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Abstract

An inverse procedure is developed and tested to recover functional and structural information from global signals of brains
activity. The method assumes a leaky-integrate and fire model with excitatory and inhibitory neurons, coupled via a directed
network. Neurons are endowed with a heterogenous current value, which sets their associated dynamical regime. By making
use of a heterogenous mean-field approximation, the method seeks to reconstructing from global activity patterns the
distribution of in-coming degrees, for both excitatory and inhibitory neurons, as well as the distribution of the assigned
currents. The proposed inverse scheme is first validated against synthetic data. Then, time-lapse acquisitions of a zebrafish
larva recorded with a two-photon light sheet microscope are used as an input to the reconstruction algorithm. A power law
distribution of the in-coming connectivity of the excitatory neurons is found. Local degree distributions are also computed
by segmenting the whole brain in sub-regions traced from annotated atlas.

Keywords Network reconstruction - Neuroscience - Heterogeneous mean field approximation - Leak integrate and fire -

Zebrafish larva

1 Introduction

The unmatched ability of the brain to cope with an
extraordinarily large plethora of complex tasks, carried
out in parallel, ultimately resides in the intricate web of
interlinked connections which define the architecture of
the embedding neurons’ network. Structural and functional
information, as inferred from direct measurements of
neuronal activity, under different experimental conditions,
are fundamental pieces of a jigsaw puzzle of how the
brains works, from simple organisms to more complicated
creatures, across phylogenetic scales. Suitable methods
have been developed which build on statistical mechanics
tools, e.g. maximum entropy principles (Schneidman et al.
2006; Cocco et al. 2009), to resolve the functional
map that orchestrates the coordinated firing of neurons
dislocated in different portions of the brain. One source
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of heterogeneity in the brain is network topology. Indeed
neurons may also display different intrinsic dynamics,
leading to a significant impact on the functioning of the
brain (Tripathy et al. 2013). Neuronal excitability, namely
the ability of neurons to respond to external inputs, is finely
controlled through inhibitory/excitatory balance (Dehghani
et al. 2016; Kaczmarek and Levitan 1987). Furthermore,
individual neurons can display a variable degree of inherent
excitability, a source of spatial quenched disorder which
reflects back in the ensuing activation patterns.

Motivated by this, in Adam et al. (2020) we proposed
and tested against both synthetic and real data, an inverse
scheme to quantify the statistics of neurons’ excitability,
while inferring, from global activity measurements, the,
a priori unknown, distribution of network connectivities.
The method employs an extended model of Leaky-Integrate
and Fire (LIF) neurons, with short-term plasticity. Only
excitatory neurons are accounted for in Adam et al. (2020).
These are assumed to be coupled via a directed network
and display a degree of heterogeneity in the associated
current, which sets the firing regime in which a neuron
operates. The inverse scheme builds on the celebrated
Heterogenous Mean-Field (HMF) approximation (Barrat
et al. 2008; Dorogovtsev et al. 2008; Pastor-Satorras and
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Vespignani 2001; Vespignani 2012) and seeks to recover the
distribution of the (in-degree) connectivity of (excitatory)
neurons, concurrently with the distribution of the assigned
currents, denoted by a. The HMF approximation was
previously employed in Burioni et al. (2014), di Volo et al.
(2014), di Volo et al. (2016), and Adam et al. (2019) to
reconstruct the topology of an underlying network from
artificially generated data, meant to mimic neuronal signals.
In Adam et al. (2020) the approach was generalized so as
to account for the dynamical heterogeneity, as stemming
from the intrinsic degree of individual neurons’ excitability.
As mentioned above, individual excitability acts as a key
component of the dynamics and yields irregular patterns
of activity like those displayed in real measurements. The
reconstruction scheme was applied in Adam et al. (2020)
to longitudinal wide-field fluorescence microscopy data of
cortical functionality in groups of awake mice and enabled
us to identify altered distributions in neuron excitability
immediately after the stroke, and in agreement with earlier
observation (Schiene et al. 1996; Neumann-Haefelin et al.
1995; Berger et al. 2019). Conversely, rehabilitation allowed
to recover a distribution similar to pre-stroke conditions.

The goal of this work is to push forward the reconstruc-
tion algorithm by accounting for the simultaneous presence
of both excitatory and inhibitory neurons, in a refined vari-
ant of the inversion scheme proposed in Adam et al. (2020).
Notice that already in di Volo et al. (2016) intertangled
families of excitatory and inhibitory neurons have been
considered, but only in a simplified setting where currents
were assumed to be homogeneous. Relaxing this ansatz
proves however mandatory when aiming at bridging the gap
between theory and experiments, a challenge that we shall
hereafter tackle. In particular, we will recast the dynam-
ics of the examined LIF model in a reduced setting by
grouping in different classes (excitatory and inhibitory) neu-
rons which bear distinct values of the current a and of the
connectivity k.

