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Abstract

Clinical scalp electroencephalographic recordings from patients with epilepsy are distinguished by the presence of epileptic
discharges i.e. spikes or sharp waves. These often occur randomly on a background of fluctuating potentials. The spike rate varies
between different brain states (sleep and awake) and patients. Epileptogenic tissue and regions near these often show increased
spike rates in comparison to other cortical regions. Several studies have shown a relation between spike rate and background
activity although the underlying reason for this is still poorly understood. Both these processes, spike occurrence and background
activity show evidence of being at least partly stochastic processes. In this study we show that epileptic discharges seen on scalp
electroencephalographic recordings and background activity are driven at least partly by a common biological noise.
Furthermore, our results indicate noise induced quiescence of spike generation which, in analogy with computational models
of spiking, indicate spikes to be generated by transitions between semi-stable states of the brain, similar to the generation of
epileptic seizure activity. The deepened physiological understanding of spike generation in epilepsy that this study provides could
be useful in the electrophysiological assessment of different therapies for epilepsy including the effect of different drugs or
electrical stimulation.
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1 Introduction

Epilepsy is a chronic disorder characterized by heterogeneous
and dynamic pathophysiological processes leading to an al-
tered balance between excitatory and inhibitory influences at
cortical level. The disease involves a network of regions of the
brain which is specific to each patient.
Electroencephalography (EEG) of patients with epilepsy is
characterized by the presence of epileptic discharges, e.g.
spikes or sharp waves. Hereafter, we will use the word spike
to designate all epileptic discharges on the EEG. In clinical
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recordings spikes often repeat randomly on a background of
fluctuating potentials (i.e. the spontaneous EEG activity) al-
though their frequency might be affected by level of alertness
or wakefulness, as well as the epileptogenicity of the under-
lying tissue. Spike rate has in several studies been shown to
reduce during electrical stimulation of the cortex together with
an attenuation of the spontaneous EEG activity (Kinoshita
et al. 2005, Westin et al. 2019, Yamamoto et al. 2006). The
underlying cause of this change and the relation between
background attenuation and spike rate is still not understood.
The spike waveform has been modelled using several compu-
tational models both for spikes seen in single neuron measure-
ments and clinical spikes seen in epilepsy. Single neuron spik-
ing has been effectively modelled using the Hodgkin-Huxley
model which models both sodium and potassium ion channel-
ling (Hodgkin and Huxley 1952). Macroelectrode recordings,
as used in clinical settings (EEG), measure potentials generat-
ed by postsynaptic potentials in the dendritic trees of cortical
pyramidal cells. Synchronous activity from 10,000-100,000
cells are required to induce measurable potentials. Cortical
histology and functional structure indicate presence of cortical
columns arranged in microcircuits containing pyramidal cells,
excitatory and inhibitory interneurons (Douglas et al. 1989). A
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patch of cortex generating an EEG signal can be approximated
as a collection of cortical columns. Several computational
models of cortical microcircuits/columns exist which have
been shown to generate both spontaneous EEG activity and
spikes (David and Friston 2003; Jansen and Rit 1995; Pinotsis
et al. 2012; Wendling et al. 2000; Wilson and Cowan 1972).
Single cell and population induced spikes can often be ap-
proximated using phenomenological models, where the
FitzHugh-Nagumo model is one of the simplest (FitzHugh
1961; Nagumo et al. 1962). The mentioned models are all
deterministic and cannot model randomly occurring spikes if
not modified. Adding random noise to the mentioned models;
however, allows for randomly generated spikes. Background
activity of EEG, similar to spike rate, is dependent on the state
of the brain and characterized by different rhythms with a
unique spectral distribution (Schomer and Da Silva 2012).
However, the exact prediction of EEG potentials over time
is extremely difficult due to the high level of randomness in
the signal. Perturbation of the mentioned models with noise
generate signals with frequency characteristics similar to mea-
sured background EEG data.

