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Abstract
The stochastic activity of neurons is caused by various sources of correlated fluctuations and can be described in terms of 
simplified, yet biophysically grounded, integrate-and-fire models. One paradigmatic model is the quadratic integrate-and-fire 
model and its equivalent phase description by the theta neuron. Here we study the theta neuron model driven by a correlated 
Ornstein-Uhlenbeck noise and by periodic stimuli. We apply the matrix-continued-fraction method to the associated Fokker-
Planck equation to develop an efficient numerical scheme to determine the stationary firing rate as well as the stimulus-
induced modulation of the instantaneous firing rate. For the stationary case, we identify the conditions under which the firing 
rate decreases or increases by the effect of the colored noise and compare our results to existing analytical approximations for 
limit cases. For an additional periodic signal we demonstrate how the linear and nonlinear response terms can be computed 
and report resonant behavior for some of them. We extend the method to the case of two periodic signals, generally with 
incommensurable frequencies, and present a particular case for which a strong mixed response to both signals is observed, 
i.e. where the response to the sum of signals differs significantly from the sum of responses to the single signals. We provide 
Python code for our computational method: https:// github. com/ janni kfran zen/ theta_ neuron.

Keywords Neuron model · Spike train variability · Neural signal transmission · Stochastic neuron model

1 Introduction

Neural spiking is a random process due to the presence 
of multiple sources of noise. This includes the quasi-
random input received by a neuron which is embedded in 
a recurrent network (network noise), the unreliability of 
the synapses (synaptic noise), and the stochastic opening 
and closing of ion channels (channel noise) (Gabbiani 
& Cox, 2017; Koch, 1999). This stochasticity and the 

resulting response variability is a central feature of neu-
ral spiking (Holden, 1976; Tuckwell, 1989). Therefore, 
studies in computational neuroscience have to account 
for this stochasticity as it has important implication for 
the signal transmission properties.

Computational studies of stochastic neuron models 
often assume that the driving fluctuations are temporally 
uncorrelated. This white-noise assumption implies that 
the correlation time �s of the input fluctuations is much 
smaller than the time scale of the membrane potential �m . 
Put differently, the input noise is regarded as fast compared 
to every other process present in the neural system. This 
assumption grants a far-reaching mathematical tractability 
of the problem (Abbott & van Vreeswijk, 1993; Brunel, 
2000; Burkitt, 2006; Holden, 1976; Lindner & Schimansky-
Geier, 2001; Ricciardi, 1977; Richardson, 2004; Tuckwell, 
1989) but is violated in a number of interesting cases. First, 
fluctuations that arise in a recurrent network often exhibit 
reduced power at low frequencies (green noise) (Bair et al., 
1994; Câteau & Reyes, 2006; Pena et al., 2018; Vellmer & 
Lindner, 2019). Second, fluctuations in oscillatory systems, 
e.g. caused by the electroreceptor of the paddlefish, can 
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be band-pass filtered (Bauermeister et al., 2013; Neiman 
& Russell, 2001). Finally and most prominently, fluctua-
tions that emerge due to synaptic filtering of postsynaptic 
potentials (Brunel & Sergi, 1998; Lindner, 2004; Lindner 
& Longtin, 2006 Moreno-Bote & Parga, 2010; Rudolph & 
Destexhe, 2005) or due to slow ion channel kinetics (Fisch 
et al., 2012; Schwalger et al., 2010), have reduced power at 
high frequencies (red noise).

There are two important types of neuron models with 
distinct responses characteristics: Integrators (type I 
neurons) and resonators (type II neurons) (Izhikevich, 
2007). The canonical model for a type I neuron is the 
quadratic integrate-and-fire model or, mathematically 
equivalent, in terms of a phase variable, the theta neu-
ron. Here we study the response characteristics of the 
theta neuron, driven by a low-pass filtered noise, the 
Ornstein-Uhlenbeck (OU) process. This model has been 
studied analytically by Brunel and Latham (2003) for 
the limits of very short and very long correlation times. 
Furthermore, Naundorf et al. (2005a, b) solved the asso-
ciated Fokker-Planck equation for the voltage and the 
noise variable for selected parameter sets in order to 
obtain the stationary firing rate and the firing rate’s lin-
ear response to a weak periodic stimulus.

Here, we put forward semi-analytical results for the sta-
tionary firing rate by means of the matrix-continued-fraction 
(MCF) method for arbitrary ratios of the two relevant time 
scales � = �s∕�m . We present exhaustive parameter scans of 
the stationary firing rate with respect to variations of the 
bifurcation parameter and the correlation time. Furthermore, 
our method also allows to calculate how a, not necessar-
ily weak, periodic signal in the presence of a correlated 
background noise is encoded in the firing-rate of the model 
neuron. Because recently, non-weak signals, for which the 
linear response does not provide a good approximation to 
the firing rate, have attracted attention (Novikov & Gutkin, 
2020; Ostojic & Brunel, 2011; Voronenko & Lindner, 2017, 
2018), we also develop semi-analytical tools for the linear 
as well as the non-linear response of the firing rate to one 
or two periodic signals. To the best of our knowledge, this 
is the first application of the MCF method in computational 
neuroscience.

This paper is organized as follows. In Sect. 2 we intro-
duce the model system and the associated Fokker-Planck 
equation. In Sect. 3 we compute the stationary firing rate 
of a theta neuron subject to correlated noise by means of 
the MCF method. Section 4 generalizes the ideas of the 
MCF method to the case where the model is driven by 
the OU noise and an additional periodic signal. Finally, 
in Sect. 4.3 we compute the firing rate response to two 
periodic signals. We conclude with a short summary of 
our results.

2  Model

The quadratic integrate-and-fire (QIF) model uses the nor-
mal form of a saddle-node on invariant circle (SNIC) bifur-
cation (Izhikevich, 2007) with a time-dependent input I(t̂):

In order to make the connection to physical time units 
transparent, we have kept on the l.h.s. a time constant, which 
is of the order of the membrane time �m1, typically 10ms. 
In the following however for the ease of notation we use a 
nondimensional time t = t̂∕𝜏m , i.e. we measure time as well 
as any other time constants, e.g. the correlation time below, 
in multiples of the membrane time constant. Similarly, all 
frequencies and firing rates are given in multiples of the 
inverse membrane time constant (additional rescalings are 
considered below, see e.g. Eqs. (7) and (10)).

In the new nondimensional time the QIF model takes the 
usual form:

If the variable x(t) reaches the threshold xth = ∞ , a spike 
is created at time ti = t and x(t) is immediately reset to 
xre = −∞ . If the input is assumed to be constant it can serve 
as a bifurcation parameter and allows the model to switch 
between the excitable ( I < 0 ) and mean-driven regime 
( I > 0 ). The model for I < 0 is illustrated in Fig. 1A, includ-
ing the stable and unstable fixed point at x = ±

√
I as well as 

the reset. The QIF model can be transformed into the theta 
neuron by the transformation x = tan(�∕2) (cf., Fig. 1A):

The advantage of such a phase description is, that the 
threshold �th = � and reset �re = −� lie at finite values. 
We will use this phase description of a canonical Type I 
neuron in the remainder of this paper.

We assume that the input I(t) consists of three parts:

(1)𝜏m
dx

dt̂
= x2 + I(t̂).

(2)
dx

dt
= x2 + I(t).

(3)
d�

dt
= (1 − cos �) + (1 + cos �)I(t).

(4)I(t) = � + �(t) + s(t),

1 One way to derive the QIF model is to consider the limit of a 
large slope factor Δv in the exponential integrate-and-fire model 
Cv̇ = I0 − gLv + gLΔv exp((v − vt)∕Δv) which itself results from a 
simplification of a conductance-based model (Fourcaud-Trocmé et al., 
2003). By choosing the new variable x = (v − vt)∕(

√
2Δv) and expand-

ing the exponential function up to the second order for v − vt ≪ Δv , 
one finds 

√
2𝜏mẋ = 𝜇 + x2 , where �m = C∕gL is the membrane-time 

constant. For simplicity we neglected the prefactor 
√
2 in Eq. (1).
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a constant mean input � , a temporally correlated noise 
�(t) and a periodic signal s(t) (see Fig. 1B). Note that the 
temporal average of the input Ī = limT→∞ ∫ T

0
I(t)dt∕T  is 

only affected by � because the temporal averages are set to 
�̄�(t) = 0 and s̄(t) = 0 without loss of generality. The corre-
lated noise � is given by an Ornstein-Uhlenbeck process with 
auto-correlation function ⟨�(t)�(t + Δt)⟩ = �2 exp(−Δt∕�) 
and correlation time � ; it can be generated by an extra sto-
chastic differential equation, a trick from statistical phys-
ics known as Markovian embedding of a colored noise (see 
e.g. Dygas et al., 1986; Guardia et al., 1984; Langer, 1969; 
Mori, 1965; Siegle et al., 2010, and the review by Hänggi 
& Jung, 1995). We remind the reader that the correlation 
time � is given in terms of the membrane time constant, i.e. 
� = �s∕�m is actually the ratio between the true correlation 
time �s (given for instance in ms) and the membrane time 
�m . In the limit � → 0 the noise �(t) becomes uncorrelated, 
i.e. white. However, if the variance �2 is held constant, as 
in Eq. (5), the effect of the noise on the neuron vanishes 
together with the correlation time. A non-trivial white-noise 
limit can be more properly described in terms of the noise 
intensity D = ��2 ; if D is held constant, the noise still affects 
the dynamics for vanishing correlation times. For such a 
constant intensity scaling the effect of the noise vanishes 
as � → ∞.

