) . (Van Der 
Maaten, 2014).
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2.8 � Uniform manifold approximation 
and projection (UMAP)

UMAP is a non-linear manifold learning technique that is con-
structed from a theoretical framework based on topological 
data analysis, Riemannian geometry and algebraic topology 
(McInnes et al., 2018) and it has also been used on neural 
data both as an NML method (Tombaz et al., 2020) and for 
broader dimensionality reduction purposes Lee et al. (2021). 
It builds upon the mathematical foundations of LEM, Isomap 
and other non-linear manifold learning techniques in that it 
uses a k nearest neighbors weighted graphs representation 
of the data. By using manifold approximation and patching 
together local fuzzy simplicial set representations, a topologi-
cal representation of the high-dimensional data is constructed. 
This layout of the data is then optimised in a low-dimensional 
space to minimize the cross-entropy between the two topolog-
ical representations. Compared to t-SNE, UMAP is competi-
tive in terms of visualization quality and arguably preserves 
more of the global dataset structure with superior run time 
performance. Furthermore, the algorithm is able to scale to 
significantly larger data set sizes than are feasible for t-SNE.

UMAP and t-SNE have recently being employed for vis-
ualizing high-dimensional genomics data and some distor-
tion issues have been raised (Chari et al., 2021). Although 
this problem is particularly apparent with t-SNE, which 
tends to completely disregard the global structure of the 
data to find clusters, any reduction to too few dimensions 
with respect to the original high-dimensional space will 
inherently distort the topology of some of the data, as indi-
cated by the Johnson-Lindenstrauss Lemma (Johnson and 
Lindenstrauss, 1984). These criticisms have been made 
with particular reference to genomics datasets, which are 
intrinsically higher-dimensional than the neural datasets 
which manifold learning has been applied to.

2.9 � Probabilistic latent variable models

Another type of NML algorithm uses probabilistic latent 
variable models that construct a generative model for the 
data in terms of mapping a low-dimensional manifold or 
latent space to neural responses. This type of algorithm 
utilizes a probabilistic framework that performs temporal 
smoothing and dimensionality reduction simultaneously, 
allowing joint optimisation of the degree of smoothing 
and the relationship between the original high-dimensional 
data and the resulting low-dimensional neural trajectory 
(Yu et al., 2009). A good example is Gaussian Process Fac-
tory analysis (GPFA) that uses Gaussian processes and an 
additional explicit noise model to account for the differ-
ent independent noise variances of different neurons (i.e., 
spiking variability). It is a set of factor analyzers that are 
linked together in the low-dimensional state space by a 

Gaussian process prior (Rasmussen & Williams, 2006), 
which allows for the specification of a correlation structure 
across the low-dimensional states at different time points. In 
cases where the neural time courses are believed to be simi-
lar across different trials, smooth firing rate profiles may 
be obtained by averaging across a small number of trials 
(Mazor & Laurent, 2005; Stopfer et al., 2003; Brown et al., 
2005; Broome et al., 2006; Levi et al., 2005; Nicolelis et al., 
1995), or by applying more advanced statistical methods 
for estimating firing rate profiles from single spike trains 
(DiMatteo et al., 2001; Cunningham et al., 2007) Simi-
larly, Manifold Inference from Neural Dynamics (MIND) 
is a recently developed NML algorithm that aims to char-
acterize the neural population activity as a trajectory on a 
non-linear manifold, defined by possible network states and 
temporal dynamics between them (Low et al., 2018; Nieh 
et al., 2021).

2.10 � NML algorithms for trial‑structured datasets

Importantly, model selection from a computed manifold can 
be greatly affected by the signal-to-noise ratio (SNR) of the 
initial input neural data. In many cases this has been over-
come by using the square root transformation of spiking data 
and convolving it with a Gaussian filter to yield a smoothed 
instantaneous firing rate (Yu et al., 2009). In addition, mul-
tiple dimensionality reduction steps have also been used 
to enable more interpretable visualizations (LEM on LEM 
(Rubin et al., 2019), UMAP on PCA (Gardner et al., 2022)). 
Furthermore, the NML algorithms described and visualized 
up until now have been general use case algorithms, used to 
infer neural correlates from the data. However, in experi-
ments where specific behaviors or decisions are time-locked 
and run across multiple trials, some of the NMLs described 
above have been augmented and optimised. These include, 
demixed Principal Component analysis (dPCA) (Kobak 
et al., 2016), Tensor Component analysis (TCA) (Cohen 
& Maunsell, 2010; Niell & Stryker, 2010; Peters et al., 
2014; Driscoll et al., 2017), Cross-Validated PCA (cvPCA) 
(Stringer et al., 2019) and model-based Targeted Dimen-
sionality Reduction (mTDR) (Aoi & Pillow, 2018). These 
NML algorithms exploit the trial nature of an experiment to 
discriminate signal from trial-to-trial variability or noise, 
enabling the experimenter to identify the principal compo-
nents that maximally correspond to a stimulus or action.