Our extended inverse method aims at computing the
distribution of the currents, as well as the distributions of
the connectivities, for respectively excitatory and inhibitory
neurons, via an iterative scheme which self-consistently
identifies the classes of neurons needed to interpolate the
global activity field, supplied as an input to the algorithm.
First, the performance of the method is evaluated in
silico, against synthetically generated data. We then move
forward to considering a direct application of the developed
technique to custom-made two-photon Light Sheet (2PLS)
microscope, optimized for high-speed (1 Hz) volumetric
imaging of zebrafish larva (ZL, Danio rerio). Near infrared
(NIR) light is used for excitation, covering a wavelength
range that is not visible to the larva in order not to
induce unwanted visual responses. Hence 2PLS microscopy
allows to record whole-brain activity with high temporal
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and spatial resolution, by preventing undesired external bias
(Wolf et al. 2015; de Vito et al. 2020; de Vito et al. 2020).
The experimental input is processed with a properly devised
methodology to return a spatially resolved raster plot for
the spiking activity of neurons over time, which provides
the ideal input for the reconstruction method to work.
A power law distribution of the in-coming connectivity
of excitatory neurons is found, which is robust over a
significant range of the imposed fraction of inhibitory
neurons. Local degree distributions are also recovered by
partitioning the whole brain in bound sub-domains, traced
from annotated atlas (Randlett et al. 2015; Kunst et al.
2019). When manipulating experimental data one cannot
distinguish among the contributions resulting from different
neurons (excitatory vs. inhibitory). A procedure is however
developed which allows for the degree distribution of the
excitatory neurons to be determined, while accounting for
the role exerted by the population of inhibitory ones.

The paper is organized as follows. Next section is
devoted to introducing the reconstruction scheme and to
challenge its performance against synthetically produced
data. We will then turn to presenting the experimental plat-
form and discuss the details that relate to data processing.
Processed data are supplied as an input to the mathemat-
ical reconstruction scheme to yield the results which are
presented in Section 3.2. Finally we will sum up and draw
our conclusions.

2 General mathematical framework
2.1 The model

We use a Leaky Integrate and Fire (LIF) model to mimic
the dynamics of individual neurons. Consider a pool of N
LIF neurons and denote by v;(¢#) the membrane potential
of neuron i. Further, label with /;”" (#) the synaptic current
due to the incoming connections with other neurons of the
collection.

The dynamics of the membrane potential is hence ruled

by the following equation

dv;(t) .

o syn
dr ai Uz(t)+li @) (D

where ag; stands for the external input current of neuron
i. This is a crucial quantity, as it sets the dynamics of
the corresponding neuron, in the uncoupled regime. The
critical value a; = 1 separates between quiescent and active
(spiking) regimes. When v; reaches the threshold value vy,
neuron / emits a spike and the membrane potential v; is reset
to the base value v,. Following (di Volo et al. 2016), the
membrane potential is rescaled by a suitable amount to have
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the spike threshold set at v;;, = 1 and the rest potential at
v, = 0.

The Tsodyks, Uziel, and Markram model (Tsodyks
et al. 1998; Tsodyks and Markram 1997) is assumed
to describe the interactions among neurons, i.e. their
coupling dynamics. More specifically, the dynamics of a
synapse is expressed in terms of fractions of three different
neurotransmitter states: active (y;; (¢)), available (x;; (¢)) and
inactive (z;;(t)), where i and j stand respectively for post-
synaptic and pre-synaptic neurons. The obvious constraint
xij(t) + yij () + z;j(t) = 1 applies, for any time ¢.

During a spike of the pre-synaptic neuron, a fraction u;;
of neurotransmitters in the available state is activated. The
time evolution of the three states

yij (1)

Vij(t) = == +uijx;;S; (1) (22)
zij(t) = ——Ziigt) + _y,-;:(t) (2b)
xij (@) + yij (@) +zij (@) =1 (20)

takes as input the spike train S;(t) = Zm 8(t — t}“ (m)) of
pre-synaptic neuron j emitting its n-th spike at time #;(n)
(Tsodyks et al. 2000). All variables can be rescaled to work
with adimensional units (Burioni et al. 2014; di Volo et al.
2014; 2016). The time is rescaled to the membrane time
constant 7,, = 30ms. The adimensional time constants are
consequently set to 7;, = 0.2, ) = 3.4 if the post-synaptic
neuron i is inhibitory, or 7/ = 26.6 if it is excitatory (di Volo
et al. 2016).

If the post-synaptic neuron i is excitatory, the fraction
u;j(t) of neurotransmitters is set to the constant value of
U = 0.5. Otherwise, u;; () evolves in time

. “z] ()
uij(t) = ———+ Up (1 —u;j())S; (1) (3)
where 74 = 33.25 and Uy = 0.08 (Tsodyks et al. 2000; di
Volo et al. 2016).

Equations (2) are coupled to Eq. (1) via the synaptic
current

10 = 353 Ay @)
J#

where g is the coupling parameter and A;; stands for the
elements of the network adjacency matrix A. The matrix
entry is A;; = 1, if a link exists which goes from j to 7, and
provided j is an excitatory neuron. Conversely, A;; = —1if
the starting node j identifies inhibitory neuron. On the other
hand, if A;; = 0 a direct connection from j and i does not
exist.

Equations (2) can be cast in a more compact form so as
to favour insight into the inspected processes and reduce
the associated computational costs. To achieve this, we first
notice that Eq. (2) only depend on the pre-synaptic neuron

j and the characteristics of the post-synaptic neuron i.
Equation (2a) can hence be split into two distinct equations:

yj()

(l) =
yj(t) =

FxFsi
+u’x’5,(r)

T 5)

where the apexes E (Excitatory) and / (Inhibitory) reflect
the specificity of the target neuron. Similar arguments apply
to Egs. (2b), (2¢), and (3).