(5)�
d�

dt
= −� +

√
2��2�(t),

For s(t) = 0 the system shows spontaneous spiking (not 
related to any signal). In this case the parameter space is 
three-dimensional, i.e. all statistics depend only on (�, �, �) . 
This dependence however can be reduced to just two inde-
pendent parameters ( �̂�, 𝜏 ) defined by

This transformation also affects  the phase 
tan(�̂�∕2) = tan(𝜃∕2)∕

√
𝜎 and time t̂ =

√
𝜎t in Eq. (3) and 

consequently rescales the firing rate

Under an additional periodic driving s(t) = � cos(�t) the 
signal will be rescaled as well: ŝ(t̂) = �̂� cos(�̂�t̂) with

For several periodic signals the respective amplitudes and 
frequencies will be rescaled in the same manner.

For the constant intensity scaling we use a similar trans-
formation and set D = 1:

again, the state variables are affected by this scaling as well: 
tan(𝜃∕2) = tan(𝜃∕2)∕D1∕3 and t̃ = D1∕3t . The firing rates in 
the scaled and unscaled parameter space are related by

(6)�̂� = 𝜇∕𝜎, 𝜏 =
√
𝜎𝜏.

(7)r̂(t̂) = r
�√

𝜎t
�
∕
√
𝜎.

(8)�̂� = 𝜀∕𝜎 and �̂� = 𝜔∕
√
𝜎.

(9)
�̃� = 𝜇∕D2∕3, 𝜏 = D1∕3𝜏,

𝜖 = 𝜖∕D2∕3, �̃� = 𝜔∕D1∕3

Fig. 1  Type-I neuron model. A 
Representation of the deter-
ministic QIF and the equivalent 
theta neuron model. The blue 
line shows the QIF models 
potential U(x) = −�x(x

2 + I) in 
the excitable regime ( I < 0 ). 
Upon reaching the threshold 
xth = ∞ a spike is created and 
x is reset to xre = −∞ . For the 
equivalent theta neuron model, 
obtained by the transformation 
x = tan(�∕2) , a spike is created 
whenever � passes �th = � , no 
additional reset rule is needed. 
B Illustration of a theta neuron 
subject to a temporally cor-
related OU noise (blue) as well 
as a periodic signal (red) and 
the resulting spike train with 
stochastic spike times (orange)

109Journal of Computational Neuroscience (2023) 51:107–128



1 3

We make use of these scalings in the discussion of the 
results. For the ease of notation, we omit the hat and tilde 
over the parameters.

2.1  The Fokker‑Planck equation

The stochastic system of interest can be written by two Langevin 
equations

where f (�, �, s(t)) = (1 − cos �)  +(1 + cos �)  (� + �(t)+ 
s(t)) . The relation to the governing equation for the prob-
ability density function (PDF) is the well known Fokker-
Planck equation (FPE) (Risken, 1984). The PDF denotes the 
probability to find the phase � and noise � at time t around 
certain values. In the neural context the PDF can be related 
to the instantaneous firing rate r(t) (see for instance Brunel 
& Sergi, 1998; Naundorf et al., 2005a, b, and Moreno-Bote  
& Parga, 2010) as we recall in the following. The FPE is 
given by:

The two dimensional partial differential equation is 
completed by two natural boundary conditions

a periodic boundary condition

and the normalization condition

There is a corresponding continuity equation that relates 
the temporal derivative of the PDF to the spatial derivative 
of the probability current:

where J� and J� are the probability currents in the � and � 
direction, respectively:

(10)r̃(t̃) = r(D1∕3t)∕D1∕3.

(11)
d�

dt
= f (�, �, s(t)),

(12)�
d�

dt
= −� +

√
2��2�(t),

(13)𝜕tP(𝜃, 𝜂, t) = L̂(𝜃, 𝜂, s(t))P(𝜃, 𝜂, t)

(14)L̂(𝜃, 𝜂, s(t)) = −𝜕𝜃
[
f (𝜃, 𝜂, s(t))

]
+

1

𝜏
𝜕𝜂
[
𝜂 + 𝜎2𝜕𝜂

]
.

(15)P(�, � = ∞, t) = P(�, � = −∞, t) = 0,

(16)P(� = �, �, t) = P(� = −�, �, t),

(17)∫
∞

−∞

d� ∫
�

−�

d� P(�, �, t) = 1.

(18)�tP(�, �, t) = −��J�(�, �, t) − ��J�(�, �, t),

An important insight is that the probability current in the 
phase direction J� at the threshold � = � is directly related 
to the instantaneous firing rate r(t):

In the last equality we have used that the dynamics of 
the theta neuron becomes independent of the input at the 
threshold; specifically, we have f (�, �, s(t)) = 2.

The solution of the two-dimensional Fokker-Planck equa-
tion and the boundary conditions listed above is a difficult 
problem, even in the simplest case of the (time-independent) 
stationary solution in the absence of a periodic stimulus. Dif-
ferent authors have proposed approximate solutions in limit 
cases, e.g. for the case of very slow or very fast Ornstein-
Uhlenbeck noise (Brunel & Latham, 2003), for weak noise 
in the mean-driven regime (Galán, 2009; Zhou et al., 2013), 
or, in the case of a periodic modulation of the firing rate, 
for very low or very high stimulus frequencies (Fourcaud- 
Trocmé et al., 2003). A numerical method to solve the two-
dimensional Fokker-Planck equation in terms of an eigenfunc-
tion expansion was presented by Naundorf et al. (2005a, b); 
similar approaches have been pursued to describe two one-
dimensional white-noise driven neuron models either coupled 
directly (Ly & Ermentrout, 2009) or subject to a shared input 
noise (Deniz & Rotter, 2017). Eigenfunction expansions have 
also been used to describe the activity in neural populations 
and neural networks, see e.g. Knight (2000) and Doiron et al. 
(2006). Turning back to the problem of single-neuron models, 
beyond the theta neuron, different approximations to the multi-
dimensional Fokker-Planck equation for neuron models with 
Ornstein-Uhlenbeck noise have been suggested for the perfect 
integrate-and-fire model (Fourcaud & Brunel, 2002; Lindner, 
2004; Schwalger et al., 2010, 2015) and for the leaky integrate-
and-fire model (Alijani & Richardson, 2011; Brunel & Sergi, 
1998; Brunel et al., 2001; Moreno et al., 2002; Moreno-Bote 
& Parga, 2004, 2006, 2010; Schuecker et al., 2015; Schwalger  
& Schimansky-Geier, 2008). We note that with respect to  
the driving noise, the related simpler case of an exponen-
tially correlated two-state (dichotomous) noise permits the 
exact analytical solution for a few statistical measures such 
as the firing rate and stationary voltage distribution (Droste &  
Lindner, 2014; Müller-Hansen et al., 2015), the power spec-
trum and linear response function (Droste & Lindner, 2017), 
and the serial correlation coefficient of the interspike intervals 
(Lindner, 2004; Müller-Hansen et al., 2015).

(19)J� = f (�, �, s(t))P(�, �, t),

(20)J� = −
1

�

(
� + �2��

)
P(�, �, t).

(21)r(t) = ∫
∞

−∞

d� J�(�, �, t) = 2∫
∞

−∞

d� P(�, �, t).
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3  Stationary firing rate

If we consider a system that is subject to a temporally 
correlated noise but no external signal ( s(t) = 0 ) then the 
probability density asymptotically approaches a stationary 
distribution P0(�, �) which is what we consider now. The 
FPE for this stationary distribution reads

with the stationary Fokker-Planck operator L̂0(𝜃, 𝜂) =
L̂(𝜃, 𝜂, 0) . Once the stationary probability density is known 
it can be used to obtain the stationary firing rate r0 . Alterna-
tively to Eq. (21) one can calculate the firing rate by

where J�,0(�, �) denotes the component of the probability 
current in the direction of the phase for s(t) ≡ 0 . To see 
how to arrive at this equation, we take the stationary case 
of Eq. (18) and integrate it over all values of � . The inte-
gral term ∫ d� ��J� = J(�, � = ∞) − J(�, � = −∞) vanishes 
because of the natural boundary conditions and it follows 
that �� ∫ d� J� = 0 . Consequently the integrated � current 
does not depend on � and is everywhere equal to the firing 
rate. An additional integration over � , yielding the factor 2� , 
leads to Eq. (23).

3.1  The MCF method

In the previous section it was shown that the stationary 
probability density is interesting on its own because it 
is directly related to the stationary firing rate. Here we 
outline the core ideas and assumptions that are necessary 
to compute the stationary PDF P0(�, �) by means of the 
matrix-continued-fraction method, which has been put 
forward by Risken (1984).