2.11 � ANN‑based NML algorithms

Artificial neural networks (ANN) can also be employed for 
manifold learning as they have the potential to extract com-
plex non-linear structure in high-dimensional data. Auto-
encoders exemplify this approach as they are designed to 
find an optimal encoding between a high-dimensional input 
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and a low-dimensional representation stored in their “bottle-
neck” code layer, which preserves the information necessary 
to then reconstruct the original input from it. In this sense, 
auto-encoders can be thought of as a non-linear extension 
to PCA, where each node in the code layer is comparable 
to a PC. Delving deeper, the field of deep generative mod-
els such as variational auto-encoders (VAE) promise great 
potential at extracting low-dimensional structure in varied 
high-dimensional data, by constructing a stochastic model of 
the low-dimensional dynamics underlying the neural activ-
ity. Such methods have shown great results when inferring 
the neural activity trial-by-trial fluctuations, but some have 
raised the issue that the low-dimensional structure extracted 
from these models are often highly entangled and therefore, 
difficult to interpret (Pandarinath et al., 2018). To address 
these issues, VAEs that make use of external labels, such 
as behavioral variables or the passage of time, have been 
designed (Zhou & Wei, 2020). Lastly, addressing some of 
the shortcomings of VAEs such as interpretability, identi-
fiability and generalizability, Consistent EmBeddings of 
high-dimensional Recordings using Auxiliary variables, 
or CEBRA, was developed. CEBRA uses an innovative 
approach that employs contrastive learning instead of a 
generative model to extract embeddings, this enables it to 
cope with strong data distribution shifts to yield consistent 
embeddings between experimental sessions, subjects and 
recording modalities (Schneider et al., 2022).

3 � Manifold learning for the analysis 
of large‑scale neural datasets

To demonstrate how neural manifold learning can be used 
in the analysis of large-scale neural datasets, we apply a 
number of linear and non-linear NML algorithms (PCA, 
MDS, LEM, LLE, Isomap, t-SNE and UMAP) to several 
datasets. The datasets were chosen to cover a number of 
different brain regions and a range of behavioral complex-
ity. They consist of (i) two-photon calcium imaging of hip-
pocampal subfield CA1 in a mouse running along a circular 
track (Section 3.1), taken from Go et al. (2021; ii) multi-
electrode array extracellular electrophysiological recordings 
from the motor cortex of a macaque performing a radial arm 
goal-directed reach task (Section 3.2) from Yu et al. (2007); 
and (iii) single-photon “mini-scope” calcium imaging data 
recorded from the prefrontal cortex of a mouse under condi-
tions where multiple task-relevant behavioral variables were 
monitored (Section 3.3), from Rubin et al. (2019). Lastly, we 
illustrate how manifold learning can be employed to charac-
terize brain dynamics in a disease state such as Alzheimer’s 
disease by applying these techniques to data simulated to 
reproduce basic aspects of dataset (i), augmented to incor-
porate pathology (Section 3.4).

3.1 � Decoding from neural manifolds

To compare NML algorithms we evaluated the resulting 
manifolds according to behavioral decoding (reconstruction 
or classification) performance, ability to encode the high-
dimensional activity (i.e reconstruction score) and intrin-
sic dimensionality. These quantifications make up a minor 
subset of the many manifold parameterization methods, of 
which we describe more Section 4.2). For hippocampal CA1 
manifolds obtained by any of the NML methods, we com-
puted decoding accuracy for the behavioral variable(s) as a 
function of the number of manifold embedding dimensions 
using an Optimal Linear Estimator (OLE) (Warland et al., 
1997). This allows assessment of the number of dimensions 
necessary to encode the behavioral variable. We used a 
10-fold cross-validation approach, i.e., training the decoder 
on 90% of the data and testing it on the remaining 10%. 
Decoding performance is calculated as the Pearson correla-
tion coefficient between the actual and reconstructed behav-
ioral variable, i.e. the mouse position, for the test data. To 
assess neural manifold information provided about animal 
behavior in the other two datasets, we built a logistic regres-
sion classifier (Hosmer et al., 1989); we evaluate its per-
formance using the F1 score as a function of the number 
of manifold embedding dimensions used. The F1 score is 
defined as the weighted average of the precision (i.e., per-
centage of the results which are relevant) and recall (i.e., 
percentage of the total relevant results correctly classified 
by the algorithm), and ranges between 0 (worst) and 1 (best 
performance) (Blair, 1979).

3.2 � Reconstruction of neural activity 
from a low‑dimensional embedding

Another way to evaluate the degree of fidelity of the 
manifold embedding is to attempt to reconstruct the high-
dimensional neural data from the low-dimensional embed-
ding. This tells us how much has been lost in the process 
of dimensionality reduction. To obtain such a reverse map-
ping, we employed the non-parametric regression method 
originally introduced for LLE (Low et al., 2018; Nieh et al., 
2021). We then obtained the reconstruction similarity by 
computing the Pearson correlation coefficient between the 
reconstructed and the original neural activity. To perform an 
element-wise comparison, the N × T  neural activity matri-
ces were concatenated column-wise into a single vector and 
the correlation coefficient calculated. To obtain the neural 
activity reconstruction score, we employed a 10-fold cross-
validation strategy. Using 90% of the data from each session 
to learn the reverse mapping, the reconstruction was then 
evaluated on the remaining 10% the data. The final score 
was then obtained by averaging across folds.
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3.3 � Intrinsic manifold dimensionality

