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Abstract Anaesthetic agents are known to affect extra-
synaptic GABAergic receptors, which induce tonic
inhibitory currents. Since these receptors are very sensitive
to small concentrations of agents, they are supposed to play
an important role in the underlying neural mechanism of
general anaesthesia. Moreover anaesthetic agents modulate
the encephalographic activity (EEG) of subjects and hence
show an effect on neural populations. To understand better
the tonic inhibition effect in single neurons on neural popu-
lations and hence how it affects the EEG, the work considers
single neurons and neural populations in a steady-state and
studies numerically and analytically the modulation of their
firing rate and nonlinear gain with respect to different levels
of tonic inhibition. We consider populations of both type-I
(Leaky Integrate-and-Fire model) and type-II (Morris-Lecar
model) neurons. To bridge the single neuron description to
the population description analytically, a recently proposed
statistical approach is employed which allows to derive
new analytical expressions for the population firing rate for
type-I neurons. In addition, the work shows the derivation
of a novel transfer function for type-I neurons as considered
in neural mass models and studies briefly the interaction of
synaptic and extra-synaptic inhibition. We reveal a strong
subtractive and divisive effect of tonic inhibition in type-I
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neurons, i.e. a shift of the firing rate to higher excitation
levels accompanied by a change of the nonlinear gain. Tonic
inhibition shortens the excitation window of type-II neurons
and their populations while maintaining the nonlinear gain.
The gained results are interpreted in the context of recent
experimental findings under propofol-induced anaesthesia.
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1 Introduction

The neural mechanism of general anaesthesia is poorly
understood. Despite its everyday application in hospital
practice, it is far from being understood why the patients
under general anaesthesia lose consciousness (hypnosis), do
not feel pain (analgesia), can not move (immobility) and do
not remember details of the surgery (amnesia) (Longnecker
et al. 2008). In the last decades much experimental research
has focused on the molecular effect of the anaesthetic drugs
administered on the receptor targets in the brain while fewer
studies have been devoted to more theoretical approaches.
In the last years more and more theoretical mathemati-
cal and computational studies have been performed (Hutt
et al. 2013; Foster et al. 2008) to understand better the
experimental data obtained under anaesthesia, such as sin-
gle cell recordings (Antkowiak 2002; Bai et al. 2001), Local
Field Potentials (Sellers et al. 2013) and electroencephalo-
gram (Gugino et al. 2001; Cimenser et al. 2011; Lewis et al.
2012; Purdon et al. 2013). Most of the previous theoretical
studies (McCarthy et al. 2008; Ching et al. 2010; Bojak and
Liley 2005; Steyn-Ross et al. 2001; Sleigh et al. 2011; Hutt
and Longtin 2009; Hutt 2012) consider anaesthetic action
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on synaptic receptors neglecting extra-synaptic effects, cf.
the review of Hutt et al. (2013) for more details.

The present work aims to link some recent insights from
the experimental research on extra-synaptic GABAergic
receptors (ESR) to the theoretical work on neural pop-
ulations. The work provides major effects of ESRs on
different description scales which may serve a basis for
future extended theoretical studies. To be able to extract
features on multiple scales, it is necessary to work out a
link between the scales. Hence this link is the driving force
to develop new analytical techniques to bridge the still
distinct description levels of single neuron networks and
neural populations. The gained results indicate how ESR
activity modulates the neural population activity and hence
may affect the encephalographic acitivity (EEG) measured
in general anaesthesia.

Some experimental studies of the action of anaesthetic
agents on neural GABAergic receptors revealed the exis-
tence of ESRs, which induce a tonic inhibitory current
(Farrant and Nusser 2005; Semyanov et al. 2004; Nusser
et al. 1997; Nusser et al. 1998; Brickley and Mody 2012).
They have been found experimentally in the cerebellum,
dentate gyrus, hippocampus, thalamus, striatum, hyptha-
lamus and neocortex, see (Belelli et al. 2009; Kullmann
et al. 2005) for review. Tonic inhibition is assumed to tune
the level of excitation in neural population and is sup-
posed to play a role, e.g. in the loss of consciousness,
sleep or arousal (Kopanitsa 1997). Moreover, ESRs are very
sensitive to small ambient concentrations of GABA and
respond on a much larger time scale than synaptic receptors
(Cavelier et al. 2005; Hamann et al. 2002). These specific
properties are the sign of their possible importance in the
context of slow consciousness phenomena (Kopanitsa 1997;
Farrant and Nusser 2005). Further evidence for the impor-
tance of ESRs in anaesthesia is their high sensitivity to
various clinically relevant anaesthetic agents (Farrant and
Nusser 2005; Orser 2006). For instance, the anaesthetics
midazolan and propofol enhance much more tonic inhibi-
tion than phasic inhibition in the thalamus (Belelli et al.
2009). Since the thalamus is supposed to play an impor-
tant role in general anaesthesia (Alkire et al. 2008), ESRs
receptors may mediate anaesthetic effects, such as loss of
consciousness.

Tonic inhibition induced by ESRs represents a persis-
tent increase in the cell membrane conductance of single
cells, while ESRs affect the excitability of interneuron-
pyramidal cell networks and thus modify network oscilla-
tions (Semyanov et al. 2003). To understand the effect of
microscopic molecular action of anaesthetic agents on the
encephalographic activity and behaviour, it is necessary to
bridge the gap between a microscopic description at single
neuron level and the mesoscopic level of neural populations
where extracellular currents generate the encephalographic

activity. Our work shows how to link the different descrip-
tion levels to take into account the ESR effect in two neuron
types. To this end, the subsequent sections presents analytic
and numerical studies of the neural firing rate and its cor-
responding nonlinear gain. We reveal that tonic inhibition
induces both a subtractive and divisive effect in neural pop-
ulation of type-I and type-II neurons, i.e. tonic inhibition
shifts the firing thresholds to higher values and modulates
the nonlinear gain of the population firing rate function. In
addition, we derive a new sigmoidal transfer function appli-
cable in neural mass and neural field models involving tonic
inhibition effects. In the context of anaesthesia, the theo-
retical findings in neural population dynamics can explain
the origin of some spectral power changes in EEG under
anaesthesia in the δ− and α− frequency bands.

To reveal the effects of anaesthetics by ESR action, we
neglect the anaesthetic effect of anaesthetics on synaptic
receptors. We are well aware that this approximation is
strong, but the present work aims to extract features of of
ESRs only. Future work will consider both synaptic and
extra-synaptic action.

The Results section considers three description scales
according to the brain structure, namely single neurons, a
single population of neurons and a network of populations.
The present work considers both type-I and type-II neurons.
In the first two partial studies of single neurons and their
population, we reveal the effects of ESR activity on the fir-
ing rate and its nonlinear gain which are distinct in type-I
and type-II neurons. Most parts of these studies show ana-
lytical calculations. The last partial study on the network of
populations presents numerical results only and points out
the relation of the gained network activity to experimental
EEG.

2 Methods

Tonic inhibition occurs mainly due to the presence of ESRs,
see (Houston et al. 2012; Glykys and Mody 2007; Farrant
and Nusser 2005; Scimemi et al. 2005; Semyanov et al.
2004; Mody 2001) and references in (Hutt 2012). As these
receptors are found on inhibitory as well as on excitatory
neurons, tonic inhibition affects these two types of neurons
and their populations in different brain areas (Song et al.
2011; Belelli et al. 2009; Kullmann et al. 2005). Hence the
present work takes into account the effects of tonic inhibi-
tion on two different neuron types: type-I excitatory cells
whose dynamics obey the equations of a Leaky-Integrate
and Fire (LIF) neuron model and interneurons described
by a type-II inhibitory cell which obeys the Morris-Lecar
model equations.