In this study we hypothesize that epileptic discharges seen
on scalp EEG and background activity are driven at least
partly by a common biological noise. Our objective will be
to investigate the relation between interspike interval (IST)
duration, background activity and a latent noise variable. We
will show data that indicates that the interspike interval distri-
bution is dependent on the noise intensity together with a
maxima of ISI for intermediate noise levels.

2 Method
2.1 Patients

Data was collected from 19 patients undergoing prolonged
EEG recordings at the epilepsy monitoring unit at the
Department of Paediatric Neurology at Karolinska
University Hospital, Stockholm, Sweden. Median age was 7
(1-18) years and 11 were male.

2.2 EEG recordings

Patients were all recorded with 21 scalp-electrodes according
to the 1020 system (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz,
C4, T4, T5, P3, Pz, P4, T6, O1, 02, Al and A2). Recordings
were performed using a NicoletOne EEG System (Natus,
Pleasanton, CA 94566 USA). Data was registered at 250 Hz
and bandpass filtered between 0.5 — 70 Hz. Each patients was
recorded during 1-7 days. All EEG data was analysed by an
Electroencephalographer (AC) identifying ictal (seizure) and
interictal (non-seizure) data. All recordings with ictal episodes
were removed from further analysis. Interictal EEG data was

@ Springer

further divided into awake and sleep states, with separate anal-
ysis for each state of consciousness. Average amount of data
per patient for each state was 8.0 h of wakefulness and 11.9 h
of sleep. Data was divided into wake and sleep states using
visual analysis of the EEG with identification of state specific
waveforms and spectral distributions unique to each state
(Schomer and Da Silva 2012). Visual analysis of 1-2 h of
awake and sleep data was performed to identify epileptic dis-
charges. The data was dominated by either focal or regional
spikes for each patient. The interictal discharges of each pa-
tient was located using a spike-detection algorithm
(Barkmeier et al. 2012). The threshold of the algorithm was
set to an optimal level (with maximal Youden’s J statistic) for
each patient to improve detection of epileptic discharges as
has been described previously (Westin et al. 2019).

2.3 Data analysis

All analysis was done separately for awake and sleep data
with an average reference (i.e. 0 mean over all electrodes).
Please see Appendix for exact definition of parameters (in-
cluding Q;, J"). Parameters were normalized as necessary
to allow for merger of data values across patients in the sub-
sequent analysis.

2.3.1 ISl-analysis

Data was divided into windows (interspike interval) limited by
interictal epileptic discharges, see Fig. 1. The ISI (') was
defined as the length of the window in seconds. The ISI was
normalized for each patient (7" ) for awake and for sleep data
such that the mean was 1 for both awake and sleep data for
each patient.

2.3.2 Spectral analysis

EEG data from each interspike interval was used to estimate
the window specific background activity. EEG data 1 s after
the maximum of the first spike and 100 ms before the limiting
spike was removed from the window to remove direct effects
of spike waveforms on subsequent EEG activity, see Fig. 1.
Each segment of EEG data was further subdivided into 1 s
epochs to perform spectral analysis of the signal. All analysis
was done in the following frequency bands (1 <f<40, 1 <f<
4,4<f<8,8<f< 12, 12<f<40 Hz). Cross spectral density
was estimated for each interspike interval window for the
different frequency bands and normalized (g; ). Analysis in-
cluded visualization of scatter plots between ISI and spectral
parameters. To further reveal any relation between the vari-
ables not clearly visible on the scatter plots the range of the
“independent” variable (e.g. Qi ) was divided into 100 sub-
intervals. Within each sub-interval the average of the
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Fig. 1 A. Schematic of data processing. Spikes were identified and
marked at the peak potential using an algorithm (blue arrows). Time
between spikes was measured to define the interspike interval (green
arrows). EEG data between the spikes was used to estimate spectral
parameters for the interspike interval, marked in red. EEG data 1 s after
and 100 ms before a spike maximum was removed from the spectral
analysis. This was done to prevent spike waveforms contaminating the
analyzed EEG data. B. Schematic of spectral parameter averaging. The

dependent and independent variable was calculated (Q_;'c and

7 ). The resulting data was used for visual analysis and
log-log plotting to reveal quantitative relations between the
variables. This analysis is schematically illustrated in Fig. 1.