For each type of synapse, the average field, i.e. the
fraction of neurotransmitters in the active state, is calculated
as

Yer(t) = 75 2y @)
ieZ
Yep@) = WZ)’ZEU)
ie€
Y@ =55 2y 0
i€l

1
Yig(t) = mzx’(r)
| ie€

(6)

where £ and 7 are the ensemble of excitatory and inhibitory
neurons, respectively; f7 stands for the fraction of inhibitory
neurons in the network. The global fields are defined as

Ye(t) = —fiYei(t) + (1 — f)YEE(t) A
Yi@) =—fiYi ) +A - f)Yie@).

2.2 The heterogeneous mean field ansatz

The model described in the previous section is reformu-
lated here in terms of a Heterogeneous Mean Field (HMF)
approximation. The original neurons are classified accord-
ing to their characteristics. More specifically, neurons of
the same type (excitatory or inhibitory) and with the same
incoming connectivity k and external current a are consid-
ered identical. Therefore, L x M equivalence classes are
defined, where L (M) is the number of sub-intervals in
which the value range of k (a) has been divided. Moreover,
we assume that neurons in the class k are subjected to a
synaptic current proportional to their in-degree, i.e.,

N LAy (6) — SkYE®)

iim (1) — LkY[(1) ®
NZ zjyj NELT
J

for the excitatory and inhibitory neurons, respectively.
Following this assumption, the model can be rewritten as

Ug, ) =a— v,fu(z) + NkYE@)

W) =a—v o+ FEY(0)
’f %)y
i Yea ®
y]E a*) @) = +u (T *) (l)ka ) (l) (t) 9)
(T *) U *)
(t) (t)
(T *)(t) — T

rl n

xk'a*)(l) e () + z“ (1) = 1
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where (7, *) identify all possible pairs of post-synaptic
and pre-synaptic neurons. Denote by Pg(k) and P;(k)
the in-degree distributions for the excitatory and inhibitory
neurons, respectively, and P(a) the external current
distribution. Equations (9) can be closed by the consistency
relations

Vint) = /k P.(k) P(a)y)%, (0). (10)

Taking in account the discretization of the defined classes
of equivalence, Eq. (10) turns into

L M

Yiel) =YY Pulk) Pam)y)", (0.

=1 m=1

1)

where we have implicitly introduced the discrete counter-
part of the continuous probability distributions

P. (k) = (Py(k1), Py(k2), ..., Px(kr)) and

P(a) = (P(a1), P(a2), .., P(aym)).
2.3 Reconstruction scheme

In this section, we set up a general reconstruction scheme
for recovering the a priori unknown distributions for the
in-degree Pg (k) and Pj(k), as well as the external current
P(a). This is achieved by interpolating the available
global fields Y (¢) and Y;(¢), under the simplified HMF
descriptive framework. The main steps of the reconstruction
algorithm are schematically depicted in Fig. 1a.

As already mentioned, we assume the global fields
Yg(¢) and Y;(¢) to be given. Then we integrate Eq. (9),
by using these global fields Yg(¢) and Y;(¢) as inputs
to the model. The equations are initialized with variables
(Vk,q (t0), ylgl’l*) (to), z,(j;l*) (to)) randomly drawn from a
uniform distribution, and generated so as to respect the
constraints U;:’a(lo) < 1 and y,ETL’l*) (to) + Z,(:;l*)(to) < 1.
Forced by the external fields Y (¢) and Y/ (7), the governing
equations are integrated forward and the variables y,:*a(t)
are stored for each class (k, a), type of synapse (’f, *),
and time ¢. This process is repeated for H independent
realizations of the initial conditions. The average fraction
of neurotransmitters in the active state, for each class (k, a)
and synapse type, is computed at any time of observation ¢,

ie., <y;£;r",*)(t)> = 1/HY ", (y,ﬁ'f;,*)(t))h.

Then, the approximated global fields 17+* are calculated,
via Eq. (11), for an initial guess of the distributions
Pg(k), Pr(k), and P(a). These latter are then recursively

modified so as to improve the correspondence between the
approximated fields and their true homologues Y+.
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Formally, for each (T, %) e {EE, EI, IE, I1}, we aim at
minimizing the function

FI* (P00, P@) = Y [¥re(0) = Y P G0PG@ (3], 0) .
t k,a
(12)

Note that the arguments of the above function are the target
probability distributions P, (k) and P(a) that one aims at
inferring.

The iterative algorithm operates as follows. The dis-
tribution P(a) is initially frozen to a given profile and

the quantities yZl* ) =M Pl <y,7:am (t)> are hence
evaluated. The inverse problem yields therefore

1/Ak 1 1 ..
Yeu(t1) v v yiFa .| B
By v )yl Py(k2)
Vielt2) |~ | 2y (1) 3, (12) 3y (22) - [ p 0
Yia(13) V) v ) y) _
13)

where the first row reflects the normalization condition. The
problem is hence reduced to a linear system that can be
readily solved to obtain a first estimate of the distributions
Pg (k) and Py (k).

As second step, the in-degree distributions Pg(k) and
Py(k) are fixed to the solutions found at the previous
iteration. Similar to step one, we evaluate the quantities

Y @) = Zlep*(kl)<y,jjam (r)) and formulate the Tinear
problem

1/Aa 1 1 1 ..
Yia(t1) yar () vy () 3l () - igz;
Yie() | a0 | yds (02) yar () 35 () ... P(a3)
Yia(13) YiH®) Y1) i) .