As a first step, the stationary probability density is expanded 
with respect to the phase � and noise � by two sets of eigenfunc-
tions, namely the complex exponential functions ein�∕

√
2� 

and Hermite functions �p(�) (see Bartussek, 1997 for a similar 
choice):

Note, that 
(
cn,p

)∗
= c−n,p because P0(�, �) is real. Thus, we 

must only determine the expansion coefficients for n ≥ 0 . Both 
sets satisfy the periodic and natural boundary conditions in 
� and � , respectively. A first application of this result is the 
determination of the marginal probability density by

(22)0 = L̂0(𝜃, 𝜂)P0(𝜃, 𝜂),

(23)2�r0 = ∫
�

−�

d� ∫
∞

−∞

d� J�,0(�, �),

(24)P0(�, �) =
�0(�)

2�

∞∑
p=0

∞∑
n=−∞

cn,pe
in��p(�).

which is illustrated for different values of � and � in Fig. 2. 
The stationary firing rate is conveniently expressed by only 
two of the coefficients,

This expression can be derived by inserting the expansion 
into Eq. (23) and using the properties of the coefficients and 
eigenfunctions, in particular (80) and (81) of the Hermite 
functions.

The coefficients can be determined by a substitution of 
the expansion Eq. (24) into the stationary FPE (22) which 
yields the tridiagonal recurrence relation, see Appendix A:

with the coefficient vectors cn =
(
cn,0, cn,1, ...

)T  and 
c0 = (1, 0, 0, ...)T . The matrix K̂n is given by

(25)P0(�) ∶= ∫
∞

−∞

d� P0(�, �) =
1

2�

∞∑
n=−∞

cn,0e
in�

(26)r0 =
(1 + �) − (1 − �)Re(c1,0) + �Re(c1,1)

2�
.

(27)K̂ncn = cn−1 + cn+1

(28)K̂n = 2
(
B̂−1 − 1

)
−

B̂−1Â

n
,

A

B

C

Fig. 2  Stationary phase distribution of the theta neuron in the 
excitable regime ( � = −1 , A), at the bifurcation point ( � = 0 , B) and 
in the mean-driven regime ( � = 1 , C). Dynamics of the correspond-
ing deterministic systems are shown at the right. For the phase distri-
butions the variance of the OU noise is held constant at �2 = 1 while 
the correlation time varies as shown in A. For � → 0 the effect of the 
noise vanishes, i.e. the model becomes deterministic. The distribu-
tions have been calculated using the MCF method. Parameters MCF 
method: nmax = pmax = 200

111Journal of Computational Neuroscience (2023) 51:107–128
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where 1 is the identity matrix and Â , B̂ are defined by

Solving Eq. (27) for cn,p is difficult because the matrices 
are infinite and the equation constitutes a relation between 
three unknown. As a first step to find the coefficients, one 
can truncate the expansion in Eq. 24 to obtain finite matri-
ces. In practice, we assume that all Hermite functions and 
Fourier modes become negligible for large p or n, so that 
the corresponding coefficients vanish2 cn,p = 0 for p > pmax 
or n > nmax . To solve the second problem (of having three 
unknowns), we define transition matrices Ŝn by

which upon insertion into Eq. (27) yield:

For any coefficient vectors cn this equation is satisfied 
provided the term in square brackets vanishes. The rela-
tion between the two unknown transition matrices can be 
expressed by:

and leads by recursive insertion to an infinite matrix con-
tinued fraction

where 1∕⋅ denotes the inverse of a matrix. This fraction is 
truncated after n > nmax . The matrix Ŝ0 determines the fol-
lowing coefficients via Eq. (31):

which are needed for the computation of the firing rate 
according to Eq. (26).

(29)
(
Â
)
p,q

= i
q

𝜏s
𝛿p,q,

(30)
�
B̂
�
p,q

=
1 − 𝜇

2
𝛿p,q −

𝜎

2

�√
q𝛿p+1,q +

√
q + 1𝛿p−1,q

�
.

(31)cn+1 = Ŝncn,

(32)0 =
[(
K̂n − Ŝn

)
Ŝn−1 − 1

]
cn−1.

(33)Ŝn−1 =
[
K̂n − Ŝn

]−1

(34)
Ŝn =

1

K̂n −
1

K̂n+1−
1

...

,

(35)c1,0 =
(
Ŝ0
)
0,0
; c1,1 =

(
Ŝ0
)
1,0
,

3.2  Constant variance scaling

The MCF method provides a fast computational method to 
determine the stationary firing rate r0 in a large part of the 
parameter space. Together with different analytical approxi-
mations it is possible to cover the complete dependence of 
r0 on the parameters � , � and � . In the following figures, 
we additionally verify the MCF results by comparison to 
numerical simulations of Eq. (11) using a Euler-Maruyama 
scheme with time step Δt = 5 ⋅ 10−3 for Ntrials = 5 ⋅ 105 trials 
of length Tmax = 500 . For more details see the repository. 
In Fig. 3 we use the constant variance scaling (see Sect. 2) 
with � = 1 . A different choice for � would result in a rescal-
ing of the axes according to Eq. (6). As depicted in Fig. 3B, 
for short as well as large correlation times, the firing rate 
approaches limit values indicated by the horizontal lines. 
For � → 0 , the effect of the correlated noise vanishes so that 
the short time limit is equal to the deterministic firing rate

where Θ(�) is the Heaviside function. In the case � → ∞ , the 
noise causes a slow modulation of the firing rate; computing 
the long-correlation-time limit then corresponds to averag-
ing the deterministic firing rate over the distribution of the 
noise (quasi-static noise approximation, see Moreno-Bote 
& Parga, 2010)

We recall that for a QIF model driven by white noise the 
firing rate is always larger than the deterministic rate (Lindner 
et al., 2003). In contrast, a colored noise may decrease the firing 
rate (Brunel & Latham, 2003; Galán, 2009) as shown in Fig. 3. 
For large correlation times, the decrease in the firing rate is a 
direct consequence of the concave curvature of the deterministic 
firing rate rdet(I) at large � as illustrated in Fig. 4. This can be 
understood as follows. If we take the linear approximation of the 
deterministic rate around the operation point � then, not surpris-
ingly, with a symmetric input distribution of the noise, the aver-
aging yields the deterministic firing rate at the operation point:

In the relevant range the underlined term is larger than 
the function rdet(I) in Eq. (37) as it can be seen from Fig. 4. 
Consequently, the resulting integral in Eq. (38) (i.e. the deter-
ministic firing rate) is larger than the actual firing rate in the 
long-correlation-time limit, Eq. (37). This is the mechanism 
by which a colored noise can reduce the firing rate in the 
mean-driven regime.

(36)rdet = r(�, � = 0) =

√
�

�
Θ(�),

(37)r∞(�) = ∫
∞

−∞

dI P�(I − �)rdet(I).

(38)∫ dIP�(I − �)

(
drdet

dI

||||I=�(I − �) + rdet(�)

)
= rdet.

2 How fast the MCF method converges with the number of Her-
mite functions and Fourier modes considered depends on the system 
parameters as demonstrated in the repository. More precisely, for a 
fixed pmax or nmax we observed that the MCF method fails for large 
correlation times and additionally in the excitable regime for small 
noise intensities. However, for these particular limit cases analyti-
cal approximations already exist (see Sects. 3.2 and 3.3). Choosing a 
pmax = nmax ≥ 150 , we can even capture these limit cases sufficiently 
well (see Fig. 3).
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For weak noise in the mean-driven regime ( 𝜎 ≪ 𝜇 ) this 
drop in the firing rate can be calculated analytically as done 
by Galán (2009). The formula requires the phase response 
curve (PRC) of the theta neuron, which is well known 
(Ermentrout, 1996), resulting in the following compact 
expression for the firing rate:

(39)r0 ≈ rdet −
�2

2�

�2∕
√
�

4��2 + 1

(please note the transition from cyclic frequencies used 
in Galán, 2009  to firing rates). The formula predicts 
clearly a reduction of the firing rate by colored noise; 
specifically, r0 decreases monotonically with increasing 
correlation times. It should be noted, however, that in 
the strongly mean-driven regime, in which this theory is 
valid, the changes in the firing rate are very small (see 
Fig. 5A, B). If the driving is less strong and deviations of 
the firing rate from rdet are more pronounced, the theory 

Fig. 3  Stationary firing rate 
in the constant variance scaling 
( �2 = 1 ) for different values of 
� and � . Contour lines from A 
are shown again in B and C. 
Interestingly, the firing rate of 
the theta neuron can increase, 
decrease and even exhibit 
non-monotonic behavior with 
respect to the correlation time 
� of the OU noise as shown in 
B. Calculations by the MCF 
Method are confirmed by 
stochastic simulations (gray 
dots). Parameters MCF method: 
nmax = pmax = 150

A

B C
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according to Eq. (39) no longer provides a good approxi-
mation, (see Fig. 5C).

Is at least the qualitative prediction of an overall rate 
reduction due to correlated noise correct? To answer this 
question, we plot in Fig. 6 the difference between the firing 
rate and the deterministic limit r0 − rdet for a broad of cor-
relation times � and inputs � . This difference can be both 
positive and negative. Trivially, in the excitable regime 
( 𝜇 < 0 ) the firing rate in the presence can only be larger 
than the vanishing deterministic rate (here rdet = 0 ). In the 
mean-driven regime the changes can be both positive (for 
sufficiently small � ) and negative (for larger � ); the exact 
line of separation is displayed by a solid line in Fig. 6.