2.4 Computational modelling
2.4.1 Background activity

The background activity was approximated as the station-
ary state of the perturbation of a neural mass model (H, n
coupled ordinary differential equations) under noise (see
Moran et al. 2009 for details on a similar description). A
stable point was chosen as the point of perturbation. The
noise term was given by a standard n-dimensional
Brownian motion with covariation matrix oo’ and zero
mean, dB,. The dynamics was governed by the following
stochastic differential equation:

dx = H(x)dt + odB,

xeR”, oeR” x R”

The above function H was linearized around a stable point
(as we are studying perturbations) giving,

dx = L(x)dt + odB,

The spectral density of x, can then be shown to be propor-
tional to the covariance matrix of the noise (Wiener-
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Spectral parameter

blue dots are individual parameter values from interspike intervals
(g;, J). To further delineate any underlying relation between spectral
and ISI parameters the data was subdivided along the abscissa (black
lines) into segments. The data (blue dots) in each segment was
averaged for both parameters (spectral and ISI) and plotted as a black

diot. Further analysis was done on the new set of reduced data (Qi and
J' ie. the black dots)

Khintchine Theorem),

S(wy)eoa’

The measured EEG signals over the m electrodes, y(¢) €
R™, was approximated by a linear mapping of the state vari-
ables (x) under some function L, eR" x R".

y(t) = L(x)

The spectral density of y would then be given by the fol-
lowing,

S (wy) °<L2T0'0'TL2

Due to the above relation the spectral density of the EEG
will be used as a proxy for the input noise to the cortex.

2.4.2 Spike generation

The FitzZHugh-Nagumo model with /= 0.326 and noise was
used to study the generation of spikes (Tuckwell et al. 2003).
X, is the voltage variable and Y, the recovery variable. The
noise term is given by standard Brownian motion with corre-
lation matrix o° and zero mean, dB,.

3

X
dXx, = (Xt—é—yt + I )dt + 0dB,
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In this setting the dynamics of the FitzHugh-Nagumo is
described by a stable stationary state surrounded by a sta-
ble orbit. The trajectories moving along the stable orbit
represented spiking of the model where one revolution re-
sulted in a spike-like waveform of X, when plotted against
time (f), see Fig. 2. To analyse inter-spike intervals the
movement of trajectories between the stable point and the
stable limit cycle was analysed. To make the estimation
amenable for computational analysis further simplification
was done. The phase space was compartmentalised into
three regions, Fig. 2. The first described trajectories mov-
ing around the stable point and this motion was modelled
by movement within a disc surrounding the stable point.
The lower right quadrant of the circle limiting the disc was
modelled as an absorbing boundary and the remaining
boundaries as reflecting, Fig. 3. Trajectories that reached
the absorbing boundary represented transitions to the sta-
ble orbit of the compartmentalised model. Motion along
the limit cycle was modelled using two compartments, 2
and 3. The trajectories were allowed to make a transition to
the first compartment (from the limit cycle) in the second
compartment but not in the third compartment. The third
compartment represented flow on the limit cycle away
from the stable point (where the probability of transition
between the compartments was low). The second compart-
ment represented an area where the transition to the stable
point was of higher probability due to the proximity be-
tween the stable limit cycle and fixed point. The mean
escape time was estimated from all three compartments.
The timing between two inter-spikes would then consist
of the following sequence of events. Trajectories in

Fig. 2 A. Schematic figure of a
phase plane of FitzHugh-Nagumo
model together with the three
compartments used for a model
amenable for computational
estimation of ISI. The dotted
regions indicate regions where the
trajectories transferred between
compartments. B. Compartment 1
shaded in green. The two blue
lines are the nullclines of the
FitzZHugh-Nagumo model with
the stable fixed point located at
the intersection. The black spiral
trajectory shows a particle
moving towards the stable fixed
point. The red line indicates
trajectory moving along the limit
cycle. C. Compartment 2 was
located along the limit cycle near
the stationary point where trajec-
tories moved to the latter

Compartment 1
o

Compartment 2
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Compartment 3

compartment 2 could either move to compartment 1 or 3.
We estimated the transition probabilities between the com-
partments and the mean time spent in each as described in
the appendix, Fig. 3.