Estimating the number of required dimensions of the under-
lying manifold is a crucial part of manifold learning (Altan 
et al., 2021; Cunningham and Yu, 2014), as it helps one 
to acquire a conceptual idea of how complex the neuronal 
activity inside the manifold is. The intrinsic manifold dimen-
sionality accounts for the number of independent (latent) 
variables necessary to describe the neural activity without 
suffering significant information loss (Jazayeri & Ostojic, 
2021). However, it is difficult to estimate the dimensional-
ity of neural manifolds, especially in the realistic condition 
of a noisy, non-linear embedding. A recent review provides 
a detailed evaluation of several dimensionality estimation 
algorithms when applied to high-dimensional neural data 
(Altan et al., 2021).

We acknowledge that any measure of dimensionality is 
strongly influenced by the timescale of the neural activity 
and by the size of the population recorded (Humphries, 
2020), in this review we use the intrinsic dimensionality 
measure to compare the topologies captured by the different 
NML methods. To infer the manifold intrinsic dimensional-
ity we employ a method related to the correlation dimension 
of a dataset (Grassberger and Procaccia, 1983). After apply-
ing NML to the original high-dimensional neural activity, 
for any given point (i.e., neural state) in the low-dimensional 
space, the number of neighboring neural states within a sur-
rounding sphere as a function of the sphere’s radius was cal-
culated. The slope of the number of neighboring data points 
within a given radius on a log-log scale equals the expo-
nent k in the power law N(r) = crk , where N is the number 
of neighbors and r is the sphere radius. k then provides an 
estimate of the intrinsic dimensionality of the neural activ-
ity. We fit the power law in the range between ∼ 10 to 5000 
neighbors or neural states, aiming to capture the relevant 
temporal scale for each task and related manifold (Rubin 
et al., 2019; Nieh et al., 2021). Note, in fact, that we have 
selected a particular range for each dataset, also depending 
on the number of time samples T available (details in respec-
tive figure captions).

3.4 � Hippocampal neural manifolds

The hippocampus is well known to be involved in memory 
formation and spatio-contextual representations (Scoville 
& Milner, 1957; O’Keefe & Conway, 1978; Morris, 2006). 
NML has been recently applied to hippocampal neural activ-
ity by several authors, suggesting that the rodent hippocam-
pal activity encodes various contextual, task-relevant vari-
ables, displaying more complex information processing than 
spatial tuning alone (Rubin et al., 2019; Nieh et al., 2021). 
Here, we re-analyze published data from a dataset compris-
ing two-photon calcium imaging of hippocampal CA1 place 

cells, to which previously only MDS had been applied Go 
et al. (2021), in order to compare manifolds extracted by 
different algorithms. We examine how different NML meth-
ods characterize the dynamics of hippocampal CA1 neu-
rons along trajectories in low-dimensional manifolds as they 
coordinate during the retrieval of spatial memories.

The data was recorded from a head-fixed mouse navigating 
a circular track in a chamber floating on an air-pressurized 
table under a two-photon microscope (Fig. 3a). The mouse 
position (Fig. 3b) was simultaneously tracked using a mag-
netic tracker. The activity of 30 of 225 hippocampal CA1 
cells recorded in the shown session is depicted in Fig. 3c. Of 
the 225 cells, 92 were classified as place cells by Go et al. 
(2021), and their normalized activity rate map, sorted accord-
ing to place preference, is shown in Fig. 3d. Employing the 
activity of all 225 cells (both place and non-place selective), 
both linear (Fig. 3e) and non-linear (Fig. 3f) NML methods, 
revealed a cyclic pattern of transitions between network states 
corresponding to different locations along the circular track. 
The manifold formed by the dynamics of neural activity as the 
mice explored the full track forms a complete representation 
of the 2D structure of the track. We compared the algorithms 
in terms of decoding performance (Fig. 3g), neural activity 
reconstruction score (Fig. 3h) and intrinsic manifold dimen-
sionality (Fig. 3i). All algorithms performed similarly in terms 
of the metrics considered, yielding almost the best possible 
decoding performance with just one manifold dimension and 
the best possible reconstruction similarity with two dimen-
sions. Moreover, all manifolds were found to have a similar 
intrinsic dimensionality of around 2.

In this example, the behavioral complexity is approxi-
mately one dimensional (i.e., the mouse running in a sin-
gle direction along a circular track can be mapped onto the 
single circular variable � ) and all NML methods produce 
embeddings which allow high decoding performance, with 
each algorithm already reaching near-maximum perfor-
mance after incorporating only the first manifold dimension. 
This suggests that if the behavioral complexity is low and 
its information is broadly encoded within the neural popula-
tion, any NML algorithm will yield broadly similar results. 
However, as we will see, this does not necessarily hold when 
complexity of the behavioral task is increased. In terms of 
the ability to capture the neural activity variance, the neural 
activity reconstruction score suggests that the highly non-
linear tSNE and UMAP algorithms yield more informative 
low-dimensional embeddings.