3.3  Constant intensity scaling

Instead of a constant variance, we can also keep the noise 
intensity fixed ( D = �2� ). The corresponding stationary 

firing rate as a function of � and � is shown in Fig. 7A. 
One advantage of the constant-intensity scaling is that it 
permits a non-trivial white noise limit ( � → 0 ), displayed in 
Fig. 7B, C by the dashed lines (Brunel & Latham, 2003). In 
the opposite limit of a long correlation time the noise vari-
ance vanishes, which implies that r0 approaches the deter-
ministic rate.

Remarkably, for a sufficiently strong mean input current 
� , the rate attains a minimum at intermediate correlation 
times. Considering the long as well as the short correlation-
time approximation by Moreno-Bote and Parga (2010) (see 
our Eq. (37)) and Brunel and Latham (2003) (see Eq. (3.19) 
therein), respectively, this behavior can be expected. Gener-
ally, we find that the firing rate for any � is smaller than the 
white-noise limit.

4  Response to periodic stimulus

In the previous section we have considered a theta neuron 
with an input current I(t) that consisted of a constant input 
� and a colored noise �(t) . We now turn to a more general 
case that involves an additional periodic signal

as illustrated in Fig. 8A and demonstrate how the MCF 
method can be used to compute the response of the firing 
rate.

We consider the time-dependent signal s(t) as a perturba-
tion with amplitude � . The respective FPE can be expressed 

(40)s(t) = � cos (�t)

Fig. 4  Mechanism for the firing rate reduction. The decrease of the 
firing rate due to strongly correlated noise in the mean-driven regime 
is a consequence of the concave curvature of the deterministic firing 
rate rdet(I) . For large � the firing rate can be approximated by averag-
ing the deterministic firing rate over the noise distribution according to 
Eq. (37), this yields the blue point on the dashed line

Fig. 5  Decrease of the firing rate with respect to the correlation 
time � at fixed variance �2 = 1 . Analytical approximations according 
to Eq. (39) (blue line) are compared to the firing rate obtained by the 
MCF method (orange line) and again verified by stochastic simula-
tions (gray dots). Parameters MCF method: nmax = pmax = 200

Fig. 6  Comparison between the firing rate and the determinis-
tic rate. Difference between r(�, �) and the deterministic firing rate 
rdet (�) for �2 = 1 . As expected, in the excitable regime ( 𝜇 < 0 ) the 
firing rate of the stochastic system is increased compared to the deter-
ministic rate. For the mean-driven regime ( 𝜇 > 0 ) the firing rate can 
be both increase or decreased depending on the particular value of 
both � and � . Parameters MCF method: nmax = pmax = 150
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by the stationary Fokker-Planck operator L̂0 as defined in the 
last section and an additional term that represents the effect 
of the periodic signal:

with L̂per = 𝜕𝜃(1 + cos 𝜃) . As a result of the periodic forc-
ing, we can no longer expect that the probability density 
converges to a stationary distribution; instead the probability 

(41)𝜕tP(𝜃, 𝜂, t) =
(
L̂0(𝜃, 𝜂) − s(t)L̂per

)
P(𝜃, 𝜂, t)

density approaches a so called cyclo-stationary state with 
period T = 2�∕�:

Since this distribution fully determines the asymptotic 
firing rate, this implies for the latter r(t + T) = r(t).

To determine the cyclo-stationary PDF we again use a 
twofold expansion, first a Fourier expansion that reflects the 

(42)P(�, �, t + T) = P(�, �, t).

Fig. 7  Stationary firing rate 
in the constant intensity scaling 
( D = 1 ) for different values of 
� and � . Contour lines from A 
are shown again in B and C. 
Interestingly, the firing rate is 
always smaller than the cor-
responding white noise limit 
� → 0 (dashed line) and can 
show non-monotonic behavior 
with a minimum depending on 
� and � , see B. Here, known 
analytical approximations by 
Fourcaud-Trocmé et al. (2003) 
(solid purple lines) and Moreno-
Bote and Parga (2010) (dashed 
purple lines) are compared to 
calculations by the MCF Method 
(orange lines). Parameters MCF 
method: nmax = pmax = 150

A

B C
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periodic nature of the signal and second a Taylor expansion 
with respect to the small amplitude of the periodic signal �:

Note that P
�,k(�, �) = P∗

�,−k
(�, �) because P(�, �, t) is real. 

The expansion Eq. (43) can be substituted into Eq. (41) to 
obtain a system of coupled differential equations that are 
no longer time dependent and can be solved iteratively with 
respect to �:

with L̂k = L̂0 + ik𝜔 . The normalization of the probability 
density provides additional conditions for these functions:

Here �i,j is the Kronecker delta. Clearly, P0,0(�, �) = P0(�, �) 
is the stationary probability density. This system of 

(43)P(�, �, t) =

∞∑
�=0

∞∑
k=−∞

��e−ik�tP
�,k(�, �).

(44)L̂kP�,k =

{
0 � = 0,
1

2
L̂per(P�−1,k−1 + P

�−1,k+1) � > 0,

(45)∫
�

−�

d� ∫
∞

−∞

d� P
�,k(�, �) = �k,0��,0.

coupled differential equations Eq. (44) can be solved iteratively 
( � → � + 1 ). Notice that whenever P

�,k(�, �) is governed by a 
homogeneous differential equation, i.e. L̂kP�,k(𝜃, 𝜂) = 0 , the triv-
ial solution P

�,k(�, �) = 0 does satisfy Eq. (45) and is thus a solu-
tion (except for k = � = 0 ). Therefore, for � = 0 we find that all 
coefficients except P0,0(�, �) vanish. For � = 1 we find two non-
vanishing coefficients, namely P1,−1(�, �) and P1,1(�, �) . Gener-
ally, all coefficients P

�,k(�, �) for k > � and k + � = odd vanish 
(see Fig. 16). The remaining inhomogeneous differential equations 
can be solved by means of the MCF method (see Appendix B).

The cyclo-stationary firing rate can now be expressed in 
terms of the functions P

�,k(�, �) using Eq. (21), exploiting 
the symmetry P

�,k = P∗
�,−k

 and P
�,k>� = 0:

with:

where arg(⋅ ) is the complex argument. We recover our well 
known stationary firing rate for � = k = 0 , i.e. r0,0 = r0 . Note 
that some of the terms r

�,k in Eq. (46) vanish because of the 
underlying symmetry of the governing equations Eq. (44).

4.1  Linear response

For small � the linear term in the expansion, i.e. the linear 
response r1,1 , already provides a good approximation of the 
asymptotic firing rate r(t):

Note that all other terms r1,k≠1 vanish. The function |r1,1(�)| 
is also commonly known as the absolute value of the suscepti-
bility |�(�)| that quantifies the amplitude response of the firing 
rate. The phase shift with respect to the signal is described 
by �1,1 . An exemplary signal s(t) together with the linear 
response, given in terms of the amplitude and phase shift, is 
shown in Fig. 8. For the chosen small signal amplitude � , the 
linear theory indeed captures very well the cyclo-stationary 
part of the firing rate. There is also a transient response due to 
the chosen initial condition of the ensemble, here we however 
focus solely on the cyclo-stationary response.

Before we discuss the rate modulation with respect to dif-
ferent parameters, we compare our numerical results against 
known approximations (Fourcaud-Trocmé et al., 2003) (see 
Fig. 9). First we verify the low frequency limit � → 0 . In 
this case the signal s(t) is slow and can be considered as a 
quasi-constant input. Expanding the firing rate with respect 
to the signal amplitude � yields:

(46)r(t) =

∞∑
�=0

�∑
k=0

��|r
�,k(�)| cos(k�t − �

�,k(�)),

(47)r
�,k = 2(2 − �k,0)

∞

∫
−∞

d� P
�,k(�, �), �

�,k = arg(r
�,k),

(48)r(t) ≈ r0 + �|r1,1(�)| cos(�t − �1,1).

Fig. 8  Cyclo-stationary firing rate. A Illustration of a theta neuron 
model subject to a temporally correlated OU noise and a periodic sig-
nal. B The firing rate (orange line; simulation) approaches a cyclo-
stationary state (black line; MCF method) due to the periodicity of 
the signal (green line). In the linear regime the firing rate is well 
approximated by r(t) ≈ r0 + |�(�)|s(t − �11∕�) . Parameters: � = 0.5 , 
�2 = 1 , � = 1 , � = 0.1 , and � = 2 . The cyclo-stationary firing rate was 
calculated by the MCF method with nmax = pmax = 100 . Simulation 
parameters: In this figure, the number of realizations was up-scaled 
to Ntrials = 1 ⋅ 106 for visual purposes. For all realizations, the initial 
values are �(t = 0) = 0 and �(t = 0) = −�
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A comparison with Eq. (48) allows to identify the low 
frequency limit of the susceptibility and phase shift:

As we can compute the firing rate r0 for different values 
of � (see Sect. 3), the derivative above can be calculated 
numerically.