Moreover, frequently tonic inhibition is called shunting
inhibition, which occurs when the reversal potential of the
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inhibitory receptor is identical to the resting potential of the
cell. Since GABAergic receptors exhibit a reversal potential
close to the resting potential in pyramidal cells, tonic inhi-
bition resembles shunting inhibition in excitatory neurons.
For simplicity the present work adopts this equivalence in
both excitatory and inhibitory cells and chooses the reversal
potentials correspondingly.

In the next section, the different models used are pre-
sented: the single neuron models, the derived population
model based on firing rates, and the spiking-neuron-based
network.

2.1 Single neuron models

In general, the firing activity onset of neurons may exhibit
two scenarios: if the membrane potential exceeds a certain
threshold, the neuron firing sets in either at a very small
firing frequency or at larger a firing frequency. The former
case denotes neurons of type-I and the latter of type-II which
are reasonable models e.g. of pyramidal or granular cells
and interneurons, respectively.

2.1.1 Type-I neuron

To mathematically model the membrane potential of a
type-I neuron in a steady state, we consider the Leaky
Integrate-and-Fire model (Koch 1999; London et al. 2008;
Mitchell and Silver 2003) with excitatory (e) and inhibitory
(i) receptors and corresponding conductances:

C
dV

dt
= gl(El − V ) + ge(t)(Ee − V ) + gi(t)(Ei − V )

+gton(Eton − V ) + Iapp(t) (1)

gsyn(t) =
T∑

n=i

wsyne
−(t−ti )/τsyn , syn = e, i (2)

where C is the membrane capacitance and ti are the
instances of incoming spikes that trigger a synaptic response
with amplitude wsyn and decay time τsyn, T is the num-
ber of occured spikes at time t . Consequently gsyn(t) is a
stochastic process and, for temporally uncorrelated incom-
ing Poisson spike trains with constant rate λ, its mean and
variance is (Ross 1982)

E[gsyn](t) = wsynτsynλ
(
1 − e−t/τsyn

)
(3)

V ar[gsyn](t) = w2
syn

2
τsynλ

(
1 − e−2t/τsyn

)
. (4)

These expression will be very important inter alia in the
context of mean field models of a population in Section 3.2.

The differential equation (1) is accompanied by the reset
to the membrane potential Vr if the membrane potential
crosses the firing threshold Vth. After resetting, the model

considers a refractory time interval �. The constant conduc-
tance gton induces a tonic current in the membrane at ESR,
Eton is the reversal potential of the receptors, gl and El

are the leaky membrane conductance and the resting poten-
tial in the absence of excitation and inhibition, respectively.
Moreover Ee, Ei represent the reversal potentials of excita-
tory (e) and inhibitory (i) receptors, respectively. According
to the equivalence of shunting and tonic inhibition, for sin-
gle neurons and the single neural population we choose
El = Ei = Eton. To derive the population model, we con-
sider granule cells with a surface of 100μm2, Ee = 0mV,
El = −75mV, gl = 0.385nS and Vr = −75mV and
Vth = −49mV (Mitchell and Silver 2003).

The neuron emits a spike if the membrane potential
exceeds the threshold. For constant membrane conductances
ge, gton and neglecting synaptic inhibition (gi = 0), the
steady state spike rate reads

f (Vm, Vth) = 1

� − τ ln Vm−Vth

Vm−Vr

, Vm ≥ Vth (5)

= 0 , Vm < Vth

with

Vm(ge, gton) = geEe + gtonEton + glEl

ge + gton + gl

,

τ = C/(ge + gton + gl) . (6)

The membrane potential Vm would be reached for t → ∞
if no threshold is present, τ is the effective membrane time
constant which increases the membrane time constant and
hence slows down the neural firing activity. For simplicity,
this model does not consider nonlinear effects of dendritic
integration as observed in theory and experiments (Zhang
et al. 2013).

2.1.2 Type-II neuron

To model the membrane potential of a type-II neuron, we
employ the Morris-Lecar model (Borisyuk 2005; Morris
and Lecar 1981)

C
dV

dt
= gCam∞(V )(VCa − V ) + gKw(t)(VK − V )

+gL(EL − V ) + ge(t)(Ee − V )

+gi(t)(Ei − V ) + gton(Eton − V ) + Iapp(t)

(7)

τw

dw

dt
= φ(w∞ − w)
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The functions m∞ = m∞(V ), w∞ = w∞(V ), τw

(V ) = τw(V ) are given by

m∞(V ) = 0.5(1 + tanh((V − V1)/V2))

w∞(V ) = 0.5(1 + tanh((V − V3)/V4))

τw(V ) = 1/(cosh((V − V3)/(2V4)))

with constants V1 = −1.2mV, V2 = 18mV, V3 = 2mV,
V4 = 30mV, φ = 0.04/s. Here, V and w are the mem-
brane potential and the activation variable, respectively, see
Borisyuk (2005) for details of the Morris-Lecar model. We
also chose the reversal potential of potassium ion channels
VK = −84mV and calcium ion channels VCa = 120mV,
and the external current Iapp = 90μA.

The firing rate function for the Morris-Lecar model is
not known analytically due to the nonlinear nature of the
underlying Hopf bifurcation at the firing onset. Hence the
present work investigates the firing activity of type-II neu-
rons numerically only. The model is said to generate a spike
if the neuron membrane crosses the threshold V = 0mV
with dV/dt > 0.

2.1.3 Generalized firing rate

In biological neurons, synaptic receptors and ESRs are
spatially distributed on the dendritic tree of each neu-
ron. Their contribution to the membrane potential at the
neurons’ soma depends strongly on their spatial loca-
tion (Spruston 2008). Since the receptor locations are
different on each neuron and currently there is no exper-
imental technique with which one is able to extract the
exact position of each receptor on each neuron in the
population, we adopt a statistical approach and consider dis-
tributions of membrane conductances of synaptic receptors
and ESRs (Hutt 2012). This approach implies the distri-
bution of membrane conductances in the single neuron
firing rate and the corresponding analytical model consid-
ers steady-state neural activity neglecting transient activity.
The firing rate for both type-I and type-II neurons reads
(Hutt 2012)

Fs(G, Vth) =
∫ ∞

−∞
ps(g − G)�(V (g) − Vth)

×f (V (g), Vth)dg (8)

with the distribution ps(g) of membrane conductances g

with mean value G and the noiseless neuron firing rate f .
Here �(x) is the Heaviside function with �(x) = 0 for
x < 0 and �(x) = 1 for x ≤ 0. In the case of type-
I neurons, f is defined analytically in Eq. (5) and V (g)

is the membrane potential defined in (6) dependent on the
conductances g = {ge, gton}.