3.5 � Motor cortical neural manifolds

NML and dimensionality reduction techniques have also been 
applied to neural activity within motor and pre-motor cor-
tical areas, in particular to suggest that the high variability 
observed in the single-neuron responses is disregarded when 
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Fig. 3   Mouse hippocampalCA1 manifolds during spatial memory 
retrieval. Unless otherwise stated, panels adapted with permission 
from Go et al. (2021). a Schematic of experimental setup: head-fixed 
mouse navigates a floating circular track under a two-photon micro-
scope. Inset: Close-up view of head-fixed mouse on floating track. 
b  Spatial trajectories of the mouse, with � (color-coded) denoting 
position on the track. c Top: Position along the track (cm), Middle: 
Ca2+ transients for 30 (of 225) randomly selected cells, Bottom: Ras-
tergram showing events detected from the above calcium transients. 
Blue dots indicate time of Ca2+ transient onset, with dot area showing 
relative event amplitude (normalized per cell). d Normalized neural 

activity rate map for 92 place cells, sorted by spatial tuning around 
the track. e - f Linear vs non-linear manifold embeddings for all 225 
cells (normalized). In each case the first three dimensions are visual-
ized. Insets for each: projections on pairs of components C1 and C2 
(upper left), C2 and C3 (upper middle), C1 and C3 (upper right). 
e Linear manifold embeddings (i) PCA, (ii) MDS, f non-linear mani-
fold embeddings (i) Isomap, (ii) LLE, (iii) LEM, (iv) t-SNE, and (v) 
UMAP. (ii-v were not reproduced from Go et  al. (2021). g-i  Mani-
fold evaluation metrics: (see: g Decoding performance (as used in Go 
et al. (2021)), h Neural activity reconstruction score, i Intrinsic mani-
fold dimensionality
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population dynamics are taken into account (Santhanam et al., 
2009; Churchland & Shenoy, 2007; Churchland et al., 2012; 
Sussillo et al., 2015; Gallego et al., 2017). This approach has 
been the foundation of the “computation through dynamics” 
framework, which aims to characterize the neural popula-
tion dynamics as trajectories along manifolds (Vyas et al., 
2020). Rotational-like dynamics of motor cortex neural 
activity have been observed both in human and non-human 
primates (Churchland et al., 2012; Pandarinath et al., 2015), 
with stability over long periods of time (Gallego et al., 2020). 
Importantly, by furthering the understanding of neural popu-
lation dynamics and variability, crucial steps can be made in 
improving performance of prosthetic devices that can be used 
to further enable those with nervous-system disease or injury 
in day-to-day tasks (Santhanam et al., 2009).

We applied NML to data from Yu et  al. (2007) and 
Chestek et al. (2007) recorded in the caudal premotor cor-
tex (PMd) and rostral primary motor cortex (M1) of rhe-
sus macaques during a radial arm goal-directed reaching 
task (Fig. 4a). Neural data was collected for 800 successful 
repeats, with 100 trials for each of the 8 reaching directions 
(Fig. 4b). We used NML to analyze the neural activity dur-
ing the 100 ms time window before the onset of the reaching 
movement and investigated its tuning with respect to the 
reaching direction (Santhanam et al., 2009). The manifold 
embeddings obtained using different NML methods, both 
linear (Fig. 4e) and non-linear (Fig. 4f), revealed different 
types of structures with data points clustering according to 
the monkey’s target endpoint. All the NML algorithms tested 
revealed lower-dimensional structures that discriminate 
between each of the behavioral states along a single dimen-
sion. We used the pre-movement neural manifold to clas-
sify the behavior into one of eight different goal directions. 
The two linear NML algorithms yielded the most behav-
iorally informative embedding, requiring only two dimen-
sions to achieve best performance (Fig. 4g). All algorithms 
performed equally in terms of neural activity reconstruc-
tion similarity, with only one dimension being necessary to 
reconstruct the original neural activity patterns (Fig. 4h). 
The intrinsic dimensionality of the two linear embeddings, 
on the other hand, was the highest (Fig. 4i). Non-linear NML 
algorithms extracted lower-dimensional embedding at the 
cost of encoding less behavioral information.

Increasingly, NML has been used to analyze neural cir-
cuits implicated in decision-making such as the prefrontal 
cortex (PFC) (Kingsbury et al., 2019; Mante et al., 2013) 
and the anterior cingulate cortex (ACC) (Rubin et  al., 
2019). With these multi-function brain regions, neurons 
are widely known for their mixed selectivity, often captur-
ing information relating to both stimuli features and deci-
sions (Kobak et al., 2016; Rigotti et al., 2013; Fusi et al., 
2016). This moves away from the notion of highly-tuned 
single cells and gives rise to a dynamical, population-driven 