We estimated the expected ISI, E[7], for all possible tran-
sition chains. 7" denoted ISI for a trajectory. o denotes the
measure of trajectories in phase space. ¢ denotes a trajectory.
p denotes the probability of transfer from compartment 2 to 1.
T denotes the expected time spent in the following chain of
transitions: compartment 3—-2-3. 7, denotes the expected time
spent in the following chain of transitions: compartment 2—1-
3.

E[T] = [du(e)T(p)
n [(n=k)Ty +kT>]  n!

E[T] = lim
n—o0 ;70 n

K P it

E[T)= lim [dk [Tl + % (Tz_Tl):| N (np, np(1-p))

E[T]= lim [ax[T + x(T2=T1)IN (p, o)
E[TRIdx(T1 + x(T>=T1)]6(x—p) = (1=p)T1 + pT>

On the third line we approximated a binomial distribu-
tion with a Gaussian distribution. We used the Fokker
Planck equation associated with the FitzHugh-Nagumo
model in each compartment to estimate the following pa-
rameters for different noise levels (see appendix 7.3): p,
T; and T,. The partial differential equations were solved
using FENICS (Alnaes et al. 2015).

b

-0.34

-0.40

-0.46

-1.40 -1.00 -0.60

-0.44

-0.40

-0.36

-1.02 -1.00 -0.98
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a Compartment 1

Trajectory moving to limit cycle
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b Compartment 2

T
T

Fig. 3 A. Compartment 1 after rescaling with the stationary point at the
center. An absorbing boundary was placed in the lower right quadrant and
a reflecting over the other quadrants. The red line shows a trajectory
leaving compartment 1 and then transferring to compartment 3. B.
Compartment 2 after rescaling. An absorbing boundary was placed at
the top and right boundary. Reflecting boundaries were placed over the
bottom and left boundary. The red trajectory is absorbed by the top
boundary and then transferred to compartment 1. The green trajectory is

2.4.3 Spectral parameters and input noise

As shown in the Background activity noise intensity is pro-
portional to spectral density. In the following analysis we will
use spectral density parameters as proxies for noise intensity.

3 Results
3.1 ISI-distribution

ISI was measured (/') and normalised (7" ) for each patient as
described in Method and Appendix. The probability distribu-
tion for awake and sleep data were similar and no significant
changes could be found. The distribution of normalised ISI
(J") was used to estimate the number of spikes occurring in
one unit of time both for awake and sleep data. Note that the
data was normalized among patients where mean spike rate
for each patient was set to 1. The resulting distribution was
compared to the Poisson distribution with rate 1, Fig. 4. The
measured spike occurrences (awake and sleep data) were more
than three standard deviations from the Poisson distribution,
indicating a significant difference.

absorbed by the right boundary and transferred to compartment 3. C.
Schematic figure of the compartments and the transitions between them
and the probabilities of these. Compartment chain 2, 1 and 3 is
represented by 1 spike as is compartment chain 2 to 3. The time for
these compartment chains T, and T, was estimated in the appendix.
The expected ISI was estimated using these two times and p, the
probability for transition from compartment 2 to 1

3.2 Cross spectral density

Averaged cross spectral density (G' ) was estimated for each
frequency band as described in Method and Appendix. This
was done separately for awake and sleep data and no signifi-
cant differences between awake and sleep were found.

3.2.1 Spectral parameters and interspike interval

The spectral parameters were assessed using normalized cross
spectral density (ch ). The parameters were estimated for each
interspike interval window which allowed us to create scatter
plots between the spectral parameters and normalized ISI (77).
This was done separately for awake and sleep data. Scatter
plots of normalized cross spectral density (ch ) and IST showed
Gaussian distributions with a right sided tail with increased ISI
around —1 for the full frequency band (1-40 Hz) and around —1
to 0 for the other frequency bands (1-4, 4-8, 812 and 12—
40 Hz) for both awake (Fig. 5) and sleep data.