Specifically, we assume Poisson-distributed independent
spike trains of rate λ0 arriving at excitatory synaptic recep-
tors of number n on the dedritic tree of a single neuron and
identical constant tonic inhibition induced at ESRs. In a first
approximation, the position of the receptors on the dendritic
branch is not considered. Then the total rate of the excitatory
spike trains at the neuron is λ = nλ0. The synaptic recep-
tors respond to incoming pulses according to Eq. (2) and the
excitatory conductance ge in the steady-state is a random
variable with mean and variance

GE = weτeλ and σ 2
e = 1

2
w2

e τeλ , (9)

respectively, cf. Eq. (3) and (4). The constant wsyn is the
synaptic weight and τe represents the decay time constant
of the excitatory synaptic receptors. For a large number
of receptors n the excitatory conductances obey a Gaus-
sian distribution according to the central limit theorem and
the inhibitory extra-synaptic conductance Gton is constant
leading to the probability density introduced in (8)

ps(ge − GE) = 1√
2πσe

e−(ge−GE)2/2σ 2
e . (10)

The subsequent studies of single neurons and single
populations neglect synaptic inhibition, i.e. gi = 0.

2.2 A single neural population

The population firing rate is an input-output transfer func-
tion relating the membrane potential or synaptic activity
as input and the firing rate of the neurons in the popula-
tion as output. It is a major element in neural mass models
which consider a mean potential V as the statistical average
over the neuron population and a short time window. Con-
sequently it is coarse-grained in time. Since the population
firing rate depends on the number of neurons in the popula-
tion, it is sufficient to consider the population firing rate per
neuron which is called F in the following.

In biological neural populations, properties of single neu-
rons are not identical. For instance, the firing threshold
or resting membrane potential may vary between neurons.
To consider such heterogeneities, the subsequent paragraph
considers a large number of neurons in the population for
which the central limit theorem guarantees the normal dis-
tribution of the corresponding properties. Specifically, for
type-I neurons we assume a normal distribution N(Vth) of
firing thresholds Vth with mean V̄th and variance σ 2

th (Wil-
son and Cowan 1972; Amit 1989). Here N(Vth) is the
percentage of neurons with threshold Vth that are ready to
fire, i.e. which are out of their refractory period. Then, con-
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sidering the firing rate Fs in Eq. (8) for a single stochastic
neuron, the population firing rate reads (Hutt 2012)

F(ḡ, V̄th) =
∫ ∞

−∞
Fs(ḡ, Vth)N(Vth − V̄th)dVth

=
∫ ∞

−∞
ps(g − ḡ)

∫ ∞

−∞
�(V (g) − Vth)

×f (V (g), Vth)N(Vth − V̄th)dVthdg .

In type-II neurons, the firing threshold is defined by
the external current and hence we assume a normal dis-
tribution of the external current Iapp with mean Īapp

and variance σ 2
app yielding a distribution of the firing

threshold.
In numerical simulations, the population of type-I and

type-II neurons include 200 non-identical uncoupled neu-
rons while receiving stationary uncorrelated input spike
trains.

One of the simplest single neuron models is the
McCulloch-Pitts neuron whose firing rate function f is the
Heaviside-function. This standard choice yields the stan-
dard sigmoidal transfer function for populations (Wilson
and Cowan 1972; Amit 1989; Hutt 2012). Since McCulloch-
Pitts neurons neglect important physiological features of
single neurons, such as conductance-based currents and
refractory periods, the present work considers the more real-
istic single neuron firing rate functions of type-I and type-II
neurons. This approach enables us to take into account
tonic inhibition in the presence of a receptor distribution on
dendrites and in neural populations.

2.3 Network of networks

After the study of single neurons and neural populations,
the work examines numerically tonic inhibition action on
a rather realistic network of excitatory and inhibitory neu-
rons, see Fig. 1. Since tonic inhibition may be induced by
a spill-over of neurotransmitters at synaptic receptors or
the specific activation by anaesthetic agents such as propo-
fol (Farrant and Nusser 2005; Semyanov et al. 2004), it
is reasonable to assume a global inhibitory effect affecting
both excitatory and inhibitory neurons.

2.3.1 Neuron properties

In the population of Type-I neurons, we consider 750
pyramidal cells with a surface of 400μm2, the membrane
capacitance is C = 33.181nF, Eton = −76mV, gL =
22.88nS, EL = −76mV, VT = −58mV, Vr = −68mV
and the refractory period � = 8ms (London et al. 2008).
Their dynamics obey Eq. (2). The interneuron population
exhibits 250 type-II neurons sharing the parameters Eton =
−60.9mV (which is the resting potential of the neuron),
C = 20μF/cm2, V1 = −1.2mV, V2 = 18mV, gK =
8mS/cm2, gl = 2mS/cm2, VCa = 120mV, VK = −84mV,
Vl = −60mV, V3 = 2mV, V4 = 30mV, gCa = 4mS/cm2

and ϕ = 0.04. The dynamics of the interneurons obeys
Eqs. (7). In the simulation, both excitatory and inhibitory
synapses receive external input in the presence of ESRs.

Stochastic input An external input current applied during
the simulations to neuron i is stochastic

Iapp,i = I0 + βi(t) , i = 1, . . . , 750

where the random values βi(t) are taken from the uniform
distribution in the interval [−2.0μA; 2.0μA] for Type I
neurons and for Type-II neurons

Iapp,i (t) = I1 + αi(t) , i = 1, . . . , 250 (11)

with the random variable αi(t) taken from the uniform dis-
tribution in the interval [−60.0μA; 60.0μA] for Type II
neurons. Here I0 = 103μA and I1 are constants fixed for
each simulation. Together with the physiological parame-
ters of the models, I0 and I1 yield firing frequencies of
the neurons between 0Hz and 17Hz, which reflects a rather
high level of noise. The input current fluctuations reflect
spontaenous ion channel activity.

Heterogeneity Biological neural structures stipulate a cer-
tain level of randomness in the model, be it in the neurons
themselves or the network. Specifically, we assume Gaus-
sian distributed thresholds in the neurons which reflects
neuron hetereogeneity. For Type-I neurons, the threshold of
neuron i is Gaussian distributed by

Vth,i = −49mV + ξi , i = 1, . . . , 750

Fig. 1 Topology of the network
of networks. Arrows and dots
denote excitatory and inhibitory
connections, respectively,
terminating at synaptic receptors
with probability of connection
sp (sparseness)
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with random values ξi of zero mean and the variance
0.0001mV. In Type II-neurons the distribution of thresh-
olds transforms into Gaussian distributed perturbations in
the external input constant in Eq. (11)

I1,i = I2 + ηi , i = 1, . . . , 250 ,

where I2 = 97μA is constant and identical in each simu-
lation, ηi obeys a Gaussian distribution with zero mean and
variance 1μA.

Connectivity The neurons in each population are randomly
connected to each other as well as the two populations.
The time scales of all synapses are identically chosen to
τe = 5ms and τi = 20ms corresponding to NMDA- and
GABAA-receptors, respectively. The network coupling con-
stants are wee = 0.005mS, wie = 0.008mS, wei = 0.4mS,
wii = 0.5mS where wnm, n, m = {e, i} denotes the weight
at synapse of type n on neurons of type m. The connectivity
is sparse with probabilities pii = 0.05, pie = 0.02, pei =
0.01, pee = 0.005 reflecting cortical connectivity
(Binzegger et al. 2004).

Tonic inhibition The network considers tonic conductances
gton = x ·20μS for Type-I neurons and gton = x ·100μS for
Type-II neurons where x ∈ [0; 1]. These values are phys-
iologically reasonable for GABAA receptors (Song et al.
2011; Farrant and Nusser 2005). Hence the conductance
of tonic inhibition in inhibitory cells may be higher than
for excitatory cells. This is consistent with the experimen-
tal observation that the tonic GABAA currents in pyramidal
cells usually is significantly smaller than those in interneu-
rons (Song et al. 2011; Scimemi et al. 2005).