code (Pouget et al., 2000) ideally suited to NML methods. 
This was nicely demonstrated by Rubin et al. (2019), who 
visualized and quantified how NML (in their case, LEM) 
could be used to discriminate neural states arising from 
different brain regions (ACC and hippocampal area CA1) 
during identical tasks. The neural activity was recorded in 
freely-behaving mice exploring a linear track and perform-
ing various behaviors such as drinking, running, turning, 
and rearing (Figure 5a-c). Building on their findings, we 
employed various alternative NML methods, both linear 
(Fig. 5d) and non-linear (Fig. 5e), that revealed different 
neural data structures, exhibiting clustering according to the 
animals’ behavior, with PCA and LLE producing the least 
clustered visualizations. Evaluation of NML behavior clas-
sification performance (Fig. 5f), reconstruction similarity 
(Fig. 5g) and manifold intrinsic dimensionality (Figure 5i) 
revealed that although there was high variability in perfor-
mance, non-linear algorithms generally out-performed the 
linear ones. Notably, two non-linear NML algorithms t-SNE 
and UMAP performed the best in terms of behavioral classi-
fication and ability to reconstruct the high-dimensional neu-
ral activity from the manifold embedding, with an intrinsic 
dimensionality between 2 and 3, inferring that behavior is 
the predominant type of information encoded by the ACC 
network during this task.

3.6 � Analysis of neural manifolds in neurological 
disorders

NML potentially provides a valuable tool for understand-
ing the biology of different brain disorders. As an exam-
ple, NML can be used to characterize changes in neural 
manifolds for spatial memory during the progression of 
Alzheimer’s disease (AD). In AD, the hippocampus and 
connected cortical structures are among the first areas to 
show pathophysiology. Hippocampal-dependent cognitive 
processes such as episodic memory are particularly and 
prominently affected at the behavioral level. However, it is 
not yet understood how the pathological markers of AD, 
such as amyloid-beta plaques and neurofibrillary tangles, 
lead to specific disruptions in the network-level information 
processing functions underpinning memory function. While 
single-cell properties are obviously affected, it is believed 
that network properties relating to the coordination of infor-
mation throughout brain circuits involved in memory may be 
particularly at risk (Palop & Mucke, 2016). Neural manifold 
learning analysis methods may thus play a useful or even 
crucial role in disentangling the effects of these network 
alterations.

The formation of extracellular amyloid plaques causes 
aberrant excitability in surrounding neurons (Busche et al., 
2008): cells close to amyloid plaques tend to become hyper-
active, whereas those further away from the plaques tend to 
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become hypoactive (or relatively silent). This aberrant neu-
ronal excitability could potentially have a substantial effect 
on the neural manifold, and conversely, the neural manifold 
may provide a way to assess the overall impact of network 

abnormalities. To demonstrate this, we simulated neural data 
for the (Go et al., 2021) circular track experiment described 
in Fig. 3) using parameters outlined by (Busche et al., 2008), 
i.e., the percentages of hyperactive ( � ) and hyperactive cells 
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( � ) in a given FOV, while conforming to previous studies 
that observed more than 20% of neurons becoming hyper-
active (Busche et al., 2008; Busche & Konnerth, 2015) 

in transgenic AD mice. This yielded a population of hip-
pocampal CA1 cells (with 50% normal cells, 21% hyperac-
tive cells and 29% hypoactive cells). Hypersynchrony, which 
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ends. b  Raster plot of the neural activity during multiple behaviors 
(adapted from Rubin et  al. (2019)): (1) drinking, (2) running, (3) 
turning, and (4) rearing. c Calcium event rate as the mouse runs to 
the right (left panel) and to the left (right panel) of the linear track 
(from Rubin et al. (2019)). d-e Linear vs non-linear manifold embed-

dings (normalized). In each case the first three dimensions are visu-
alized: Insets for each: projections on pairs of components: C1 and 
C2 (upper left), C2 and C3 (upper middle), C1 and C3 (upper right). 
d Linear manifold embeddings (i) PCA, (ii) MDS, e non-linear mani-
fold embeddings (i) Isomap, (ii) LLE, (iii) LEM, (iv) t-SNE, and (v) 
UMAP. f-h  Manifold evaluation metrics f  Decoding performance 
[r], g Reconstruction score [r], h Intrinsic manifold dimensionality
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has also been observed in AD (Palop & Mucke, 2016), was 
not simulated for the purposes of this exercise, to maintain 
simplicity. This disease model mimics the neural activity of 
hippocampal CA1 cells of an AD mouse (e.g. a mouse over-
expressing amyloid precursor protein, (Oakley et al., 2006)) 
running on a circular track; we compare it with a simulated 
control model representing a healthy wild-type litter-mate 
(Fig. 6a, b). Using MDS and UMAP as exemplars (Fig. 6c, 
d, respectively), NML shows how the aberrant excitability 
of neurons distorts the neural manifolds for spatial memory 
in AD (bottom panel) with respect to the healthy control 
model (top panel). While the topological structure remains 
relatively intact, the boundaries of the set become fuzzier, 
akin to adding noise to the system. To further evaluate this, 
we examined manifold parameterization measures including 
decoding performance, neural reconstruction similarity and 
manifold intrinsic dimensionality for both NML approaches 
(Fig. 6e-m). In both cases, the AD model’s manifold embed-
dings display worse performance than the control model, 
although UMAP was able to recover a more behaviorally 
informative and lower-dimensional embedding than MDS.