The mean values of normalized cross spectral density and

interspike interval (g_;, and 7 ) was calculated as described in
Method. Awake activity within 1-4 Hz, 4-8 Hz and 8-12 Hz
and the full bandwidth showed maximal values for ISI for
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Fig. 4 Poisson distribution with 08
rate factor 1 in black with 3
standard deviation interval
marked as a black line. Red and
blue show the corresponding
distribution of the spike rate for 06
awake and sleep data. Note that

the data was normalized among
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3
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each patient was set to 1 ‘@
o
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intermediate noise levels. The 12-40 Hz frequency band indi-
cated a monotonically decreasing curve (Fig. 6). Sleep data
showed similar results to awake data.

Log normalized cross spectral density was plotted against
log ISI. There was an approximate linear relationship between
both variables between —0.5 to 1 (awake) and — 1 to 1 (sleep).
This was evident for all frequency bands but most clear for 4—
8, 8—12 and 1240 Hz. The gradient was estimated for each

Fig. 5 Scatter plots between the

Blue — awake data
Red —sleep data
Black — poisson distriubtion

)
° 3
[
ob— . ¥ ¥ g 3 3 3 3
2 3 4 5 6 7 8 9 10
occurences

frequency band for both awake and sleep data and varied
between [—0.56,-0.19], Table 1.

3.3 Computed ISl for FitzHugh-Nagumo model

As described in methods the ISI was computed for different
noise intensities for the FitzHugh-Nagumo model. There was

1-40 Hz

logarithm of the normalized cross 60
spectral density (g;; ) and ISI (J* =, SOf
) for awake data -
o 40
°
g sor
©
E 20
(<}
z

2 3 4
Log normalised spectral parameter, G
60 1—4Hz 4 —8Hz 8—12Hz 12 — 40 Hz
50 50 50 50
40 40 40 40
30 30 . 30 : 30

Normalised ISI, 7
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Fig. 6 Plots between the 1-40 Hz
logarithm of the mean normalized 5 ' ' ! T T ' ' ' '
cross spectral density (G. ) and S g
mean ISI (") for awake data. In D a4l 4
the 4-8, 812 and 1240 Hz band T
there was a decreasing curve as @ 3r 7
the spectral parameter increased. g ol .
At low values of the spectral S
parameter there was evidence of a Z 1r N 7
maxima (all bands except 12- ok . . . P . I
40 Hz) -2 -1.5 -1 -0.5 0 0.5 1 15 2 25 3
Log normalised spectral parameter, G
1—4Hz 6 4 —8Hz 8 —12 Hz 12 — 40 Hz
IS 5 5 5 5
@
= 4 4 4 4
°
I
Z 3 3 3 3
©
g 2 2 2 2
[S)
2
1 . 1 1 1 '
& . S,
0 0 0 - 0 =
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a maximal ISI interval for intermediate noise intensities with
reducing ISI for small and large noise levels, Fig. 7.

4 Discussion

This study investigated the relation between epileptic
interspike intervals and a latent noise variable in patients with
epilepsy. The noise intensity was shown to be proportional to
the spectral density of the EEG recording, see Computations.
We found that interspike interval or duration was dependent
on the latent noise variable and that ISI was maximal for
intermediate noise levels. This behavior has not previously,
to our knowledge, been presented or noted in clinical EEG.
The FitzHugh-Nagumo model showed similar results for ISI
in relation to noise level and we will discuss why our results
could indicate that epileptic spikes are created by the transition
between different states of the cortex (or brain) similar to
epileptic seizures.