(14)

The above problem can be solved to obtained an updated
estimate for the P(a). The overall procedure, consisting of
two nested steps, is iterated until a maximum number of
allowed cycles is reached, or, alternatively, the stopping
criterion is eventually met.

Before proceeding in the analysis, we introduce a slightly
modified notation. The in-degree k is normalized to the size
of the network N. In formulae we will set k = k/N, with
ke [0, 1]. From hereon the distributions that constitute the
target of the reconstruction scheme will be hence expressed
as function of IE, instead of k.
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Fig.1 a Schematic outline of the reconstruction procedure. The global
fields Y (¢) and Y;(¢) constitute the inputs of the model in the HMF
approximation (i). Different choices for the probability distributions
Pg(k), P;(k), and P(a) are iteratively tested in order to find the best
match between the input fields and the reconstructed fields, as obtained
by using the equations displayed in the red box (ii). b Outcome of the
reconstruction procedure: the true probability distributions of a syn-
thetic network are compared with those obtained with the proposed
reconstruction method. A random network with N = 5000 is consid-
ered here. The fraction of inhibitory neurons is set to f; = 0.05. The
number of classes defined in the HMF approximation for the in-degree

and the external current is L = 250 and M = 250 respectively. ¢ Com-
parison between the true global fields and the ones obtained via the
reconstructed distributions. The plot in the inset is a zoom in of a peak.
D-E) Outputs of the reconstruction are compared with the true external
current probability distribution P (a) and the true in-degree distribution
Pg (k) for the excitatory neurons of the same network; the network is

made of N =

1000 neurons of which a fraction f; = 0.2 are inhibitors.

In the HMF approximation one hundred classes have been defined

for both the in-degree and external current, namely, L
= 100. In D) the correct fraction of inhibitory neurons is taken into

account, while in E) the inhibitory neuron effects are not considered

100 and
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3 Application to data
3.1 Synthetic data

In this section we test the proposed reconstruction protocol
against synthetic data. The reconstruction scheme was
successfully validated on synthetic data for the case of
homogeneous external current in di Volo et al. (2016) and
Adam et al. (2020). Here, we test the reconstruction method
on synthetic networks of excitatory and inhibitory neurons,
assuming a quenched distribution of heterogeneous external
currents. To this end we generate a random graph with N
nodes whose structural characteristic is contained in the
signed N x N adjacency matrix A, which specifies the
existence of (directed) links among pairs of adjacent nodes.
Following the convention introduced above, negative entries
(A;j = —1) indicate that the starting node (j) is of the
inhibitory type, whereas for positive elements (4;; = 1) j
belongs to the family of excitatory neurons. The network
generation procedure is conceived so as to return a bell
shaped distribution for both Pg (k) and P; (k) (see Fig. 1b).
Quenched disorder in the input currents is introduced, the
assigned currents being distributed according to a uni-modal
profile P(a) (see Fig. 1b). These are the exact distributions
that we eventually seek to recover via the aforementioned
reconstruction algorithm. Note that the domain of definition
of P(a) includes the bifurcation value a = 1.

With this setting, Eqgs. (1) and (2) are integrated and
the fields Yg and Y; are calculated by using Egs. (6)
and (7). This is possible because we have access to all
information which pertain to the network architecture and to
the heterogenous collection of randomly generated currents.

The recorded global fields Yg and Y; are used as inputs to
the reconstruction scheme presented in the previous section.
Figure 1b shows the comparison between true and estimated
distributions, at the end of the reconstruction procedure and
for one generation of the synthetic network. By inserting
the estimated distributions into Eq. (11), we obtain the
global fields Yg and Y;. The comparison between estimated
(YE, Y1) and true (Yg, Y7) global fields, as obtained by
working on the index space, is presented in Fig. lc. The
agreement is excellent for both the inhibitory and the
excitatory components.

When working with experimental data, however, one
cannot isolate the contributions stemming from different
neurons, grouped according to their specific traits (excita-
tory vs. inhibitory). This implies that the sums in Eq. (6),
i.e. the input to the envisaged reconstruction scheme, can-
not be in general accessed, as it was instead the case when
working in the framework of the synthetic model considered
above. To overcome this intrinsic limitation, we propose
and test an alternative route, which performs adequately
well when challenged against synthetic data. The idea is to
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propose an approximated version of the input Egs. (6). To
this end, we extend the sums which run on the excitatory
neurons to all neurons and compute, under this approxima-
tion, the fields Ygg and Y;g. To validate this hypothesis
we operate with synthetic networks with unclassified neu-
rons. It can be shown that the approximation for the fields
YeE, Y correctly describes Ygg, but not Y;g. This con-
clusion is supported by systematic numerical investigations
(data not shown), that we carried out by varying the relative
proportion of excitatory and inhibitory neurons. Building on
the above, we therefore write:

1 N
Yep() ~ = ) 30, (15)

i=1

which enables us to compute the approximated field Y, as

Yei(t) = f,#N_Z HOES

N (Z yE@®) = Y 0F (t)>

ie€

1 E 1A=/ E(sy —
FIN Z Vi ) — fI_N(lffj) .Zyl' () =

(16)
=7y Z vE@ = S Yee ) ~
%<fL_ 1f1)) Zyz (t) =
N
=5 2y,
i=1
Finally, we can estimate Y as:
Ye(t) = — fDYEe@®) — fiYer(®) =
(I7)