All numerical simulations of neural activity were per-
formed with the BRIAN simulator (Goodman and Brette
2009). Typically, the network is simulated for 5 s with inte-
gration time constant 0.5 ms while ensuring that transients
do not affect the results.

2.3.2 Spike coherence measure

To analyse the coherence or correlation of spiking neural
activity subject to the level of tonic inhibition, we make use
of the spike coherence measure κ based on the normalized
cross-correlation of spike trains of neuronal pairs in the net-
work (Wang and Buzsáki 1996). The spike coherence of
two neurons x and y is computed by the cross-correlation
of their spike trains X and Y , respectively, within a time bin
τbin over a time interval T :

κxy(τbin) =
∑K

l=1 X(l)Y (l)
√∑K

l=1 X(l)
∑K

l=1 Y (l)

, 0 ≤ κxy ≤ 1 .

The spike trains are given by X(l), Y (l) ∈ {0, 1}, l =
1, 2, . . . , K and K = τbin/T , i.e. X(l) = 1 if there is at
least one spike in the bin.

The present work computes the population spike coher-
ence measure

κ(τbin) =
N1∑

i=1

N2∑

j=1

κij (τbin)

M

which is the spike coherence measure of pairs averaged
over M pairs of spike trains of the numbers N1, N2. For
instance, M = N(N − 1)/2 for intra-network spike coher-
ence with N1 = N2 = N neurons, while M = N1N2

for spike coherence measures between different networks
of number N1, N2 neurons. When the time bin τbin is very
small (as chosen in the subsequent analysis), strong syn-
chrony renders κ(τbin) ≈ 1 and the smaller κ(τbin), the less
synchronized is the network activity.

2.3.3 Power spectrum

Moreover, to learn more about the subthreshold activity in
the neuron populations subject to tonic inhibition, the work
considers the population membrane potential averaged over
the ensemble of neurons. The corresponding power spectra
of the averaged membrane potential are computed on sub-
sampled data with a sample interval of 5ms applying the
Welch-method with an average over 10 simulations of the
network activity. These simulations are performed with dif-
ferent random initial conditions of the membrane potential
and different values of temporal fluctuations, heterogene-
ity, and connectivity realizations. The δ−frequency band is
defined in the frequency interval 0 − 4Hz, the θ -band in the
interval 4 − 8Hz, the α−band in 8 − 12Hz and the β-band
in 12 − 25Hz. The power in the band is the integral of the
power value function over the corresponding frequencies in
the interval.

3 Results

To learn more about the action of propofol on neural
population activity induced by ESRs, this section shows
results on different neural description scales. We begin
with a short study of tonic inhibition in single neurons
and afterwards utilize the insights gained to study tonic
inhibition effects on firing activity in a single popula-
tion. These studies consider Type-I and Type-II neurons.
Finally, to understand better how tonic inhibition affects
the interaction in a network, the last part investigates a
small network of excitatory and inhibitory neurons subject
to tonic inhibition. This increase of the hierarchical level
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of structures from single neurons to a network of popula-
tions allows one to compare firing activity in small and large
systems.

3.1 Tonic inhibition in single neurons

Anaesthetic agents like propofol enhance tonic currents in
ESRs located on the dendritic branches of single neurons.
To understand the neural activity of populations subject to
tonic currents in ESRs, first we study the firing rate of a
single neuron subject to conductance fluctuations induced
by incoming Poisson-distributed spike trains and subject to
two levels of tonic inhibition. The subsequent study of the
nonlinear gain of such neurons reveals new insights into
tonic inhibition action. Both studies consider both Type-I
and Type-II neurons.

3.1.1 Firing rate

In Type-I neurons, it is well-known that tonic inhibition has
a strong subtractive effect on the firing rate (Holt and Koch
1997; Gabbiani et al. 1994). According to our statistical
approach the single neuron firing rate reads

Fs(GE, Gton) =
∫ ∞

−∞
ps(ge − GE)�(Vm(ge, Gton) − Vth)

×f (Vm(ge, Gton))dge (12)

with V defined in Eq. (6) and f taken from Eq. (5). Figure 2
confirms the subtractive effect in the F − GE curve for two

Fig. 2 Tonic inhibition shifts the firing rate-curve to larger conduc-
tances in Type-I neurons. The statistical firing rate Fs in Eq. (8) is
plotted with respect to the mean excitatory conductance GE in the
absence (control, Gton0nS) and presence of tonic inhibition (Gton =
1nS). The symbols denote numerical results from simulations of the
LIF-model (1) and the lines represent the analytical function Eq. (12)
under control conditions (filled dots and solid line) and in the pres-
ence of tonic inhibition (filled diamonds and dashed line). Synaptic
inhibition is neglected, i.e. gi = 0

levels of tonic inhibition Gton in accordance to previous
studies (Mitchell and Silver 2003; Ulrich 2003). In addi-
tion, Fig. 2 affirms the analytical description (12) in good
accordance to numerical results.

The shift to larger excitatory conductances while increas-
ing the tonic inhibition can be understood simply by taking
a close look at Eq. (6). For Vm = Vth, dge/dgi > 0
if Ee > Ei which holds in most cases, i.e. tonic inhi-
bition increases the firing threshold. Moreover, tonic inhi-
bition increases the effective time constant τ , cf. Eq. (6),
and thus slows down the firing and decreases the firing
rate.

Moreover, in Fig. 2 it seems that the slope of the Fs −
GE curve is different for the control and tonic inhibition
condition. This indicates an additional divisive effect, see
below.

Considering the same distributions of synaptic and extra-
synaptic activity in Type-II neurons as in Type-I neurons,
Fig. 3 shows the single neuron firing rate subject to the
mean excitatory conductance GE and reveals a rather
different firing rate curve compared to Type-I neurons.
First, the neuron does not fire outside a certain inter-
val of excitatory conductances which confirms previous
findings on the effect of the external current Iapp in the
absence of synaptic receptors and ESRs as known from iso-
lated noiseless Morris-Lecar neurons (Borisyuk 2005), cf.
Fig. 3 (control condition). Moreover adding tonic inhibition
shrinks the interval of excitatory conductances for which
the neuron fires, which, to our best knowledge, is a new
finding. These findings reveal the fundamental difference
between type-I and type-II neurons in their response to tonic
inhibition.