Table 1. Gradient and intersect of linear regression between logarithm
of spectral parameter (normalized cross spectral density) and logarithm of
normalized inter-spike interval duration (IST)

Frequency (Hz) 1-40 1-4 4-8 8-12 12-40

sleep

gradient intersect  -0,2010 -0,2013  -0,3813  -0,3475 -0,4158
-0,0744 -0,0782 -0,1505 -0,1446 -0,1275

awake

gradient intersect  -0,2050  -0,1933  -0,7189 -0,4163 -0,5583
-0,2346  -0,2263 -0,0700 -0,0544 -0,1318

Log normalised spectral parameter, G

The normalized interspike intervals measured from the pa-
tients were used to plot a histogram over number of occurrences
of spikes per unit time. If the average spike rate was constant this
distribution would follow a poisson distribution which we could
show it did not. Data from both awake and sleep states showed a
clear statistical difference from the poisson distribution. This
could indicate a process where the spike rate was dependent on
an underlying non-constant parameter resulting in a varying av-
erage spike rate or equivalently varying interspike intervals.
Computational modelling of spike triggering requires the addi-
tion of external (biological) noise and it has been shown that
average spike rate changes with noise intensity. The system is
randomly driven to a fixed threshold by the noise such that

16

15 A

14 A

ISI

13 A

12 A

11 A

T T T T T T T T

0.5 1.0 1.5 2.0 25 3.0 3.5 4.0

Noise, o
Fig. 7 The graph of ISI estimated from the stochastic Fitzhugh-Nagumo
model after compartmentalizing for different noise intensities. There is a
quiescence of spike rate for intermediate noise intensities. Similar, curve
was achieved after simulating the FitzHugh-Nagumo model
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increasing noise intensity reduces ISI (Tuckwell et al. 2009;
Tuckwell et al. 2003; Tuckwell and Wan 2005). We computed
the ISI for the FitzZHugh-Nagumo model (with noise) showing, as
has been previously presented in the literature, that average spike
intervals are a function of the noise intensity driving the system.
To find evidence of a similar relation in our clinical data, we
would need to estimate the biological noise driving the system.
The analyzed data is from an in-vivo system (patient data) with
no ethical possibilities of controlling the incoming noise or di-
rectly measuring it. Instead we relied on the relation between the
spectral distribution of the data and the driving noise. In 2.4.1, we
suggested that the spectral density of the EEG data could be
approximated as being proportional to an undetermined biolog-
ical noise process driving the system similar to what has been
modeled in several publications (Moran et al. 2009; Robinson
et al. 2001; Steyn-Ross et al. 1999). Based on these previous
studies and our own computation we estimated that there could
be a proportionality between the spectral parameters estimated in
the study and the latent biological noise intensity. This allowed
us to have an estimate of noise intensity in the form of the spectral
parameters that we estimated for the data. As was shown in
Results, the ISI-spectral parameter curves showed a maxima at
a log normalized spectral parameter of around —1 for the different
frequency bands indicating that the findings were at least partly
frequency independent. The maxima is not typical for classical
stochastic resonance which is frequency dependent (McDonnell
etal. 2015). Assuming that the spectral features were the result of
fluctuations around a stable point the independence on the fre-
quency band would be expected as discussed in Section 2.4.1.
and could also be estimated from the ISI simulation in the
FitzHugh-Nagumo model. The spectral “EEG” parameters of
the FitzHugh-Nagumo model would then be estimated from
the fluctuations of the trajectories around the stable steady point.
The assumption that spontaneous EEG activity is generated by
the fluctuation around a stable point is a simplification of a com-
plex neurobiological process which does not allow the activities
within the different frequency bands of spontancous EEG to be
modelled as independent processes. In the present study this
simplifying assumption was supported by the results as it was
not possible to distinguish differences in the relation between ISI
and spectral parameters for different frequency bands. If future
studies reveal frequency band dependency on the ISI maxima
more complex models would be required. The noise induced IST
maximum has been seen for single and multi-neuron measure-
ments both in vitro and in vivo (Buchin et al. 2016; Gluckman
et al. 1998). Simulations and computations have shown similar
findings for a multitude of spike models including both the
Hodgkin-Huxley and FitzHugh-Nagumo model (Tuckwell
et al. 2009; Tuckwell et al. 2003; Tuckwell and Wan 2005).
The phase space of the Fitz-Hugh-Nagumo model was
simplified to allow for computation of the ISI. We used three
compartments to describe the flow of trajectories: compart-
ment 1 contained the stable fixed point and compartment 2
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and 3 contained the stable limit cycle. At low noise levels the
trajectories were shown to collect along the stable limit cycle.
As the noise level increased the probability of getting attracted to
the stable fixed point increased which resulted in an increase in
ISI as trajectories were “held” at the stationary point. With fur-
ther increasing noise, the time where trajectories were located
around the fixed point (compartment 1) reduced resulting in a
reduction of ISI. Removal of the limit cycle from the FitzHugh-
Nagumo model (by changing the parameter /) resulted in ISI
values decreasing with increasing noise (simulated data). We
further studied the effect of varying the geometry of the com-
partments which did not change the qualitative relation between
ISI and noise. The results seen in the FitzHugh-Nagumo model
resemble the findings we see in epileptic spikes in patients with
epilepsy. The analogy with the FitzZHigh-Nagumo model (and
several other models in the literature) would indicate that epilep-
tic spikes are created by the transition between two stable or
semi-stable states of the brain.