N
= -2fDy L0,
i=

Remark that the above expression for Yg is obtained
without grouping the neurons in excitatory and inhibitory
classes, but provided f7, the fraction of inhibitory neurons,
is eventually known. As we lack information on the
corresponding field Y;, we can run the reconstruction
scheme in a simplified setting which is solely targeted
to reconstructing the probability distributions P(a) and
P (k). In Fig. 1d, the results of the revisited inversion
method are displayed, having set f7 to the correct value, i.e.
assuming the relative proportion of excitatory and inhibitory
neurons which has been effectively employed in generating
the synthetic dataset. The reconstruction algorithm is still
capable of returning a faithful representation of both
P(a) and PE(E). Conversely, when f; is set to zero,
the reconstruction scheme compensates for the missing
inhibitory component by predicting a reduced average
connectivity of the excitatory population, as compared to
the correct value assumed in the data generation scheme, see
Fig. le. In the following, we will apply the reconstruction
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scheme in this latter version to the analysis of 2PLS
microscope images of living zebrafish larva.

3.2 Experimental data

In this section we apply our reconstruction framework to
calcium fluorescence microscopy data of zebrafish larva
brain. Indeed, each time a neuron fires an action potential,
the strong depolarization occurring triggers a rapid and
transient increase of intracellular calcium concentration
(Baker et al. 1971). Thus, following calcium-dependent
fluorescence dynamics represents an indirect measurement
of neuronal spiking activity (Grienberger and Konnerth
2012). A description of the experimental set up is provided
in the Methods section.

3.2.1 Data processing

In order to apply the inverse scheme to real data, it is
necessary to pre-process the wide field calcium images with
the purpose of first identifying the location of the neurons.
From individual traces of each spotted neuron, we will
single out the spiking events, record the times of occurrence
and build up the corresponding raster plot. This will serve
as input to the reconstruction algorithm.

To this aim, data are first downsampled to 2 x 2 pixels so
that the new pixel size is comparable to the neurons’ nuclear
size (Fig. 2a). For every new pixel, the maximum value of
the calcium fluorescence is calculated and only the pixels
with maximum intensity projection (MIP) above a threshold
are identified as neurons. The threshold is fixed to the
average MIP value over all the image pixels. Furthermore,
we operate a moving average to remove low frequency
fluctuation (Fig. 2b) and select as presumed neurons the
pixels that show large asymmetry in the recorded traces.
To implement this step, we compute the skewness from
individual time series of the calcium activity and classify as
neurons the pixels that yield a sufficiently skewed signal'.
Figure 2c outlines the different phases of the process for
one of the layers of the collection. More specifically, in
Fig. 2c.i the MIP of the down-sampled pixels are depicted,
in grey scale. In Fig. 2c.ii a binary representation of the
whole brain is displayed where only pixels with MIP above
the fixed threshold are highlighted. Lastly, in Fig. 2c.iii only
the pixels which exhibit a strong asymmetric signal, i.e. the
neurons with skewness above the imposed threshold, are
shown. At the end of the selection process the number of
identified neurons is around (1 = 3) x 103 for each layer,
which correspond to a total of 49 x 10°.

IThe skewness threshold is here put to 0.4. In doing so we select a
number of putative neurons which is comparable to the known size of
a zebrafish larva brain (Naumann et al. 2010)

Once the neurons are identified, we proceed to construct
the raster plot. To this aim, for each selected neuron we
analyze the time series of the calcium fluorescence to
remove the background noise and detect events, which we
call spikes. More specifically, a spike is defined as the
time of threshold crossing. The thresholds are set to the
mean value of the recorded time series plus two times the
associated standard deviation. In addition, in order to avoid
double detections due to noise, we discarded all events that
succeeded the previous event by less than a minimum inter-
event interval of 5 data points (5 seconds)? (Chen et al.
2013). The general overview of the spike trains emitted by
neurons in a sample layer results in a raster plot (Fig. 2d).
Time is on the horizontal axis, whereas the vertical axis
displays the neuron indices. Each spike of neuron i is
associated with a red dot in the row i, at the corresponding
time of spiking.

3.2.2 Results

As described in the previous section, we process 3D
calcium fluorescence data so as to identify pixels containing
neurons. Figure 3 shows the results of this identification for
eight different layers of the zebrafish brain. Colors reflect
the average cross-correlation® at lag zero of each neuron
with all other selected neurons of the brain. The higher
the correlation, the more reddish the color displayed. The
patterns of correlations are rather symmetric, an observation
which can be interpreted as an a posteriori validation of the
implemented procedure for automatic neurons selection. A
movie which allows to navigate across successive layers of
the whole 3D stack can be found in the SM.

The processing of data explained above allows us to
obtain an experimental raster plot describing the events,
or spikes, associated to each neuron. Indeed, the raster
plot contains information about the spike train function
Si(t), for all neurons i, and can be readily employed to
recover the global field Yg to be supplied as an input to the
reconstruction scheme. More explicitly, the experimentally
determined S;(¢) is used to integrate Egs. (2) and (3), by
breaking the coupling with Eq. (1) which sets the evolution

2 An additional analysis has been carried out using a minimum inter-
event interval of 2 data points. From the corresponding raster plot, the
global fields have been calculated and they appear indistinguishable
from the ones obtained using a minimum inter-event interval of 5 data
points.