To investigate the effects of the proportions of aberrant 
cells on the neural manifolds, we simulated the same mod-
els with varying percentages of normal, hyperactive ( � ) and 
hypoactive ( � ) cells. As expected, the hyperactivity of cells 
close to amyloid plaques (which tends to add noise) distorts 
the neural manifolds more than the hypoactive cells (which 
is more akin to having a decreased number of neurons in 
the manifold), resulting in less clustering of neural states 
in the manifold space. This is consistent with their effects 
on performance in terms of the given manifold measures 
(Fig. 6f-g, i-j, l-m).

We suggest that on this basis, NML techniques exhibit 
potential for helping to improve our understanding of net-
work-level disruption in disease phenotypes.

4 � Discussion

4.1 � Comparison of neural manifold algorithms

With the increase in the numbers of simultaneously recorded 
neurons facilitated by emerging recording technologies, the 
demand for methods that enable reliable and comprehen-
sively informative population-level analysis also increases. 
Multivariate analyses of large neuronal population activity 
thus require the use of more efficient computational mod-
els and algorithms that are geared towards finding the few-
est possible population-level features that best describe the 
coordinated activity of such large neuronal populations. 
These features must be interpretable and open to param-
eterization that enables inherent neural mechanisms to be 
described (as discussed in the next section).

In this review, we give insights into how NML facili-
tates accurate quantitative characterizations of the dynamics 
of large neuronal populations in both healthy and disease 
states. However, assessing exactly how reliable and informa-
tive NML methods are remains a challenge and is open to 
interpretation. An ideal NML method must be able to adapt 
to different datasets that span functionally different brain 
regions, behavioral tasks, and number of neurons being ana-
lyzed, while considering different noise levels, timescales, 
etc.

In many studies, linear NML methods (such as PCA and 
classical MDS) have been preferred, and are widely used 
throughout the literature because of computational simplic-
ity and clear interpretation. However, these methods have 
not been sufficient when the geometry of the neural rep-
resentation is highly non-linear, which might for instance 
be induced by high behavioral task complexity (Jazayeri & 
Ostojic, 2021) (see Fig. 5). As shown in (Rubin et al., 2019), 
low SNR can also affect the quality of some linear NML 
embeddings. They compared PCA and LEM algorithms and 
revealed that LEM required fewer neurons and lower firing 
rates for accurate estimation of the internal structure. To 
address the challenges of noisy data, many solutions have 
been suggested, including the development of novel linear 
algorithms, such as dPCA (Kobak et al., 2016), cvPCA 
(Stringer et al., 2019), and mTDR (Aoi & Pillow, 2018). 
These methods enable greater discrimination between 
specific clusters of neural activity, but they do rely heav-
ily on neural responses acquired during multiple trials of 
time-locked behavior. However, these may not always be 
available, and whilst it is possible to tweak certain algorith-
mic parameters or fit them to manipulated forms of the data 
(e.g. through time-warping), the end result is an increase in 
computational complexity and possibly harder to interpret 
results.

Conversely, non-linear methods, in general, trend towards 
better generalization across datasets. This is particularly true 
for UMAP and t-SNE (see Figs. 3, 4 and 5). To discriminate 
clusters of neural activity, UMAP and t-SNE have been shown 
to be the most powerful non-linear NML techniques. How-
ever, they might not always yield an embedding that is repre-
sentative of the true high-dimensional geometry. These issues 
are particularly relevant for inherently very high-dimensional 
data, such as genomics data (Chari et al., 2021). In fact, it 
is debated whether a low number of latent dimensions are 
enough to drive neural population activity and explain its vari-
ability across a range of circumstances such as brain region 
and task (Chaudhuri et al., 2019; Rubin et al., 2019; Nieh 
et al., 2021; Churchland et al., 2012; Gallego et al., 2020), or 
if higher dimensionality are required (Stringer et al., 2019; 
Humphries, 2020).

Finally, a key consideration when selecting any 
NML method is whether its function is for neural data 
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Fig. 6   Changes in neural manifolds during neurodegenerative disease 
states. a Example simulated calcium traces for a mouse traversing a 
circular track (simulation of real experiment in Fig.  3). Top: 20 of 
200 “normal” CA1 place cells (magenta traces on top show mouse 
trajectory). Bottom: 20 of 200 AD-affected place cells that fall into 
three categories: Normal (black), Hyperactive (red) and Hypoactive 
(blue). b Normalized activity rate maps for 200 healthy and 142 (out 
of 200) AD hippocampal CA1 place and hyperactive cells (respec-

tively) sorted by location of maximal activity. c-d  3D projection in 
the manifold space using (c) MDS and (d) UMAP for both healthy 
control and AD simulated models. Inset: 2D projections onto pairs of 
dimensions. e-m Evaluation metrics for MDS and UMAP, Control vs 
AD and shown as a function of varying percentages of normal, hyper-
active ( � ) and hypoactive ( � ) cells. e-g  Decoding performance [r]. 
h-j Reconstruction similarity [r]. k-m Intrinsic dimensionality
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visualization or for structural discovery and/or quanti-
fication. For instance, many of the non-linear algorithms 
described above, such as UMAP, t-SNE have excellent capa-
bilities in visualizing high-dimensional data and provide an 
interpretable global structure. Similarly, VAEs present them-
selves as great candidates for discriminating global clusters. 
However, obtaining a favorable global structure can often 
be at the expense of a loss to local structure (Chari et al., 
2021) and therefore can distort any downstream structural 
quantification. To address these shortcomings one can use 
algorithms that either provide a linear solution such as PCA-
based methods (Gardner et al., 2022) or that focus on local 
structure such as LEM (Rubin et al., 2019). ANNs may add 
further possibilities, with methods such as CEBRA tackling 
model identifiability and generalization (Schneider et al., 
2022).