To better understand the results, let us consider ana-
lytically the resting state potential of the Morris-Lecar
model Eq. (7) and its stability. For the constant con-
ductance ge the resting potential V̄ stipulates dV/dt =
0, dw/dt = 0 in Eq. (7) leading to the implicit
equation

Iapp − geEe − gtonEton − gLEL

= gCam∞(V̄ )(V̄ − CCa) + gKw∞(V̄ )(V̄ − VK)

+(ge + gton + gL)V̄ . (13)

Linearising Eq. (7) about the resting state given by V̄ and
w̄ = w∞(V̄ ) and assuming τw ≈ τw(V̄ ) (Borisyuk 2005)
yields the condition for an oscillatory instability:

K(ge, gton) = −φC/τw

− (
gCam

′∞(V̄ )(V̄ − VCa) + gCam∞(V̄ )

+gKw∞(V̄ ) + ge + gton

)
> 0 .r (14)

The condition K(gc, gton) = 0 defines the critical
frequency νc = νc(gc, gton) and for K(ge, gton) > 0
ν(ge, gton) is the frequency above the Hopf-bifurcation with
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Fig. 3 Tonic inhibition shrinks the firing interval in Type-II neu-
rons. (a) The firing rate of the linearised model Fs , cf. Eq. (15), for
non-distributed values of ge (filled circles for Gton = 0mS, open
circles for Gton = 1.0mS) and distributed values of ge (solid line

for Gton = 0mS, dashed line for Gton = 1.0mS). (b) The numer-
ically determined firing rate subject to mean excitatory conductance
GE for Gton = 0mS (solid line with filled dots for data points) and
Gton = 1.0mS (dashed line with diamonds for data points)

which the system oscillates close to the stationary state.
Hence the analytical firing rate reads:

fana(ge, gton) = ν(ge, gton)�(ge − g1)�(g2 − ge)

with the lower and higher critical conductances gc = g1

and gc = g2, respectively. Figure 3(a) shows the fana −
ge-curve (symbols) for control and tonic inhibition. Consid-
ering Poisson-distributed input spike trains to the excitatory
synapses, ge and gton are taken from the distribution (10)
and the resulting firing rate (based on the linear approxima-
tion above) is a convolution of fana(ge, gton) and ps(ge −
GE, gton)

Fs(GE,Gton) =
∫ ∞

−∞
ps(ge − GE,Gton)fana(ge, gton)dge (15)

Figure 3(a) shows the resulting firing rate function Fs

(lines) from Eq. (15). We observe that the interval borders
of the firing rate function are smoothed and increasing tonic
inhibition decreases the firing rate. The numerically com-
puted mean firing rate obtained from a single stochastic
Type-II model neuron (Fig. 3(b)) shows good qualitative
accordance to the analytical finding.

However, it is important to mention that the analytical
result in Fig. 3(a) is based on the linear approximation of
the Morris-Lecar model close to its stationary state, whereas
the numerical solution shown in Fig. 3(b) involves the
highly nonlinear dynamics of the model. This difference
emerges in the firing rates of simulated neuron where it is
slightly smaller compared to the analytical firing rate close
to the Hopf bifurcation. In addition, increasing tonic inhibi-
tion slightly increases the firing rate in the interval center,
whereas it decreases the firing rate in the full interval in the
full model.

To understand the difference between the analytical and
numerical result, Fig. 4 shows the system trajectories in

phase space below (subthreshold) and beyond (superthresh-
old) the stability threshold for two tonic inhibition values.
Most prominently, the trajectories evolve along a regular
spiral close to the stationary state (spiral centers in Fig. 4,
subthreshold) well below the firing threshold at V = 0mV,
whereas the trajectories perform a deformed periodic orbit
far from the stationary state beyond the stability threshold,
cf. Fig. 4 (right panel). Equation (14) defines the frequency
of the Hopf instability, i.e. the frequency with which the
system oscillates close to the stationary state. Hence this
description is correct if the trajectories remain close to the
stationary state in the super-threshold condition. However,
Fig. 4 (right panel) reveals that super-threshold activity
exhibits a nonlinear orbit different from the linear spirals
with a periodic time different from the (linear) Hopf fre-
quency. The consecutive times the trajectory passes through
the threshold with dV/dt > 0 is the interspike interval.
Hence, the firing rate is different from the critical frequency
as observed in Fig. 3.

3.1.2 Nonlinear gain

The slope of the firing rate, also called the nonlinear gain, is
proportional to the neuron responsiveness to external stimuli
or the afferent activity from other neurons. It is an impor-
tant parameter to understand the dynamics of neurons in a
network subject to modified receptor properties. Figure 5
presents the slopes for two levels of tonic inhibition in both
neuron types. Firstly, the nonlinear gain is non-symmetric
to the inflection point for Type-I neurons and exhibits a
maximum value for a certain level of tonic inhibition. In
contrast in Type-II neurons, the absolute value of the max-
imum gain value decreases slightly with increasing tonic
inhibition.

To gain further insights, Fig. 6 shows the nonlinear gain
of Type-I neurons subject to tonic inhibition levels for some
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Fig. 4 In Type-II neurons, the analytical frequency close to stability
threshold is different from the spike rate. Left panel: the subthresh-
old trajectories show stable foci about the stable stationary state in
the control condition (black, gE = 1.0mS, Gton = 0.0mS) and for
tonic inhibition (red, gE = 1.5mS, Gton = 0.2mS). Right panel:

superthreshold trajectories exhibit spirals close to the unstable resting
state but nonlinear orbits far from the stationary states for the control
condition (black, gE = 1.1mS, Gton = 0.0mS) and for tonic inhibition
(red, gE = 1.53mS, Gton = 0.2mS). The numerical firing threshold is
set to V = 0mV

specific mean excitatory conductances. Increasing tonic
inhibition may decrease (GE = 0.15nS) or first increase
and then decrease (GE = 0.4nS and GE = 1.0nS) the non-
linear gain. In addition, there is an optimal combination of
excitatory and tonic inhibition conductance for which the
nonlinear gain is maximum. Analytical investigations (not
shown) confirm this numerical finding.

3.2 Tonic inhibition in a single neuron population

After the study of single neurons, the study of a popula-
tion of such neurons promises to give some mor insight
into the effect of anaesthetic drugs via ESRs. Similar to
the previous section, the subsequent paragraphs shows tonic
inhibition effects on the firing rate and nonlinear gain in
neural populations. Moreover, the work considers the case
of sparsely-coupled neurons and shows the link to neural
mass models by deriving a new transfer function for Type-I
neurons subject to tonic inhibition.

3.2.1 Population firing rate

Mathematically, for type-I neurons the population firing rate
function reads

FI (GE, Gton, V̄th) =
∫ ∞

−∞

∫ ∞

−∞
ps(ge − GE, Gton)

×N (Vth−V̄th)�(Vm(ge, Gton)−Vth)

×f (Vm(ge, Gton))dgedVth . (16)

Since the further analytical treatment of populations of
Type-II neurons would well exceed the major aim of this
work, the subsequent paragraphs consider numerical simu-
lations of Type-II neural populations only.

Figure 7 shows the population firing rate of Type-I
neurons for two tonic inhibition levels and we observe
a smoothing of the Fs − GE curve by the distributed
thresholds. Importantly, the numerical (symbols) and ana-
lytical (lines) results for the F − GE-curve show very good

Fig. 5 The nonlinear gain of
the single neuron firing rate in
the presence of tonic inhibition.
Tonic inhibition may increase
the nonlinear gain in Type-I
neurons (Leaky-Integrate and
Fire) but decreases its absolute
value in Type-II neurons
(Morris-Lecar). Parameters are
taken from Fig. 2 and 3
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Fig. 6 The nonlinear gain of Type-I neurons subject to tonic inhibi-
tion level for different excitatory conductances GE = 0.15nS, GE =
0.4nS and GE = 1.0nS. Increasing tonic inhibition may decrease
or increase the nonlinear gain subject to the excitatory conductance.
Parameters are taken from Fig. 2

accordance. Moreover, increasing the heterogeneity by an
increased variance of the firing threshold distribution σ 2

th

renders the F − GE-curve flatter and hence decreases the
nonlinear gain. Since the nonlinear gain determines the
response of the population to external inputs, the hetero-
geneity reduces the responsiveness of the population. The
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Fig. 7 Population firing rate of heterogeneous Type-I neural popu-
lations subject to tonic inhibition. Tonic inhibition induces a strong
subtractive effect, while heterogeneity renders the F −GE-curve more
flat and yields a strong divisive effect. The circles (Gton = 0mS) and
diamonds (Gton = 1.0mS) denote results obtained by numerical sim-
ulations of a set of N = 200 Leaky-Integrate and Fire model neurons.
The solid (Gton = 0mS) and dashed (Gton = 1mS) lines represent the
population firing rate given by the analytical expression in Eq. (16).
The two levels of heterogeneity of firing threshold distributions are
color-coded (black: σth = 0.1mV, blue: σth = 10.0mV). Black lines
resemble well the results in Fig. 2 due to the low level of heterogeneity,
whereas the blue lines show the effect of hetereogeneity

figure also clearly reveals that the responsiveness of het-
erogeneous populations is well reduced in the presence of
tonic inhibition because the nonlinear gain of the population
firing rate is much smaller.