3Cross-correlation measures the similarity between two series at
different time shifts, or lags. In formulae, the cross-correlation between
two vectors x; and y; at lag t is defined as the expected value of the
product of the shifted copy of x;, and the complex conjugate of y;,
ie., Re(x,y) = E(x;47y), where the asterisk denotes the complex
conjugation.
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Fig.2 Main steps of experimental data elaboration. Every layer of the
imaged 3D zebrafish brain is spatially downsampled, as shown in panel
a in order to obtain signals from pixel ensembles of size comparable to
aneuron (2 x 2 pixels). b Detrending for slow oscillations by subtrac-
tion of moving average. ¢ Results of neurons selection for one of the
layers: (i) raw data, (ii) selection of pixels with maximum value above

of the membrane potential*. This is of great advantage
since Eq. (1) contains the specific information about the
network connections, i.e., the adjacency matrix elements,

“4The reactions parameters are set to the nominal values as declared
above (di Volo et al. 2016). The same parameters are assumed in the
reconstruction, and, in this respect, the model equations acts as a filter
to transform the supplied fluorescence data in the ideal input for the
inverse procedure to run.
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a fixed threshold, and (iii) only pixels with skeweness larger than 0.4.
At the end of the neurons selection procedure the number of identified
neurons in the whole brain is about 5 - 10*. d Procedure to obtain the
experimental raster plot starting from calcium fluorescence time series
of the selected neurons. A spike is identified by its upwards threshold
crossing time

which are a priori unknown. In other words, the raster plot
provides us a way to compute the global field (input of
the reconstruction process described in Section 2.3) without
knowing the underlying structure of the network.

Since the true fraction f; of inhibitory neurons is
unknown, the global field Yr in the approximated form
[Eq. (17)] is computed for different values of f;. In
particular, we first reconstruct the in-degree distribution
Pr (IE) for the excitatory neurons and the external current
distribution P(a) for different values of f; and we store
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Fig. 3 Detected neurons for eight different layers of the zebrafish brain. Colours represent the average cross-correlation of each neuron with all

the others selected neurons of the brain

the results’. Secondly, we computed the reconstruction error
MSE = 1/TY.F(x(t) — Y(1))? for all the considered
values of f;, comparing the estimated field Yz with the
one used as input in the reconstruction scheme. Figure 4a
reports on this comparison in the case of f; = 0.05. In
Fig. 4b, the M SE is plotted against different values of
S1. Small errors are found over a large (and biologically
meaningful) interval of values for f;, approximately f; €
(0, 0.4]. For this reason, we focus on five different choices
of fi, ie., f1 = 0.05,0.1,0.2,0.3,0.4, to explore a
wide range of results for the reconstruction scheme, when
sampling the region of parameters in which the interpolation
of the experimental time series proves accurate. The
reconstructed distributions P(a) and Pg (k) are plotted in
Figs. 4c,d. For every choice of f;, over the spanned interval,

5The coupling strength g is set to the (experimentally justified) value
of 30 (di Volo et al. 2016; Tsodyks et al. 2000; Volman et al. 2004)
adopted in the forward simulations of the model.

the reconstructed distributions show common features. In
particular, the external current distribution P(a) is peaked
in the vicinity of the critical value ¢ = 1 (Fig. 4c).
The neurons associated to @ > 1 get self-excited and
promote the activation of other neurons which would be
instead quiescent in the uncoupled limit. The small bumps
that are found for relatively large values of the intensities
a can be traced back to the high frequency component
of the signal to be interpolated, and, as such, bear
limited fundamental interests. The large-scale dynamics
of the recorded time-series, including the heterogeneous
modulation of the macroscopic field oscillations, is instead
encoded in the distribution of intensities that define the bulk
of P(a), i.e. the limited excerpt of curve which is found in
correspondence of the leftmost portion of the support in a.
The reconstructed in-degree distributions Pg (12) for the
excitatory neurons, at different values of f;, are depicted in
Fig. 4e, in log-log scale. Although over a limited support
in k, the obtained distributions seem to display a power law
decay, Pg(k) oc k2, the characteristic exponent o being
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Fig. 4 Reconstruction of the two distributions P(a) and Pg (/2) from
calcium fluorescence microscopy data of zebrafish larva brain. a Com-
parison between the global field obtained from the experimental raster
plot and the one that follows the reconstructed distributions Pg (l}) and
P(a), for a fraction f; = 0.05 of inhibitory neuron. b Mean square
error MSE =1/ TZ,T(Y(t) — f/(z‘))2 for different choices of f. c-d

only modestly influenced by the chosen value of f7. Our
findings suggest that excitatory neurons are organized in a
network with few hubs and many more peripheral nodes.
This result is consistent with the findings of previously
published studies where the network degree distribution has
been identified as scale-free (Avitan et al. 2017; Pastore
et al. 2018).

As an additional test, we partition the full set of identified
nodes in 10 different populations, reflecting distinct
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ferent initial conditions. The histograms represent the mean values and
the error bars stands for the associated variance. e In-degree probability
distributions in logarithmic scale and their best linear fitting

anatomical regions, as follows available atlases (Naumann
et al. 2010; Kunst et al. 2019). The reconstruction algorithm
is then applied to each of the selected region, treated
as independent from the surrounding context, so as to
access the local degree distribution. Results, displayed in
Fig. 5, are in line with those reported in Fig. 4. Moreover,
neurons characterized by a significant connectivity, the
above referenced hubs, seem unevenly distributed across
different anatomical regions.
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Fig.5 The reconstructed probability distributions P (k) (left) and P (a) (right) are shown for ten different regions of the brain. The 3D images at
the top display the relative spatial positions of the ten selected regions (as listed in the legend)