One message that can be taken away from our compari-
son of neural manifold approaches is that linear methods 
do provide substantial insight over a wide range of problem 
domains (often consistent with what is provided by non-
linear methods), and even in areas where they fail to cor-
rectly capture the low-dimensional topological structure of 
the manifold, they can still provide insight verifiable through 
decoding of behavior.

4.2 � Parameterization of neural manifolds

A key issue for NML approaches is that after the neural man-
ifold has been determined, it normally needs to be analyzed 
further to answer a given scientific question. This process, 
known as parameterization, would ideally involve extraction 
of the equations of the manifold itself, however, out of feasi-
bility may also be based on a more limited quantification of 
manifold properties. Depending on the type of neural data at 
hand and the scientific hypothesis to be tested, it’s important 
to select the most suited and informative NML algorithm 
and parameterization measures. One challenge that has to 
be kept in mind is that the resulting manifolds, although 
often visualized in two or three dimensions for convenience, 
frequently involve many more dimensions (e.g. even a low-
dimensional neural manifold from a recording from many 
hundreds of neurons might involve tens of dimensions), and 
many approaches that may work well in two or three dimen-
sions do not necessarily scale straightforwardly to higher-
dimensional representations.

Where transitions in the dynamics of neural states are 
observed over time, one approach that is useful is recurrence 
analysis (Marwan et al., 2007; Wallot, 2019). Recurrence 
analysis is a non-linear data analysis that is based on the 
study of phase space trajectories, where a point or element 
in phase space represents possibles states of the system. It is 
a powerful tool in characterizing the behavior of a dynamical 
system, especially when observing how states change over 

time. A recurrence plot measures and visualizes the recur-
rences of a trajectory of a system in phase space. Note that 
although the recurrent plot is inherently two-dimensional, 
recurrence analysis can describe dynamics in an arbitrary 
dimensional space - a key feature of this technique. As the 
respective phase spaces of two systems change, recurrence 
plots allow quantification of their interaction and tell us 
when similar states of the underlying system occur. The 
time evolution of trajectories can be observed in the pat-
terns depicted in the recurrence plots, and these patterns are 
associated with a specific behavior of the system, such as 
cyclicity and similarity of the evolution of states at differ-
ent epochs. Different measures can be used to quantifying 
such recurrences based on the structure of the recurrence 
plot, including recurrence rate, determinism (predictibil-
ity), divergence, laminarity, and Shannon entropy (Webber 
& Marwan, 2015; Wallot, 2019). These measures might be 
especially useful when observing neuronal responses to 
stimuli over repeated trials under different conditions (such 
as healthy and diseased states).

Another way to compare neural manifolds under different 
conditions is to directly quantify the similarity of trajectories 
in the neural manifold space (Cleasby et al., 2019; Ding 
et al., 2008; Alt, 2009). The most commonly used measures 
of trajectory similarity are Fréchet distance (FD) (Fréchet, 
1906; Besse et al., 2015), nearest neighbor distance (NND) 
(Clark & Evans, 1954; Freeman et al., 2011), longest com-
mon subsequence (LCSS) (Vlachos, 2002), edit distance for 
real sequences (EDR) (Chen & Ng, 2004; Chen et al., 2005) 
and dynamic time warping (DTW) (Toohey, 2015; Long & 
Nelson, 2013). Computing such measures may allow us to 
characterize the differences (or similarities) among neural 
manifolds obtained from different models. This type of 
analysis may be especially useful when comparing models 
in health and disease states across age groups, or when com-
paring neural manifold representations of the same model 
across different environments and conditions.

Another useful measure is manifold trajectory tangling 
(Russo et al., 2018). Tangling is a simple way of determining 
whether a particular trajectory could have been generated by 
a smooth dynamical flow field; under smooth dynamics, neu-
ral trajectories should not be tangled. Two neural states are 
thus tangled if they are nearby but associated with different 
trajectory directions. High tangling implies either that the 
system must rely on external commands rather than inter-
nal dynamics, or that the system is flirting with instability 
(Russo et al., 2018). Thus, tangling can be compared across 
all times and/or conditions. It is especially useful when 
characterizing neural dynamics over the course of learn-
ing or development. For example, it may be interesting to 
examine whether neural circuits adopt network trajectories 
that are increasingly less tangled when learning a new skill 
and with increasing performance. Conversely, it may also 
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be interesting to investigate whether pathological conditions 
may be associated with increased tangling during learning.