Second, in the opposite limit of large frequencies � → ∞ , 
the theta neuron acts as a low-pass filter (Fourcaud-Trocmé 
et al., 2003):

Hence, the susceptibility becomes very small in the high-
frequency limit which is also noticeable by the pronounced 
random deviations of our simulation results in this specific 
limit. Both limit cases are well captured by our method for 
two values of the correlation time ( � = 0.1, 1 ) in the mean 
driven regime. We see that here the main effect of increas-
ing the correlation time is to diminish the resonance of 
the response: For � = 0.1 the susceptibility peaks around 
� ≈ 2�r0 (note, that for small � : r0 ≈ rdet ); this peak is gone 
for � = 1 because the effect of the noise, keeping its variance 
constant, increases with � . All these features are in detail 

(49)r(t) = r0(� + s(t)) ≈ r0 +
�r0

��
s(t).

(50)|�(� → 0)| = �r0

��
, �1,1(� → 0) = 0.

(51)|�(� → ∞)| = 2r0

�2
, �(� → ∞) = � .

confirmed by the results of stochastic simulations (symbols 
in Fig. 9).

The general dependence of the susceptibility, focusing on 
its magnitude only, is inspected in Fig. 10 for the constant 
variance and in Fig. 11 for the constant intensity scaling. 
Qualitative different behavior of |�(�)| can be observed 
between the mean-driven 𝜇 > 0 and excitable regime 𝜇 < 0 . 
In the mean-driven regime the theta neuron exhibits a strong 
resonance near �det = 2�rdet that increases with decreasing 
effect of the noise, i.e. in the constant variance scaling the 
resonance becomes stronger as � → 0 (see Fig. 10 top) while 
for the constant intensity scaling the resonance increases as 
� → ∞ , (see Fig. 11 top).

In the excitable regime resonances are weak or absent. First 
of all, the baseline firing rate of the neuron vanishes as the 
effect of the noise decreases (cf. Figs. 3A and 7A) and so does 
the susceptibility (see Figs. 10 and 11 bottom). Secondly, the 
theta neuron becomes a low-pass filter where |�(�)| decreases 
with increasing � regardless of the correlation time �.

Right at the bifurcation point � = 0 there are still no 
pronounced resonances with respect to � . However, the 
dependence of the linear response on the correlation time is 
somewhat different to the excitable regime: the susceptibility 
increases if the effect of the noise becomes very weak, i.e. 
� → 0 for the constant variance scaling (see Fig. 10 mid-
dle) and � → ∞ for the constant intensity scaling (see 
Fig. 11 middle).

Fig. 9  Susceptibility and phase shift. The absolute value of the sus-
ceptibility |�(�)| and phase shift �11 are computed by the MCF method 
for two different correlation times � . The results are confirmed by 
stochastic simulations and compared to known limit cases for � → 0 
and � → ∞ according Eqs. (50) and (51), respectively. Parameters: 
� = 0.1 , �2 = 1 . Parameters MCF method: nmax = pmax = 200 . Simula-
tion parameters: T = 5 ⋅ 103 , dt = 1 ⋅ 10−2 and Ntrials = 1.6 ⋅ 104

Fig. 10  Amplitude modulation |�(�)| in the constant variance scaling 
with �2 = 1 computed by the MCF method with nmax = pmax = 150 . For 
a discussion see the main text
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4.2  Nonlinear response

For larger signal amplitudes nonlinear response functions have 
to be considered:

Here we have included all terms up to the 3rd order in � 
(cf. Eq. (46)). The nonlinear response features higher Fourier 
modes and a correction r2,0 of the time-averaged firing rate. 
The response functions r

�,k and their respective argument �
�,k 

of course depend on the model parameters � , � and � as well 
as the signal frequency �.

For a neuron in the mean-driven regime the frequency 
dependence for three selected response functions is shown 
in Fig. 12B. In contrast to the linear response |r1,1| the func-
tions |r2,2| and |r3,3| display additional resonances for instance 
at � ≈ 1 = �rdet . This behavior is not specific to the theta 
neuron, for instance such resonances can be observed for 
the LIF neuron as well (Voronenko & Lindner, 2017). These 
additional resonances give rise to strong nonlinear effects 
even if the signal is weak, see Fig. 12A. In the particular case 
shown in Fig. 12 the signal frequency was chosen to match 
the resonance frequency of the second-order response |r2,2| 
so that the linear response alone no longer provides a good 

(52)

r(t) = r0 + �|r1,1| cos
(
�t − �1,1

)

+ �2
[
r2,0 + |r2,2| cos

(
2�t − �2,2

)]

+ �3
[|r3,1| cos

(
�t − �3,1

)
)

+ |r3,3| cos(3�t − �3,3)
]
+ ...

approximation to the firing rate r(t). Instead the second-order 
response must be included, illustrating the importance of 
the nonlinear theory even for comparatively weak signals.

By means of the MCF method it is possible to achieve a 
near perfect fit of the actual firing rate by including many 
correction terms; see Fig. 12A where we have included all 
terms up to the 10th order. However, note that the computa-
tional cost of each further correcting term increases roughly 
linearly with the order � of the signal amplitude.

We now discuss the amplitude response functions |r
�,k| 

to the third order in � for varying values of the mean input 
and correlation time (cf. Fig. 13). The linear response |r1,1| , 
already discussed in the preceding section and shown here 
for completeness (Fig. 13A I, B I, C I), displays in the mean-
driven regime ( � = 1 ), and to a lesser degree also at the 
bifurcation point ( � = 0 ), a well known resonance peak near 
the firing frequency �0 = 2�r0 ; it acts as a low-pass filter 
in the excitable regime ( � = −0.5 ). Increasing the correla-
tion time and thereby the effect of the noise diminishes this 
resonance.

The first nonlinear term r2,0 describes the effect of the 
periodic signal on the time-averaged firing rate; we discuss 
this term first for the mean-driven regime (Fig. 13C II). Sim-
ilar to the findings for a stochastic LIF model (Voronenko & 
Lindner, 2017, Fig. 3B) at low noise we find that a resonant 
driving at a frequency corresponding to the firing rate �0 

Fig. 11  Amplitude modulation |�(�)| in the constant intensity scal-
ing with D = 1 computed by the MCF method with nmax = pmax = 150 . 
For a discussion see the main text

A B

Fig. 12  Nonlinear response. A Periodic signal and firing rate 
response of the theta neuron model. Here, the linear theory (dot-
ted line) fails to accurately describe the firing rate (solid black line). 
This is mainly because the signal frequency is chosen to match half 
the deterministic firing frequency �det∕2 = 1 where the nonlin-
ear response functions |r2,2| and |r3,3| are close to their local maxi-
mum, see B. However, already the second-order response (dashed 
orange line) provides a good approximation to the actual firing 
rate and is improved further if higher-order terms are considered 
(cyan line). All responses are calculated by the MCF method with 
nmax = pmax = 150 . Parameters: � = 1 , � = 1 , � = 0.1 , � = 0.5 and 
� = 1
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does not evoke any change of the time-averaged firing rate 
while a frequency slightly below or above this frequency 
evokes a reduction or increase of the rate, respectively. If we 
deviate too strongly from �0 however the effect of the signal 
on the time-averaged rate becomes very small. Increasing 
the correlation time increases the effect of the noise and 
smears out these nonlinear resonances.

The effect of the periodic signal on the time-averaged firing 
rate in the excitable regime and at the bifurcation point is quite 
different (Fig. 13A II, B II). Here the rate is always increased 
by the periodic signal, similar to what was found already for an 
excitable LIF model (Voronenko & Lindner, 2017, Fig. 3A). 
Furthermore, at the bifurcation point and at low noise intensi-
ties (green curve in B II) there is a pronounced maximum as a 
function of frequency � attained at a frequency higher than �0.

Generally, in the higher-order response functions, we 
observe a number of peaks versus frequency (see e.g. 
Fig. 13A–C V). The resonances in the mean-driven regime 
(C V) and at low noise (green curve) are found near �det , 
�det∕2 and �det∕3 . Note again, that in this regime the deter-
ministic frequency �det = 2�rdet of the oscillator and the sta-
tionary firing frequency �0 are close. In the excitable regime 
both the linear and nonlinear response functions also exhibit 
for most driving frequencies a nonmonotonic behavior 

with respect to the correlation time, i.e. with respect to the 
strength of the noise.

4.3  Response to two periodic signals

So far we have discussed the theta neuron’s linear and non-
linear firing rate response to a single periodic signal. In 
this section we derive a scheme that allows to calculate the 
response if the model neuron receives two periodic signals:

Calculating the firing rate in this case will not only help to 
understand how a theta neuron responds to two periodic sig-
nals but can also be used to calculate the 2nd order response 
to arbitrary signals (Voronenko & Lindner, 2017).

As a starting point we formulate the corresponding FPE:

This equation still agrees with Eq. (41) except for s(t) 
which contains two periodic signals. Again we are interested 
in the PDF for which all initial condition have been forgot-
ten and the time dependence of P(�, �, t) is only due to the 

(53)
s(t) = s1(t) + s2(t)

= �1 cos(�1t) + �2 cos(�2t).

(54)𝜕tP(𝜃, 𝜂, t) =
(
L̂0(𝜃, 𝜂) − s(t)L̂per(𝜃)

)
P(𝜃, 𝜂, t).