4 Conclusions

Reconstructing structural and functional information from
brain activity represents a topic of outstanding importance,
which can in principle trigger applied and fundamental
fallout. In Adam et al. (2020) we presented, and successfully
tested, an inverse scheme which aimed at inferring the
distributions of both firing rates and networks connectivity,
from global activity fields. The method builds on the
Leaky-Integrate and Fire (LIF) model which we modified
by the inclusion of quenched disorder, in the assigned
individual currents. The imposed degree of heterogeneity
in the currents yields non trivial a-periodic patterns,
which resemble those recorded in vivo. The dynamical
model considered in Adam et al. (2020) solely included

the population of excitatory neurons. Starting from these
background, we here have generalized the reconstruction
procedure of Adam et al. (2020) so as to account for the
simultaneous presence of both excitatory and inhibitory
neurons, while still dealing with the effect of the current
heterogeneity. The dynamics of the examined multi-species
LIF model is recast in a simplified framework, by grouping
together neurons that belong to the same class (inhibitory vs.
excitatory), while sharing the similar currents and in-degree.
The output of the reduced model, driven by the excitatory
and inhibitory global fields, is self-consistently used to
seed an iterative scheme which seeks at fitting the supplied
fields, via suitably adjusting the unknown distributions.
These latter are the distributions of the incoming degrees
for, respectively, excitatory and inhibitory neurons, as well
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as the distribution of the imposed currents. The method is
tested on synthetic data and yields satisfying performances.
Having in mind applications to real data, we also dealt
with a setting where it is not possible to separate the
contribution that pertains to the excitatory component from
that stemming from the inhibitory counterpart. In this case,
we propose and test a procedure which enables to recover
the distribution of incoming degrees for the network of
excitatory neurons (assumed predominant), while gauging
the role exerted by inhibitors.

The devised protocol is then applied to whole-brain
functional data resulting from light-sheet calcium imaging
of a zebrafish larva. The experimental input is processed
with an automatic procedure which allows us to identify
putative neurons , and to extract their fluorescence sig-
nal. Remarkably, the cross-correlation maps produced show
a high grade of clusterization, which faithfully matches
the anatomical boundaries of multiple brain regions iden-
tified using zebrafish brain atlases (Randlett et al. 2015;
Kunst et al. 2019). From the calcium signal displayed by
each selected neuron we build up an experimental repre-
sentation of the raster plot of the spiking activity of the
zebrafish brain, which forms the input to the reconstruction
scheme. A power law distribution of the in-coming connec-
tivity of excitatory neurons is found, which is only modestly
affected by the imposed fraction of inhibitors. Local degree
distributions are also reconstructed by analysing the sig-
nal from specific regions, which correspond to distinct
anatomical areas. Interestingly, the anatomical districts con-
sidered in the analysis can be divided into two different
groups, according to the reconstructed probability distribu-
tions of both their excitatory incoming connections P (k)
and excitability P (a). The first group, including dorsal tha-
lamus, medial tegmentum, superior raphe, hindbrain and
spinal cord, is characterized by higher connections and
lower excitability. Conversely, the second group, compris-
ing telencephalon, habenulae, optic tectum and cerebellum,
is described by lower connections and higher excitability.
The reconstruction scheme reflects the specific functional
connectivity of the larval brain during spontaneous activ-
ity precisely under these experimental conditions. Indeed,
during measurements the zebrafish larva is embedded in
agarose, and thus exposed to a diffused tactile stimula-
tion, which could explain the higher incoming connections
calculated for the dorsal thalamus, a sensory relay station
(Northcutt 2008; Mueller 2012). Furthermore, despite being
mechanically and pharmacologically immobilized, larval
attempts to escape the restrained condition could account
for the higher incoming excitatory connections calculated
for dorsal raphe (whose activity has been correlated with
arousal state, vigilance and responsiveness (Yokogawa et al.
2012)) and for the most caudal regions, namely hindbrain
and spinal cord, responsible for the initiation of motor
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behaviours (Garcia-Campmany et al. 2010; Kinkhabwala
et al. 2011). Moreover, in this scenario we observe a lower
probability distribution of incoming excitatory connections
for cerebellum. This result may be associated to the func-
tion of motor coordination and refinement (Heap et al. 2013;
Kaslin and Brand 2016) of this region, typically related to
the actual execution of a movement. Finally, since the mea-
surement is performed in complete darkness, the larva is not
exposed to any visual cue (the IR laser used for two-photon
excitation is not perceived by the larval visual system) and
this could explain the lower incoming connections calcu-
lated for the optic tectum, the main retinorecipient structure
in the zebrafish brain (Sajovic and Levinthal 1982; Gebhardt
et al. 2019). The large-scale oscillations in the recorded
time series reflect back in the recovered distribution of
currents: a significant fraction of neurons appear to oper-
ate in the quiescent state, while a minority self-excite to
orchestrate the dynamics of the ensemble. The existence
of possible correlations between individual connectivities
and associated neurons’ currents cannot be resolved within
the proposed approach and defines an interesting target for
future investigations.

Studies show that inhibitory neurons have a higher
excitability with respect to excitatory neurons in the cortex.
This feature can be accounted for in the model by making
the parameter a dependent on the type of neuron,i.e. by
introducing explicitly ¢ and a’ in Eqgs. 9. These changes
would call for a modified inverse scheme, which should be
targeted to reconstructing the distributions of ¢ and a’.
This extension of the current reconstruction scheme is left
for future work.