In cases where we characterize task-specific responses, 
e.g., during repetitive, trial-structured motor movements, 
determining whether these neural responses are consistent 
with the hypothesised computation is important. Hence, 
the consistency in the geometry of the population response 
and/or the time-evolving trajectory of activity in neural state 
space (i.e., manifold space) must be examined. For such 
task-specific trials, manifold trajectories are considered con-
sistent if the trajectory segments trace the same path and do 
not diverge. One measure that can be used for such analy-
sis is manifold trajectory divergence (Russo et al., 2020). 
In contrast to manifold trajectory tangling, which assesses 
whether trajectories are consistent with a locally smooth 
flow field, manifold trajectory divergence assesses whether 
similar paths eventually separate, smoothly or otherwise. A 
trajectory can have low tangling but high divergence, or vice 
versa. Multiple features can contribute to divergence, includ-
ing ramping activity, cycle-specific responses, and differ-
ent subspaces on different cycles. Thus, manifold trajectory 
divergence provides a useful summary of a computationally 
relevant property, regardless of the specifics of how it was 
achieved (Russo et al., 2020).

Lastly, topological data analysis (TDA), which comprises 
methods such as persistent cohomology, aim to rigorously 
characterize the topological structure of the data. These 
methods are quite sensitive to noise levels and might not be 
adequate to investigate functionally complex neural systems, 
but they succeed in revealing the topology of simpler sys-
tems such as the head direction, grid cell systems and linear 
track representation (Chaudhuri et al., 2019; Gardner et al., 
2022; Rubin et al., 2019). Similarly, Spline Parameterization 
for Unsupervised Decoding (SPUD) is a powerful method 
to characterise the manifold dynamics, which stems from 
a rigorous analysis of the manifold topological structure 
(Chaudhuri et al., 2019).

An increasing body of work using large-scale neural 
recording technologies is pointing towards the viewpoint 
that neural manifolds during spontaneous activity may 
be relatively high dimensional (Avitan & Stringer, 2022)
[reviewed in], in comparison to the low-dimensional pic-
ture of spontaneous activity that had emerged from earlier 
recording technologies such as single-unit extracellular elec-
trophysiology and functional magnetic resonance imaging. 
This of course provokes the question: at what dimensional-
ity do neural manifold approaches cease to become useful? 
Notably, the datasets we have used as illustrations in this 
survey paper are (reflecting the field) intrinsically relatively 
low-dimensional in nature, ranging from a mouse running 
around a constrained environment to a monkey moving its 
arm in a fixed set of trajectories. Free-ranging, real-world 
behaviour is obviously higher dimensional in nature. Do 

manifold approaches cease to become useful in such cases? 
We would argue not, as long as the dimensionality of the 
manifold is much lower than the dimensionality of the neural 
recording (essentially determined by the number of cells 
that can be recorded, and which can exceed 10,000 with 
recently introduced technologies). Certainly two and three-
dimensional visualisations may fail to capture interesting 
aspects of the data (which may in many cases be true already 
for 10-dimensional datasets). However, as we have pointed 
out in this section, there are many approaches for analysis of 
the resulting manifolds, such as recurrence plots, trajectory 
similarity measures, and manifold trajectory tangling, that 
work for higher dimensional manifolds. How these proper-
ties relate back to the predictions made by computational 
models of brain function is so far less clear. This area is ripe 
for further theoretical work.

4.3 � Is neural manifold learning useful 
for understanding neurological disorders?

Neural manifold learning offers the prospect of aiding in 
our understanding of circuit neuropathologies. For instance, 
in mouse models of Alzheimer’s disease, amyloid or tau 
pathologies result in changes in cortical circuitry, which 
are particularly evident in the hippocampus and connected 
structures. However, the effect of these pathologies on the 
dynamics of neural circuits involved in spatial and working 
memory at the network level are still not well understood. 
By analyzing the changes in the geometry of population 
responses and the time-evolving trajectory of activity of the 
associated hippocampal-cortical circuits, we can compare 
the neural manifolds recovered from groups of mice of dif-
ferent ages and/or with different health states. In particular, 
we can use recurrence analysis to determine whether neu-
ral states recur upon presentation of the same stimuli over 
repeated trials at different times across different ages of the 
models. Neural manifold similarity, tangling and divergence 
measures may also be computed to evaluate the differences 
(or similarity) of movement trajectories in the neural mani-
fold space. Together, these measures can be used to compare 
the manifold dynamics across different age groups in both 
healthy and disease states.

In this review, we have demonstrated that neural manifold 
learning methods provide a powerful toolbox for understand-
ing how populations of neurons coordinate in representing 
behaviorally relevant information. While the cellular and 
molecular pathologies underlying a variety of neurological 
disorders such as Alzheimer’s Disease, Parkinson’s Disease 
and Frontotemporal Dementia are at least beginning to be 
well understood, how they translate into network dysfunc-
tion and thus, into cognitive and behavioral deficits is not. 
Neural manifold learning techniques, in combination with 
new experimental technologies allowing us to record the 
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activity of many thousands of neurons simultaneously dur-
ing behavioral tasks, potentially may allow us to assay the 
dynamics and Gestalt representations underlying cognition 
and behavior at the level of entire neural circuits. This could 
in turn lead to improved understanding of disease processes 
and more sensitive tests of therapeutic effect.
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