A) B) C)

Fig. 13  Firing rate response functions in the excitable regime (A), at the bifurcation point (B) and in the mean-driven regime (C) for a fixed 
variance �2 = 1 and various values of � . For a discussion see the main text. Parameters MCF Method: pmax = nmax = 200

119Journal of Computational Neuroscience (2023) 51:107–128



1 3

time dependence of the signal s(t). Note that since the sum 
of two periodic signals is not necessarily periodic, the func-
tions P(�, �, t) and r(t) are not periodic either. In fact, s(t) is 
only periodic if the ratio of the two frequencies is a rational 
number, i.e. �1∕�2 ∈ ℚ . We chose a Fourier representation 
with respect to �1t , �2t and expand with respect to the small 
amplitudes �1 , �2:

For notational convenience we have omitted the argu-
ments of the coefficients P�1,�2

k1,k2
(�, �).

Because P(�, �, t) is a real valued function, the coeffi-
cients obey

As for the case of a single periodic signal, inserting Eq. 
(55) into Eq. (54) gives a system of time-independent cou-
pled differential equations:

with L̂k1,k2 = L̂0 + i(k1𝜔1 + k2𝜔2) and P�1,�2

k1,k2
= 0 for �1 < 0 

or �2 < 0 . The normalization of the probability density pro-
vides again the additional conditions:

The differential equations (57) are analogous to Eq. 
(44) and can be solved by means of the MCF method (see 
Appendix C). In the following we explicitly provide the 
hierarchy of coupled differential equations up to the second 
order of �1, �2 , i.e. for �1 + �2 ≤ 2 . The zeroth-order term 
�1 + �2 = 0 describes the unperturbed system. As we have 
already argued for the case of a single periodic signal the 
function P0,0

0,0
 , governed by

is the only non-vanshing zeroth-order term because for every 
other value of k1, k2 the trivial solution does satisfies Eq. 
(58). Therefore P0,0

0,0
= P0 is the stationary probability density 

from Sect. 3. The stationary PDF in turn determines the two 
non-vanishing linear ( �1 + �2 = 1 ) correction terms:

(55)

P(�, �, t) =

∞∑

�1 = 0

�2 = 0

∞∑

k1 = −∞

k2 = −∞

�
�1

1
�
�2

2
e−i(k1�1+k2�2)tP

�1,�2

k1,k2
.

(56)P
�1,�2

k1,k2
=
(
P
�1,�2

−k1,−k2

)∗

.

(57)
L̂k1,k2P

�1,�2

k1,k2
=

1

2
L̂per

(
P
�1−1,�2

k1+1,k2
+ P

�1−1,�2

k1−1,k2
+

+P
�1,�2−1

k1,k2+1
+ P

�1,�2−1

k1,k2−1

)

(58)∫
�

−�

d� ∫
∞

0

d� P
�1,�2

k1,k2
= �k1,0�k2,0��1,0

�
�2,0

.

(59)L̂0,0P
0,0

0,0
= 0,

Finally, the linear terms determine the second order terms 
( �1 + �2 = 2):

As for the case of a single periodic signal, the rate 
response r(t) can be expressed in terms of the functions 
P
�1,�2

k1,k2
 using Eqs. (21) and (56):

with

The response of the firing rate up to the second order in 
the amplitudes reads:

(60)L̂1,0P
1,0

1,0
=

L̂per

2
P
0,0

0,0
,

(61)L̂0,1P
0,1

0,1
=

L̂per

2
P
0,0

0,0
.

(62)L̂2,0P
2,0

2,0
=

L̂per

2
P
1,0

1,0
,

(63)L̂0,2P
0,2

0,2
=

L̂per

2
P
0,1

0,1
,

(64)L̂0,0P
0,2

0,0
=

L̂per

2

[
P
0,1

0,1
+ (P0,1

0,1
)∗
]
,

(65)L̂0,0P
2,0

0,0
=

L̂per

2

[
P
1,0

1,0
+ (P1,0

1,0
)∗
]
,

(66)L̂1,−1P
1,1

1,−1
=

L̂per

2

[
P
1,0

1,0
+ (P0,1

0,1
)∗
]
,

(67)L̂1,1P
1,1

1,1
=

L̂per

2

[
P
1,0

1,0
+ P

0,1

0,1

]
.

(68)

r(t) =
∑
�1,�2

∑
k1,k2

�
�1

1
�
�2

2
|r�1,�2

k1,k2
|×

× cos
(
(k1�1 + k2�2)t − �

�1,�2

k1,k2

)
,

(69)r
�1,�2

k1,k2
= 2(2 − �k1,0�k2,0)

∞

∫
−∞

d� P
�1,�2

k1,k2
(�, �),

(70)�
�1,�2

k1,k2
= arg(r

�1,�2

k1,k2
).
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(71)

r(t) ≈ r
0,0

0,0

+ �1|r1,01,0
| cos

(
�1t − �

1,0

1,0

)

+ �2|r0,10,1
| cos

(
�2t − �

0,1

0,1

)

+ �2
1

[
r
2,0

0,0
+ |r2,0

2,0
| cos

(
2�1t − �

2,0

2,0

)]

+ �2
2

[
r
0,2

0,0
+ |r0,2

0,2
| cos

(
2�2t − �

0,2

0,2

)]

+ �1�2

[
|r1,1

1,1
| cos

(
(�1 + �2)t − �

1,1

1,1

)

+ |r1,1
1,−1

| cos
(
(�1 − �2)t − �

1,1

1,−1

)]
.

The first five lines represent the first and second order 
responses of the firing rate for a theta neuron that receives 
a single periodic signal, either s1(t) or s2(t) . For instance, 
|r1,0

1,0
(�1,�2)| = |r1,1(�1)| (the linear response amplitude to 

s1 ) and |r2,0
2,0
(�1,�2)| = |r2,2(�1)| (the response amplitude at 

the second harmonic of s1 ) do not depend on the frequency 
of the second signal �2 as it can be seen in Fig. 14AI  and 
A II . The response functions r

�,k(�) for a single periodic sig-
nal have already been discussed in the previous sections. 
The last two terms, proportional to �1�2 , are of particular 
interest here, because they arise only due to the interaction 
of two periodic signals. The corresponding response ampli-
tudes |r1,1

1,1
| and |r1,−1

1,1
| are shown in Fig. 14AIII and A IV . In 

Fig. 14  Nonlinear response to 
two periodic signals. A I-AIV ) 
Amplitudes of the response 
functions rk1,k2

l1,l2
 (cf. Eq. (71)). 

Note that the response func-
tions |r0,1

0,1
| and |r0,2

0,2
| that are 

not shown here are identical 
to the response functions that 
are shown in A I  and A II if 
the frequencies �1 and �2 are 
interchanged (both account for 
a single signal). The response 
functions |r1,1

1,1
| and |r1,1

1,−1
| , that 

describe the interaction effect of 
both signals on the firing rate, 
exhibit additional resonances 
near �1 + �2 = 2�rdet and 
|�1 − �2| = 2�rdet . B and C 
show the firing rate in response 
to two periodic signals where 
the sum of the frequencies 
does and does not match the 
aforementioned condition 
�1 + �2 = 2�rdet , respectively. 
If the condition is matched 
the sum of responses to each 
individual signal does not 
provide a good approximation 
to the actual firing rate but the 
full response to the sum of 
signals has to be calculated (see 
B). Parameters: � = 1 , �2 = 1 , 
� = 0.05 , �1 = 0.3 , �2 = 0.1 
with frequencies �1 = 0.5 , 
�2 = 1.5 in B and �1 = 1.0 , 
�2 = 1.5 in C. Parameters MCF 
Method: pmax = nmax = 100
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accordance with previous observations for the leaky inte-
grate-and-fire model with white noise and a periodic driving 
(Voronenko & Lindner, 2017) we find two distinct cases in 
the mean-driven regime. First, if neither the sum nor the dif-
ference �1 ± �2 is close to the firing frequency 2�rdet then 
the response to the sum of two signals is well described by 
the sum of responses to the separate signals. A particular set 
of frequencies �1 and �2 for which this is the case is shown 
in Fig. 14C where the second order response to the sum of 
two signals (black solid line) agrees very well with the sum 
of the second order responses to one signal at a time (dashed 
line). Second, if �1 + �2 ≈ 2�rdet or |�1 − �2| ≈ 2�rdet the 
firing rate is significantly affected by the interaction of both 
signals (see Fig. 14AIII and A IV ). An example of the fir-
ing rate as a function of time where these interaction terms 
are crucial is shown in Fig. 14B. Here the aforementioned 
response to the sum of two signals and sum of responses to 
one signal at a time disagree significantly.

5  Summary and outlook

In this paper we have studied the firing rate of the canoni-
cal type-I neuron model, the theta neuron, subject to a 
temporally correlated Ornstein-Uhlenbeck noise and 
additional periodic signals. We have solved the associated 
multi-dimensional Fokker-Planck-equation numerically by 
means of the matrix-continued-fraction (MCF) method, 
put forward by Risken (1984). For our problem the MCF 
method provided reliable solutions for a wide range of 
parameters; the main restriction is that the correlation time 
cannot be to large and additionally in the excitable regime 
the noise intensity (as also known from other application 
of the method, see Lindner & Sokolov, 2016 for a recent 
example) cannot be to small. To the best of our knowledge 
this is the first application of this method in computa-
tional neuroscience, advancing the results by Naundorf 
et al. (2005a, b) on the same model.