5 Materials and methods
5.1 Validity of the HMF approximation

We here challenge the predictive ability of the HMF
approximation. To this end, we first calculate the average
inter-spike interval (ISI) — the average distance in time
between successive spikes — for the system in its original
formulation, i.e. in the space of the nodes. The computed ISI
is confronted to the homologous quantity obtained under the
HMF scenario. The comparison is drawn in Fig. 6a, for both
excitatory and inhibitory neurons, and confirm the accuracy
of the reduced HMF scheme.

5.2 Validity of the Ygr approximation for the
experimental reconstruction

As previously mentioned, we made use of approximation
Eq. (15) to estimate the field Yrg to be supplied as the
experimental input in the reconstruction scheme. We can
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Fig. 6 a The ISI is computed for both excitatory (red symbols, top
panel) and inhibitory (purple symbols, bottom panel) neurons. The pre-
diction based on the HMF approximation yields the continuous curves.

evaluate the error made when implementing this latter
approximation by comparing it with the exact form for
Ygg defined in Eq. (6). This is of course possible when
dealing with synthetically generated data. Referring to the
approximated field with Yg%p *, we find:

N
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Here N = 1000 and f; = 0.2. b The relative error (AYgg/YEE):
committed when using the approximation Eq. (15) is plotted for
different values of f;

and it increases as f; increases. Figure 6b shows
(AYEE/YEE): for different values of f;. As expected, the
approximation gets worse as f7 increases. The non-linearity
in the error plot is originated from the term Yr; — Y, that
depends on the fraction of inhibitory f;. The approximation
gets worse as f7 increases and, therefore, it can be safetly
used only for sufficiently small values of f;. This could be
also one of the reasons for the large errors reported in Fig. 4b
for relatively large values of f7.

5.3 Experimental setup

The experimental optical setup employed is a modified
version of the setup described in detail in (de Vito et al.
2020). Briefly, 930 nm NIR light is generated by a pulsed
titanium-sapphire oscillator (Chameleon Ultra II, Coher-
ent) and conditioned by a pulse compressor (PreComp,
Coherent). After being attenuated by a combination of a
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half-wave plate and a Glan—-Thompson polarizer, the beam
passes through an electro-optical modulator that periodi-
cally switches its polarization plane orientation between two
states: parallel or orthogonal to the optical table surface.
Then a pair of retarders are used to pre-compensate for
polarization distortions. After that, the beam is routed to the
galvanometric mirror assembly and scanned by a resonant
galvanometric mirror (CRS-8 kHz, Cambridge Technol-
ogy) along larval rostro-caudal direction, to generate the
digitally-scanned LS, and by a closed-loop galvanomet-
ric mirror (6215H, Cambridge Technology) along larval
dorso-ventral direction. Finally, the beam is relayed to an
objective (XLFLUOR4X/340/0,28,0lympus), placed at the
lateral side of the larva, by a scan-lens (50 mm focal length),
a tube-lens (75 mm focal length) and a pair of relay lenses
(250 mm and 200 mm focal lengths).

Differently from the setup described in de Vito et al.
(2020), a polarizing beam splitter (PBS) is present between
the tube-lens and the first relay lens and the optical
components downstream the PBS are duplicated on the
opposite side of the larva. In this way the excitation light is
steered on one optical arm or on the other depending on its
instantaneous polarization orientation by the PBS.

The detection arm of the microscope is identical to
what described in de Vito et al. (2020). A water-immersion
objective (XLUMPLFLN20XW, Olympus) placed on the
dorsal side of the larva collects the emitted green fluorescent
light while being scanned along the axial dimension by an
objective scanner (PIFOC P-725.4CD, Physik Instrumente)
synchronously with the closed-loop galvanometric mirror
oscillations. The optical image is then spectrally filtered
(FFO1-510/84-25 nm BrightLine®, Semrock) and projected
on a camera (ORCA-Flash4.0 V3, Hamamatsu) sensor by
a sequence of two tube lenses (300 mm and 200 mm focal
lengths) and an objective (UPLFLN10X2, Olympus).

The larvae were imaged with volumetric acquisitions
(frequency: 1 Hz) composed by 31 planes spaced by 5 um
and with a pixel size of about 2 x 2 um?.

We employed a transgenic strain of zebrafish lar-
vae Tg(elavl3:H2B-GCaMP6s) (Vladimirov et al. 2014;
Miillenbroich et al. 2018) in homozygous albino back-
ground that express the fluorescent calcium indicator
GCaMP6s under a pan-neuronal promoter and with a
nuclear localization. Sample mounting was performed as
described in Turrini et al. (2017). Briefly, before the acqui-
sition each larva was immersed in a solution of the para-
lyzing agent d-tubocurarine (2 mM; 93750, Sigma-Aldrich),
included in 1.5% (w/v) low gelling temperature agarose
(A9414, Sigma-Aldrich) in fish water (150 mg/L Instant
Ocean, 6.9 mg/L NaH2PO4, 12.5 mg/L Na2HPO4, pH 7.2)
and mounted on a custom-made glass support immersed
in thermostated fish water. The animals were maintained
according to standard procedures (Westerfield 2000) and
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observed at 4 days post fertilization. Fish maintenance and
handling were carried out in accordance with European and
Italian law on animal experimentation (D.L. 4 March 2014,
no. 26).
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