In a population of Type-II neurons, tonic inhibition is
expected to shrink the firing interval in a way similar to
the previous results (Fig. 3). Figure 8 affirms this find-
ing in single neurons for two different levels of firing
threshold heterogeneity. Moreover, increasing the hetero-
geneity smoothens the F − GE-curve and thus, diminishes
the population firing rate in the firing interval, increases
it outside, and in total diminishes the nonlinear population
gain. Mathematically this smoothing effect results from the
convolution by the distributed firing thresholds. Hence het-
erogeneity reduces the responsiveness of the population.
In addition, tonic inhibition does not seem to affect much
the nonlinear population gain in contrast to type-I neurons
and does change slightly the responsiveness of the pop-
ulation only. Although this aspect of tonic inhibition in
type-II neurons needs a more detailed discussion, this would
exceed the major aim of the present study and we refer to
future work.

3.2.2 Nonlinear population gain

The previous paragraphs have indicated that the nonlinear
population gain may change with an increase of tonic inhi-
bition. To quantify this gain change, Fig. 9 presents the
nonlinear population gain for both neuron types and for
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Fig. 8 Population firing rate of heterogeneous Type-II neural popu-
lations subject to tonic inhibition. Tonic inhibition shrinks the firing
interval, while heterogeneity smoothens the F −GE-curve and renders
it more flat. The circle-solid line (Gton = 0mS) and diamond-dashed
line (Gton = 1.0mS) denote numerical results of simulations of a
set of N = 200 Morris-Lecar model neurons. The line color denotes
the levels of heterogeneity of firing threshold distributions (black:
low heterogeneity with σapp = 0.1μA; blue: high heterogeneity with
σapp = 10.0μA)
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Fig. 9 The nonlinear gain of the population firing rate function
F(GE) for Type-I (Leaky-Integrate and Fire) and Type-II (Morris-
Lecar) neurons in the presence of tonic inhibition. The results for
Type-I neurons are based on the analytical expression, the results of

Type-II neurons are gained numerically by simulating the population
firing rate from N = 200 neurons, and afterwards the derivative is
computed numerically. For the other parameters, see Fig. 7 and 8

two levels of tonic inhibition. For both Type-I and Type-II
neurons, tonic inhibition decreases the nonlinear popula-
tion gain and thus diminishes the responsiveness of the
populations to external stimuli.

A more detailed study of Type-I populations (Fig. 10)
reveals that the nonlinear population gain exhibits a maxi-
mum while increasing tonic inhibition, and the gain exhibits
a global maximum at low levels of mean excitatory con-
ductance. However, a similar maximum gain as revealed
in single Type-I neurons for larger excitatory conductances
(Fig. 6) has not been found.

The nonlinear population gain may be computed ana-
lytically by taking the derivative of F in Eq. (16) with
respect to GE . Here it is necessary to note that the
variance of the incoming spike trains depends on the

Fig. 10 Tonic inhibition may maximize the nonlinear population gain
dependent on the mean excitatory conductance. For parameters, see
Fig. 9

mean firing rate, and thus σe = σe(GE). We gain the
expression:

F ′ = dF(GE, Gton, V̄th)

dGE

=
∫ ∞

−∞

∫ ∞

−∞
qs(ge, GE, Gton)

×N (Vth − V̄th)�(Vm(ge, Gton) − Vth)

×f (Vm(ge, Gton)dgedVth (17)

with

qs(ge, GE, Gton) = we

(
−τe

∂ps(x, σe)

∂x
|x=ge−GE

+
√

τe

8

∂ps(ge − GE, y)

∂y
|y=σe

)

(18)

which will be helpful in the next section on connected
neurons.

3.2.3 Connected neural population

In the previous paragraphs, we have assumed uncoupled
neurons for simplicity while cortical neurons are sparsely
connected (Binzegger et al. 2004). To render the previous
analytical description more realistic, now the input to single
neurons is a sum of external uncorrelated spike trains and
the single neuron activity of other neurons in the same pop-
ulation. The subsequent paragraphs shows how to employ a
mean-field approximation considering the input from other
neurons as being small. This approach allows us to derive a
modified population firing rate distribution.

In a first approximation, the input spike rate from other
neurons of number N is:

λj =
N∑

j=1

wjlFs,l ,
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Fs,l is the spike rate (12) of neuron l in the same population
and wjl > 0 is the synaptic weight of input from neuron l

to neuron j . Hence the mean input rate and its variance read

G
j
e = GE + weτe

N∑

l=1

wjlFs,l (19)

σ
j
e =

√√√√w2
e τe

2

(
λ +

N∑

l=1

wjlFs,l

)

≈ σe + we

√
τe

8

N∑

l=1

wjlFs,l . (20)

with the assumption of weak coupling
∑N

l=1 wjlFs,l/GE 

1 resulting either from strong sparseness or low synap-
tic weights. For Type-I neurons, re-writing the probability
density function (10) of neuron j

ps,j (ge − G
j
e , σ

j
e ) = 1√

2πσ
j
e

e−(ge−G
j
e )2/2(σ

j
e )2

and expanding it about the uncoupled state we gain

ps,j (ge, G
j
e ) ≈ ps,j (ge − GE, σe)

+qj (ge − GE, σe)

N∑

l=1

wjlFs,l (21)

with σ
j
e = σ

j
e (G

j
e ) and the nonlinear gain function ql

taken from (18). Then the population firing rate for Type-I
neurons F reads

F̄ (GE, Gton, V̄th) = 1

N

N∑

j=1

Fs,j = FI (GE, Gton, V̄th)

+ 1

N

N∑

j,l=1

QjwjlFs,l (22)

with

Qj(G
j
e , Gton, V

j
th) =

∫ ∞

−∞
qj (ge, G

j
e , Gton)

× N(V
j
th−V̄th)�(Vm(ge, Gton)−V

j
th)

× f (Vm(ge, Gton))dge .

and the population firing rate of uncoupled neurons (16). If
the inter-neuron coupling is weak as assumed before, then
the firing rate of each neuron is the mean-field firing rate
of the population, i.e. Fs,l ≈ F̄ . For identical small weights
wij = γ /N > 0, finally we gain

F̄ (GE, Gton, V̄th) = FI (GE, Gton, V̄th) + γ F̄
1

N

N∑

j=1

Qj

= FI (GE, Gton, V̄th)

+γ F̄F ′
I (GE, Gton, V̄th)

and consequently

F̄ (GE, Gton, V̄th) = FI (GE, Gton)

1 − γF ′
I (GE, Gton)

(23)

where F ′ is the nonlinear population gain taken from
Eq. (17) and we used

∑
j Ql/N ≈ ∫

Q(GE, Gton,

Vth)dVth which is valid for a large numnber of neurons in
the population.