When the neuron receives no additional periodic sig-
nal, i.e. when the model is driven solely by the correlated 
noise, our method allows a quick and accurate computation 
of the stationary firing rate. We investigated the rate for 
a large part of the parameter space, confirmed the MCF 
results by comparison with stochastic simulations and 
discussed the agreement with known analytical approxi-
mations (Fourcaud-Trocmé et  al., 2003; Galán, 2009; 
Moreno-Bote & Parga, 2010). We found that, in contrast 
to the white noise case (Lindner et al., 2003), correlated 
noise can both increase and decrease the stationary firing 
rate of a type-I neuron and we identified the conditions 
under which one or the other behavior can be observed.

In the presence of a single additional periodic signal 
both the probability density function and the firing rate 
approach a cyclo-stationary solution, which can be found by 
extending the MCF method to the time-dependent Fokker-
Planck-equation. The corresponding rate modulation is for 
a weak signal given by the linear response function, the 
well known susceptibility, which has been addressed before 
numerically (Naundorf et al., 2005a, b) and analytically in 
limit cases (Fourcaud-Trocmé et al., 2003). Here we went 
beyond the linear response and computed also the higher-
order response to a single periodic stimulus. Similar to what 
was found for a periodically driven leaky integrate-and-fire 
model with white background noise (Voronenko & Lindner, 
2017), we identified driving frequencies at which the higher 
harmonics can be stronger than the firing rate modulation 
with the fundamental frequency. For a variety of nonlinear 
response functions, we observed resonant behavior.

Finally, we generalized the numerical approach to the 
case of two periodic signals and studied the nonlinear 
response up to second order. We found that for certain fre-
quency combinations the mixed response to the two signals 
can lead to a drastically different rate modulation than pre-
dicted by pure linear response theory; this is similar to what 
was observed in a leaky integrate-and-fire neuron with 
white background noise (Voronenko & Lindner, 2017).

Our method could be extended to neuron models that 
include more complicated correlated noise, for instance, a 
harmonic noise (Schimansky-Geier & Zülicke, 1990) that 
can mimic special sources of intrinsic fluctuations (Engel 
et al., 2009). Another problem that could be addressed by 
this method is the computation of the spike-train power spec-
trum in the stationary state. Furthermore the linear and non-
linear response to the modulation of other parameters, e.g. the 
noise intensity (Boucsein et al., 2009; Lindner & Schimansky-
Geier, 2001; Silberberg et al., 2004; Tchumatchenko et al., 
2011), could be of interest and be computed with the methods 
outlined in this paper.

A. Stationary case ‑ derivation 
of the tridiagonal recurrence relation

Here we demonstrate how the problem of solving the FPE 
(22) for the stationary PDF P0(�, �) , can be translated into 
an equivalent problem of solving a tridiagonal recurrence 
relation for the expansion coefficients cn

p
 . These coefficients 

can then be found by means of the matrix-continued-fraction 
method as it was demonstrated in Sect. 3.1.

First, we recall the stationary FPE

(72)0 = L̂0P0(𝜃, 𝜂) = (L̂𝜃 + L̂𝜂)P0(𝜃, 𝜂),
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and the expansion of the PDF by two sets of orthonormal 
eigenfunctions ein�∕

√
2� and �p(�)

The Fourier modes and Hermite functions satisfy the peri-
odic boundary condition in � and natural boundary conditions 
in � , respectively. Using the orthonormality

of these functions one can show that the normalization con-
dition of the PDF determines c0,0:

Before addressing the full problem of finding the recur-
sive relation for the coefficients cn,p , we first calculate 
L̂𝜂P0(𝜃, 𝜂) using the expansion (75):

Remember that the Hermite functions can expressed by the 
Hermite polynomials Hp(x) as follows:

Where � is an arbitrary scaling factor. Making use of the 
two properties

of the Hermite functions we can derive a handy expression 
for L̂𝜂𝜙0(𝜂)𝜙p(𝜂) by choosing � =

√
2�:

(73)L̂𝜃 = −𝜕𝜃f0(𝜃, 𝜂)

(74)L̂𝜂 =
1

𝜏
𝜕𝜂(𝜂 + 𝜎2𝜕𝜂),

(75)P0(�, �) =
�0(�)

2�

∞∑
p=0

∞∑
n=−∞

cn,pe
in��p(�).

(76)
1

2�

�

∫
−�

d� ein�eim� = �n,m,

∞

∫
−∞

d� �p�q = �p,q

(77)c0,0 =

�

∫
−�

d�

∞

∫
−∞

d�P(�, �, t) = 1.

(78)L̂𝜂P0 =
1

2𝜋

∑
n,p

cn,pe
in𝜃L̂𝜂𝜙0(𝜂)𝜙p(𝜂).

(79)�p(�) =
Hp(�∕�)�
2pp!

√
��

e
−

�2

2�2 .

(80)��p =
�√
2

�√
p�p−1 +

√
p + 1�p+1

�
,

(81)(�0�p)
� = −

√
2

�

√
p + 1�0�p+1

Hence, �0�p is a eigenfunction of the operator L̂𝜂 . Com-
bining Eq. (82), the expansion (75) and the FPE (72) yields

We split the sum into three parts, perform an index shift 
and use Eq. (80) to obtain

Furthermore, we introduce the orthonormal operators

so that Ô𝜃e
im𝜃 = 𝛿n,m and Ô𝜂𝜙p = 𝛿p,q . Multiplying Eq. (84) 

from the left by Ô𝜂Ô𝜃 allows to get rid of the sum over n and 
to find the following recursive relation.

The sum can be interpreted as a product of matrices and 
vectors. We introduce the coefficient vector

(82)

L̂𝜂𝜙0𝜙p =
𝜕𝜂

𝜏

�
𝜂 + 𝜎2𝜕𝜂

�
𝜙0𝜙p

=
𝜕𝜂

𝜏

𝛼√
2
𝜙0

�√
p𝜙p−1 +

�
1 −

4𝜎2

a2

�√
p + 1𝜙p+1

�

= −
p

𝜏
𝜙0𝜙p.

(83)

0 =
∑
n,p

cn,p �p{[ip∕(n�) − 1 − � − �]nein�

+
1

2
[1 − � − �](n + 1)ei(n+1)�

+
1

2
[1 − � − �](n − 1)ei(n−1)�}.

(84)

0 =
�
n,p

nein�{[(ip∕(n�) − 1 − �)�p

− �(
√
p + 1�p+1 +

√
p�p−1)]cn,p

+
1

2
[(1 − �)�p − �(

√
p + 1�p+1 +

√
p�p−1)]cn+1,p

+
1

2
[(1 − �)�p − �(

√
p + 1�p+1 +

√
p�p−1)]cn−1,p}.

(85)Ô𝜃 =
1

2𝜋 ∫
2𝜋

0

d𝜃 ein𝜃 , Ô𝜂 = ∫
∞

−∞

d𝜂𝜙q(𝜂)

(86)

0 =n
�
p

{[(ip∕(n�) − 1 − �)�p,q

− �(
√
q�p+1,q +

√
q + 1�p−1,q)]cn,p

+
1

2
[(1 − �)�p,q�(

√
q�p+1,q +

√
q + 1�p−1,q)]cn+1,p

+
1

2
[(1 − �)�p,q�(

√
q�p+1,q +

√
q + 1�p−1,q)]cn−1,p}
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and the symmetric matrices

which allows for an elegant reformulation of Eq. (86) by the 
tridiagonal recurrence relation

(87)cn =

⎛⎜⎜⎝

cn,0
cn,1
...

⎞⎟⎟⎠

(88)
(
Â
)
p,q

= i
q

𝜏
𝛿p,q,

(89)
�
B̂
�
p,q

=
1 − 𝜇

2
𝛿p,q −

𝜎

2

�√
q𝛿p+1,q +

√
q + 1𝛿p−1,q

�
,

Note, that for n = 0 we can readily infer the remaining 
elements of c0 (remember that c0,0 = 1)

Equation (90) can by simplified by multiplication with 
B̂−1∕n from the left to obtain the expression used in Sect. 3.1:

This is the tridiagonal recurrence relation which we have 
solved in the main part by the MCF method (illustrated in 
Fig. 15).

B. Cyclo‑stationary case ‑ MCF method

In this section we expand the MCF method to the case of an 
additional periodic signal s(t) = � cos(�t) and calculate the 
cyclo-stationary firing rate r(t). In Sect. 4 we have already 
shown that the time-dependent FPE for this problem, i.e. Eq. 
(41), can be transformed into a set of time-independent dif-
ferential equations that are recursively related (cf. Eq. (44)):

with P
�<0,k = 0 . This hierarchy of coupled differential equa-

tions can be solved iteratively starting at the stationary PDF 
P0,0 . The dependence is illustrated in Fig. 16 where many 
terms P

�,k vanish (grey circles) due to the normalization con-
dition of the PDF as explained in Sect. 4. In order to solve 
the corresponding differential equation for each P

�,k(�, �) we 
chose the same ansatz as in the previous section:

By substituting this ansatz into Eq. (47) a relation 
between the expansion coefficients c(�,k)

n,p
 and response 

functions r
�,k (which determine the full firing rate r(t) 

via Eq. (46)) can be derived:

To find c(�,k)
n,p

 , we again transform the differential equa-
tions (93) into coefficient equations by means of the expan-
sion (94) (see derivation of the tridiagonal recurrence rela-
tion in the previous section) and obtain

(90)0 =
(
Â + 2n(B̂ − 1)

)
cn + nB̂

(
cn−1 + cn+1

)
.