5 Conclusion

This study has shown the effect of a latent noise variable on
epileptic spike production in patients with epilepsy indicating
the possible transition of the cortex between semi-stable
states, similar to the generation of epileptic seizure activity
(Jirsa et al. 2014). We hypothesize that these findings are
general and should be reproduced in other studies of epileptic
spikes in patients with epilepsy including different modalities
such as MEG and intracranial EEG. Further study, including
spikes and seizure activity and their dynamics could be of
importance in defining the brain states involved in epileptic
activity (i.e. epileptic spikes and seizure activity). The deep-
ened understanding of the electrophysiology of epilepsy that
this study provides could be useful in the assessment of dif-
ferent therapies for epilepsy including the effect of different
drugs or electrical stimulation.
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Appendix
Definition of normalized ISI (7'

The ISI (I') was defined as the length of the window in sec-
onds. The normalized interval (J° ) was defined as follows,
where N denotes the number of interspike interval windows:

]l'

ji: 1 N
NZj;lp

Definition of normalized cross spectral density (G )

The cross spectral density, Gif,’y(w), where x and y denote EEG
channels, was calculated for each interspike interval window
(1) and epoch (j) (each interspike interval window was
subdivided into 1 s long epochs).

Gl(w) = | Fl(w)Fl(w)’

Where F7(w) is the fourier transform of EEG channel x in
the j-th epoch of the i-th interspike interval window. The av-
erage cross-spectral density was estimated as below for each
interspike interval (i) and for the channel (x) with maximum
spike amplitude; n denotes number of EEG-channels and m
denotes number of epochs in the i-th interspike interval win-
dow:

Gi(w) = -3 1361 (w)

nym;

The averaged cross spectral density was estimated in the
following frequency bands: 1-40, 1-4, 4-8, 812 and 12—
40 Hz. This was done as follows:

[P dwG (w) = G(1,40)

The averaged cross spectral density, Gi, was normalized
(g; ) for each patient to allow for merger of data values across
patients in the subsequent analysis:

; G,
gx - 1 j:N ]
NZ]:I G;jc(1>40)

This was estimated for the different frequency bands: 1-40,
1-4, 4-8, 8-12 and 1240 Hz:

[ dwG (w) = Gi(1,40)

Estimation of the relation between inter-spike inter-
val and input noise in the FitzHugh-Nagumo model

The Fokker Planck operator was used to estimate the expected
time of trajectories in each compartment and the following
transition probabilities: compartment 2 to 1 and compartment
2 to 3.

Estimation of the expected time spent in
compartment 1

An ellipse was used to model compartment 1 which was cen-
tered at the stationary state of the system (=0.9719, —0.3399),
Fig. 2.