Equation (23) shows that the larger the nonlinear gain,
the larger the deviation of the mean-field population firing
rate from the population rate of uncoupled neurons. In more
details, if F ′ > 0 as in Type-I neurons, then the weak cou-
pling of neurons yields an enhancement of the population
firing rate. Because tonic inhibition enhances the nonlinear
gain, it has a similar effect as an increased neural coupling
in the network. In contrast, populations of Type-II neurons
exhibit F ′ > 0 for smaller excitation and F ′ < 0 for
larger excitation yielding an increase and decrease of the
population firing rate by coupling of neurons. Since tonic
inhibition reduces the nonlinear gain of Type-II neurons
slightly only, it poorly modifies the effect of coupling.

3.2.4 Extended neural mass models

After studying the tonic inhibition effect in spiking neural
networks, the question arises how one can use the gained
insights in other neural population models, such as the neu-
ral mass or neural field models (Bressloff 2012). A major
element in neural mass models is the nonlinear transfer
function S, which is the population firing rate subject to the
mean dendritic activity in the population. In the standard
derivation of the function (Bressloff 2012), one assumes
that the membrane potential at synaptic receptors V (t) is
always close to the resting membrane potential Vrest . This
assumption involves Type-I neurons in which the time con-
stant of the neuron membrane is small compared to the time
scale of the synaptic response given by the conductance
g(t). Consequently, the voltage-gated current at the synapse
I (t) = g(t)(V (t) − E) induced by an incoming spike with
the reversal potential of the corresponding ion channel at
the synaptic receptor E reads I (t) ≈ g(t)(Vrest − E), and
the corresponding extracellular potential is approximately
U(t) ∼ g(t). Considering many receptors and neurons, the
spatial and temporal mean of this potential is one of the
activity variables in neural mass models. The transfer func-
tion S depends on this mean variable U which, in a more
general formulation, includes all potentials Uj generated by
currents at synaptic receptors or ESRs, i.e. S = S[∑j Uj ].
For instance, in the presence of excitatory and inhibitory
receptors S = S[Ue − Ui].

In the presence of incoming neural spike trains, g(t) is a
stochastic process with mean and variance given in Eqs. (9).
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Excitatory synaptic responses and extra-synaptic tonic inhi-
bition lead to corresponding mean conductances Ge and
Gton which are proportional to the corresponding currents
which are proportional to mean extra-cellular potentials, i.e.
Ue = k1GE and Uton = k2Gton with constants k1, k2 > 0.
Moreover, we identify the population firing rate in the neu-
ral mass model with the population firing rate F given by
Eq. (16) derived from spiking neural networks of type-I neu-
rons. This identification resembles very well the original
derivation of the population firing rate (Amit 1989; Wilson
and Cowan 1972; Hutt 2012) where neurons are consid-
ered as McCulloch-Pitts neurons, i.e. f (Vm(ge, Gton)) =
�(Vm − Vth). This identification extends neural mass mod-
els by considering type-I neurons by the specific choice
of f (Vm(ge, Gton)) as discussed in a recent work (Hutt
2012). Consequently, the new transfer function in neural
mass models for Type-I neurons reads

SI = FI [Ue/K1, Uton/k2, V̄th] (24)

However Eq. (24) is hardly useful in analytical studies
since the integral involved is not solvable in a closed form.
To this end, we suggest to simplify F , but keep major fea-
tures of the F −GE curve. A recent preliminary study (Hutt
2012) has shown that one of the most important differences
of F compared to the original standard sigmoid function is
its missing symmetry to its inflection point, i.e. the non-
linear gain is not symmetric as shown in Fig. 9. Moreover,
tonic inhibition has a clear subtractive effect and neglect-
ing the divisive effect of tonic inhibition is a reasonable
first approximation. Taking these elements into account, we
suggest a new single-neuron firing rate function fapprox :

f (Vm(ge, Gton)) ≈ fapprox(ue/k1, Uton/k2, Vth)

= fmax

(
1 − e−γ (ue−Uton−Vth)

)

�(ue − Uton − Vth) (25)

with a suitable value of γ > 0. Then the new approximated
transfer function reads:

SI,approx(Ue, Uton, V̄th) = 1

2πσeσth

×
∫ ∞

−∞

∫ ∞

−∞
e−(ue−Ue)

2/2σ 2
e −(Vth−V̄th)2/2σ 2

th

×fapprox(ue, Uton, Vth)duedVth . (26)

Recall that σ 2
e depends on Ge by Eq. (9) and hence

σ 2
e = K3Ue with K3 = we/2K1. The approximation (25) is

motivated by its analytical simplicity and the limit case of
standard neural mass models for γ → ∞

fapprox(ue − Ue, Uton, Vth) → fmax

� (Ue − Uton − Vth) , γ → ∞ . (27)

Hence, γ < ∞ reflects biological properties of Type-I
neurons. Computing analytically the new transfer function
(26) leads to:

SI,approx(Ue, Uton, V̄th) = fmax

2

(
1 + �

(
Ue − Uth√

2σ(Ue)

))

−fmax

2
e−γ (Ue−Uth)+γ 2σ 2(Ue)/2

(
1 + �

(
Ue − Uth − γ σ 2(Ue)√

2σ(Ue)

))
(28)

with the effective variance σ 2(Ue) = σ 2
e (Ue) + σ 2

th =
K3Ue +σ 2

th, the mean firing threshold Uth = Uton+V̄th and
the Gaussian error function � (see the Appendix for more
details on the derivation). The first term in (28) represents
the sigmoidal function for McCulloch-Pitts neurons subject
to Poisson noise and the second term takes into account
specifically the Type-I properties for γ < ∞. We observe
that the tonic inhibition contribution Uton shifts the mean
firing threshold V̄th, i.e. increasing tonic inhibition increases
the mean firing threshold of the population. For illustration,
Fig. 11 shows the single neuron firing rate fapprox and the
resulting new transfer function in the absence and presence
of tonic inhibition.

It is important to point out that the new transfer function
allows to study tonic inhibition in neural mass and neural
field models (Coombes 2006) that attracts much attention to
model e.g. electroencephalographic activity measured dur-
ing general anaesthesia (Bojak and Liley 2005; Steyn-Ross
et al. 2001; Sleigh et al. 2011; Hutt and Longtin 2009;
Hutt 2013; Hutt et al. 2013). In this context, one important
hypothesis states that the loss of consciousness in subjects
originates from a jump of high neural steady state activity
to a neural resting state of low activity (Steyn-Ross et al.
2001). Making use of a recent neural field model (Hutt and
Longtin 2009; Hutt et al. 2013) involving a fully-connected
network of excitatory and inhibitory neurons and excitatory
and inhibitory synapses, the spatially constant resting state
potential Urest is given implicitly by:

Urest = (ae − aip)SI,approx[Urest − Uton − V̄th] . (29)

This resting state reflects a state of spatially constant
population activity where all neurons are highly synchro-
nized. This state contrasts to the activity states in sparsely-
connected populations investigated in the sections above.
For the sake of simplicity, here we assume an identical trans-
fer function SI,approx for excitatory and inhibitory neurons
with identical mean firing thresholds V̄th. The constants
ae and ai in Eq. (29) are the excitatory and inhibitory
synaptic gain, resp., and p ≥ 1 reflects the synaptic
action of the anaesthetic drug propofol on synaptic recep-
tors. The value p = 1 reflects the absence of propofol
while p − 1 is proportional to the on-site concentration of
propofol.