(91)c0 = (1, 0, 0, ...)T .

(92)K̂ncn = cn−1 + cn+1.

(93)
(
L̂0 + ik𝜔

)
P
�,k =

L̂per

2
(P

�−1,k−1 + P
�−1,k+1),

(94)P
�,k(�, �) =

�0(�)

2�

∞∑
p=0

∞∑
n=−∞

c(�,k)
n,p

ein��p(�).

(95)r
�,k =

(2 − �k,0)

�

∞∑
n=−∞

(−1)nc
(�,k)

n,0
.

Fig. 15  Illustration of the MCF method. Expanding the probabil-
ity density using eigenfunctions according to Eq. (75) and insertion 
into the FPE (72) leads to a relation for the expansion coefficients 
cn,p where only nearest neighbors interact (including diagonals). The 
coefficients can then be computed by truncating the system and intro-
ducing transition matrices Ŝn that can be obtained from a matrix con-
tinued fraction, see Sect. 3.1
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For notational convenience we introduced the coefficient 
vectors

and droped the superscripts cn ∶= c
(�,k)
n

 . Further we denote 
the sum of the previously computed coefficient vectors by 
c
�
n
∶= c

(�−1,k+1)
n

+ c
(�−1,k−1)
n

.
As in the previous section Eq. (96) is multiplied by B̂−1∕n 

from the left to obtain a more compact expression

(96)

0 =
(
Â + k𝜔1 + 2n(B̂ − 1)

)
cn

+ nB̂
(
cn−1 + cn+1

)

−
n

4

(
2c�

n
+ c

�
n−1

+ c
�
n+1

)
.

(97)c
(�,k)
n

=
(
c
(�,k)

n,0
, c

(�,k)

n,1
, ...

)T

,

(98)K̂ncn = cn+1 + cn−1 + c̃n

with

In order to solve the 2-dimensional coefficient equation 
(98) we must assume that all Hermite functions and Fourier 
modes become negligible for large p or n, so that the corre-
sponding coefficients vanish: cn,p ∶= c(�,k)

n,p
= 0 for p > pmax. 

or n > nmax . Specifically, we have checked how key statis-
tics as for instance the firing rate depend on p and n and 
observed saturation for sufficiently large p and n; we then 
take these as maximal values.

The normalization condition of the PDF is determines the 
coefficient c0,0 ∶= c

(�,k)

0,0
:

The remaining elements of c0 vanish. This can be seen 
from Eq. (96) that simplifies considerably for n = 0

The involved matrix Ak = Â + k𝜔1 is diagonal with non-
vanishing elements (Ak)p,p ≠ 0 for p ≠ 0 . This implies that 
Eq. (102) can only be fulfilled if cp≠0,0 = 0 . The resulting 
coefficient vector

serves as the initial condition in the following. All other 
coefficient vectors can be derived iteratively:

Here we have introduced the transition matrices Ŝn and ŜR
n
 

as done in the case of no periodic signal and the additional 
vectors dn and dR

n
 , which take the inhomogeneity c̃n in Eq. 

(98) into account (Risken, 1984). The ansatz Eq. (104) is 
substituted into Eq. (98), which yields

This equation is satisfied when both expressions in the 
square brackets vanish. This allows to derive two recursive 
relation. First, from the left hand side

(99)K̂n = 2
(
B̂−1 − 1

)
−

B̂−1(Â + k𝜔1)

n

(100)c̃n = −
B̂−1

4
(2c�

n
+ c

�
n+1

+ c
�
n−1

).

(101)∫
�

−�

d� ∫
∞

−∞

d�P
�,k(�, �) = c0,0 = �k,0��,0

(102)
(
Â + k𝜔1

)
c0 = 0.

(103)c0 =

{
(1, ..., 0)T if k = � = 0

(0, ..., 0)T else

(104)cn+1 = Ŝncn + dn, for n = 0, ..., nmax − 1

(105)cn−1 = ŜR
n
cn + d

R
n
, for n = 0, ...,−nmax + 1,

(106)
[(K̂n − Ŝn)Ŝn−1 − 1]cn−1 =

[dn − (K̂n − Ŝn)dn−1 + c̃n].

Fig. 16  Expansion of the PDF and coupling hierarchy. If the theta 
neuron is subject to a periodic signal the cyclo-stationary PDF can 
be expanded according to Eq. (94). Inserting this ansatz into the FPE 
leads to a system of time-independent recursively coupled differential 
equations (93). The coupling hierarchy is shown here. The stationary 
PDF P0,0 determines P1,1 which in turn determines P2,0 and P2,2 and 
so on. Gray dots represent terms that vanish as explained in Sect. 4
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and second, from the right hand side

Analogous expressions can be derived for ŜR
n
 and dR

n
 . 

Because all coefficient vectors cn are assumed to vanish for 
n > |nmax| it follows that

This defines the initial condition that is needed to deter-
mine the remaining transition matrices and vectors for 
0 < n < nmax:

and for −nmax < n < 0

To summarize, the rate response functions r
�,k and hence 

the full firing rate can be calculated following an iterative 
scheme illustrated in Fig. 16. Starting point is the zeroth 
order term in the signal amplitude ( � = 0 ), where c�

n
= 0 is 

known. For each iteration step, i.e. � → � + 1 , the following 
series of steps is executed. 

1. Compute the sum c�
n
∶= c

(�−1,k+1)
n

+ c
(�−1,k−1)
n

 of the pre-
viously computed coefficient vectors and the matrices 
involved in the computations of Kn according to Eq. 
(99).

2. Compute all transition matrices Ŝn and vectors dn (and 
ŜR
n
 , dR

n
 ) iteratively starting at n = nmax (and n = −nmax ) 

using Eqs. (111)–(114).
3. Find all coefficient vectors cn ∶= c

(�,k)
n

 iteratively accord-
ing to Eqs. (104) and (105) using the initial condition 
Eqs. (103) for n = 0 and the transition matrices and vec-
tors from the previous step.

4. Substitute the coefficients c(�,k)
n,p

 into Eq. (95) and deter-
mine the response functions r

�,k.

(107)Ŝn−1 = [K̂n − Ŝn]
−1

(108)
dn−1 = [K̂n − Ŝn]

−1(dn + c̃n)

= Ŝn−1(dn + c̃n).

(109)Ŝnmax
= 0, ŜR

−nmax
= 0,

(110)dnmax
= 0, d

R
−nmax

= 0.

(111)Ŝn−1 = [K̂n − Ŝn]
−1,

(112)dn−1 = Ŝn−1(dn + c̃n),

(113)ŜR
n+1

= [K̂n − ŜR
n
]−1,

(114)d
R
n+1

= ŜR
n+1

(dR
n
+ c̃n).

C. MCF method: response to two periodic 
signals

In Sect. 4.3 we were interested in the nonlinear response r(t) 
of the noisy theta neuron subject to two periodic signals. To 
this end, we need to compute the response functions r�1,�2

k1,k2
 

that are related to the expansion functions P�1,�2

k1,k2
 by Eq. (69). 

The latter in turn obey the following differential equation.

This system of coupled differential equations can be 
solved iteratively as described in Sect. 4.3. We wish to find 
the function P�1,�2

k1,k2
 given that the functions on the right-hand 

side of Eq. (115) are already computed. For each P�1,�2

k1,k2
 the 

differential equation has in principle the same structure as 
Eq. (93) from the previous section. Hence, it can be solved 
using the same numerical scheme based on the MCF 
method, using Eqs. (94)–(114), except for a change in the 
notation that reflects the expansion with respect to two 
signals:

Further two differences are: 

1. Replace k� by k1�1 + k2�2 which effects the computa-
tion of Kn according to Eq. (99).

2. The function P�1,�2

k1,k2
 is determined by four previously 

computed expansion functions P�1−1,�2

k1+1,k2
 , P�1−1,�2

k1−1,k2
 , P�1,�2−1

k1,k2+1
 

and P�1,�2−1

k1,k2−1
 . This affects the computation of c′

n
 as fol-

lows: 

Note that the known initial coefficient vector in Eq. (103) 
is still c0 = (1, 0, ..., 0)T , when computing the stationary fir-
ing rate r0,0

0,0
 and c0 = (0, 0, ..., 0)T else.

The hierarchy of coupled differential equations is indeed 
different to the previous section and is provided up to the 
2nd order in the signal amplitude in Sect. 4.3.

(115)

(
L̂0 + i

(
k1𝜔1 + k2𝜔2

))
P
�1,�2

k1,k2
=

L̂per

2

(
P
�1−1,�2

k1+1,k2
+ P

�1−1,�2

k1−1,k2
+ P

�1,�2−1

k1,k2+1
+ P

�1,�2−1

k1,k2−1

)

P
�,k → P

k1,k2
l1,l2

,

r
�,k → r

k1,k2
l1,l2

,

c
(�,k)
n

→ c
(�1,�2,k1,k2)
n

.

(116)
c
�
n
= c

(�1−1,�2,k1−1,k2)
n

+ c
(�1−1,�2,k1−1,k2)
n

+ c
(�1,�2−1,k1,k2−1)
n

+ c
(�1,�2−1,k1,k2+1)
n
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