2 2
X+ 0.9719 y+0.3399
vz s uu 1

( 0.12 ) + ( 0.03 ) <

An absorbing boundary was placed on the lower right
quadrant of the boundary and a reflecting on the rest of the
boundary. Rescaled and translated dimensions were used

_ ¥40.9719 ., __ 7+0.3399
=701 YT 003

formed into a disc with centre at the origin, Fig. 3. The dy-
namics of the trajectories within compartment 1 was given by
the following stochastic differential equation:

) such that the ellipse was trans-

dX, = (-0.0048X,* + 0.0389X,> + 0.6851X,~0.25Y, + 0.00013)dt

+8.33330dB,
dY, = (0.32X,-0.064Y, + 0.00005)dt + 33.30dB;

The expected escape time f{x) starting at x from compart-
ment 1 was estimated using Dynkin’s formula (Ch7. Oksendal
2013). Where f{x) satisfies the following partial differential
equation (PDE),

L = [-0.0048x" + 0.0389x" + 0.6851x~0.25y + 0.00013]
0 o o o o
. + (0.32x-0.064y + 0.00005) @ + 5 (69$ + 1109 6_)/2)
—1=Lf(x)

0= f(x)|am
0=20nf (x)|asz,v

Note, that L is the adjoint of the Fokker Planck operator for
the stochastic differential equation governing the trajectories.
Boundary conditions included an absorbing boundary limiting
the lower right quadrant (6€2,) and reflecting on the remaining
boundary (652,). The PDE was solved using FENICS and the
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expected time in compartment 1 was estimated with x located
at the stationary point (Alnaes et al. 2015).

Estimation of the expected time spent in compartment 2
and transition probabilities to compartments 1 and 3

Compartment 2 was located symmetrically around the stable
limit cycle in the box x € [-1.03,—1] and y € [-0.35, —0.383].
The upper boundary was set at a distance of 0.015 from the
stable limit cycle, which was the distance to the unstable limit
cycle. A symmetrical lower boundary was placed at a the same
distance from the stable limit cycle, 0.015, Fig. 2. The length
of compartment 2 was set to 0.03. A coordinate system was set
with one coordinate along the limit cycle (X) and one trans-
verse (Y) to this. This compartment was rescaled into a unit-
square, Fig. 3. The dynamics of the rescaled compartment 2
was given by,

dY, = 670dB;

Note that we incorporated the factor of 70 in the noise term
o for the rest of this section. The Fokker Planck operator was
given by (v=2):

Lt =— E_Fi a_2+a_2
T a2\ T

The flow of the distribution of trajectories (p) was given by,

2 Ox
o’ op
2 Oy
The following discretized equation was solved (with test
function g),

Jqpn+1_thLTpn+l_qpn — 0

o2 (& &
I = qun+l_th<_vaxpn+l 4 7 (@ 4 _)pn+l>_qpn -0

o’

o[ PN,
Il:jjdXdqu(az—'_a )p“

y=-1/2

J'dx 7qaypn+l y=1/2 Idx qa pn+1

o

x=-1/2
n+1

2 gy T qaxp

02 141
+ldy —qéwp
2 o0

o o
~|Jaxdy = — 0wl +=-0,q0p"!

x=-1/2

n+1 }’* 1/2

2
~dy % g0 p""!

= —dx —qﬁyp
o0

@ Springer

U 1 0-2 1
~[Jaxay = 5 0:q0:p gy + 5 040p i

Robins conditions at reflecting boundaries (null probability
flux),

n+1

~(faxdy Z- axqaxp"“

I = J'qpn+l + quaxanrl_qpn

2
g
+ B3 0yq0,p
—Atl

The final variational form was given by,

="y
=0

N

0cqop""

2 7@6}%”“) + Addy qup!

J‘qpn+l +th‘(/ p”“*qp" +At(

This variational form of the PDE was solved for p. The
transition probability and expected time for transition to com-
partment 1 or 3 was estimated from p.

Estimation of the expected time spent in
compartment 3

In a similar way the expected time in compartment 3 was
estimated.

Estimation of expected time between spikes (ISI) for
different levels of noise

p, T; and T, were estimated from the results of 7.2 and the ISI
was calculated for different levels of noise, Fig. 7.
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