Propofol affects both synaptic and ESR action, but the
relation of propofol on-site concentration and the level of
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Fig. 11 The reduced single neuron model and the resulting new trans-
fer function. Panel (a) compares the single neuron firing rate of the
Leaky-Integrate and Fire model (dotted line) given in Eq. (5) and the
reduced model defined in Eq. (25). Panel (b) presents the resulting new
transfer function given in Eq. (28) with σ = √

18mV. Please note that

Ue originates from the the dendritic current, it adds up on the resting
potential without input El and the mean membrane potential in the
population is El +Ue. Parameters are γ = 1/mV, σth = √

2mV, K3 =
0.5

tonic inhibition is not well-understood. Hence a first ansatz
is the linear relationship Uton = k · p for simplicity, where
k > 0 represents the sensitivity of ESRs to propofol.
Figure 12(a) presents the resting states Urest subject to the
drug concentration factor p for three different values of k.
We observe the occurence of three resting states for smaller
values of p where the center branch is linearly unstable
(dashed line, analysis not shown). For larger p a single rest-
ing state at a low potential exist only revealing a saddle-node
bifurcation. The plot illustrates the phase transition hypoth-
esis: starting at a high activity level resting state before
drug induction (p = 1), increasing the drug concentra-
tion leads to the loss of the resting state at high activity
level and the neural system drops to the only existing stable
low activity resting state reflecting the loss of conscious-
ness. Moreover, the corresponding nonlinear gain at the
upper stable stationary state (Fig. 12(b)) increases with
larger tonic inhibition (k is larger with higher tonic inhibi-
tion level) and while the system approaches the saddle-node
bifurcation point. The gain of the lower stationary state is

close to zero. The gain enhancement reflects the increas-
ing sensitivity of ESRs to external stimuli or input from
other areas. Summarizing, increasing the tonic inhibition
increases the nonlinear gain of the high-activity stationary
state.

3.3 Tonic inhibition in a network of networks: EEG
and population firing patterns

The anaesthetic propofol modifies GABAergic receptor
dynamics and changes neural firing activity, exerting either
inhibition or even excitation (Borgeat et al. 1991; McCarthy
et al. 2008; Ching et al. 2010; Lewis et al. 2012). It
is also known that anesthetic agents such as propofol
induce changes in the electroencephalographic recordings
(EEG) (Purdon et al. 2013; Cimenser et al. 2011; Gugino
et al. 2001) indicating that they alter the subthreshold activ-
ity of excitatory neurons since EEG is known to originate
from subthreshold dendritic currents on spatially aligned
apical cortical dendrites (Nunez and Srinivasan 2006).

Fig. 12 The resting state
potential (a) and the nonlinear
gain (b) subject to the drug
concentration factor p. Solid
(dashed) lines encode stable
(unstable) stationary states.
Parameters are
ae = 0.17, ai = 0.07,
γ = 1.0/mV, σth =√

2mV, K3 = 0.5
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In order to investigate how tonic inhibition affects sub-
threshold activity and hence induces changes in EEG and
how it modifies neural firing activity in a biologically realis-
tic network, we perform a numerical study of the population
spiking activity and the power spectra of the subthreshold
activity in excitatory neurons.

Figure 13 presents the behavior of the network shown in
Fig. 1 when tonic inhibition is applied. Re-call that the net-
work involves a population of excitatory type-I neurons and
a population of inhibitory type-II neurons and all neurons
are coupled sparsely to each other. Tonic inhibition affects
all neurons. In the absence of tonic inhibition (Fig. 13(a)),
the network displays synchronized patterns of oscillations in
both networks at about 9.5Hz (α-band) visible in the raster
plots of the two populations. This oscillation also shows up
in the power spectrum of the subthreshold activity of the
pyramidal neuronal population.

When weak tonic inhibition is added (Fig. 13(b)), the
spiking activity slows down slightly in both networks while
the synchrony visibly decreases. This can be thought of as a
right-shift of the F − GE curve of type-I neurons yielding
a lower population firing rate. In type-II neurons the exci-
tation window becomes smaller while neurons close to the
excitation window center decrease their frequency slightly
only. Moreover, the frequency of the maximum power spec-
tral density shifts to lower values, i.e. the amplitude of the
α−activity decreases. As the level of tonic inhibition keeps
increasing (Fig 13(c)), the neurons fire less synchronized
accompanied by an extinction of α-activity in the excita-
tory neuron firing. A detailed study on when the α−activity
vanishes reveals that the frequency of the excitatory popu-
lation decreases while increasing tonic inhibition whereas
the inhibitory population retains its α−rhythm much longer
(not shown). This is in line with the finding in the previous

Fig. 13 Raster plots of inhibitory and excitatory populations and
smoothed power spectrum of the membrane voltage of the excitatory
cells. (a) without tonic inhibition. (b) tonic inhibition, x = 0.3, i.e.

gton = 6μS and gton = 30μS in excitatory and inhibitory neurons.
(c) tonic inhibition x = 0.8, i.e gton = 16μS and gton = 80μS in
excitatory and inhibitory neurons
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sections above on single type-II neurons and their popula-
tions: tonic inhibition decreases the excitation window, but
almost maintains the firing frequency in the window cen-
ter. In addition, the subthreshold activity of the excitatory
population decreases in power as well.

Finally, when the level of tonic inhibition increases fur-
ther (gton = 24μS for type-I neurons and gton = 120μS

for type-II neurons, not shown), the firing of excitatory neu-
rons stops and the inhibitory neurons remain active only for
a transient period before its neuronal activity fully dies out
as well. In this case, the F −GE curve for excitatory (type-I)
neurons is shifted much to the right to exhibit a low popula-
tion firing rate and the excitation window for the inhibitory
(type-II) neurons has vanished.

To further quantify the effect of tonic inhibition on the
network activity, Fig. 14(a) presents the intra-population
spike coherence in the excitatory and inhibitory population
and the inter-population spike coherence between the exci-
tatory and inhibitory population. The spike coherence in the
excitatory population (dashed grey curve) decreases mono-
tonically with the increase of tonic inhibition. In contrast
the spike coherence of the inhibitory population (plain black
curve) exhibits a minimum at x ≈ 0.45 and increases as the
activity of the excitatory population becomes more random
for x > 0.45. The spike coherence between the pyramidal
and the interneuron populations (plain grey curve) is max-
imum at about x = 0.16 (zoom in not shown), a further
increase of tonic inhibition diminishes the spike coherence
in conjunction with the reduction of the excitatory activ-
ity. A computation of the spike coherence measure κ for
various bin sizes τ shows that it does not increase linearly
with τ (not shown) and hence the latter interpretation holds,
cf. (Wang and Buzsáki 1996).

Moreover, Fig. 14(b) shows that the ratio between the
amplitude of δ-rhythms and the amplitude of α-rhythms
(dashed black curve) increases as a sigmoid-like function of
the propofol concentration x and becomes larger than 1 from

x = 0.575, namely the quantity of α-rhythms is then smaller
than the quantity of δ-rhythms. The ratio between the ampli-
tude of θ and α-rhythms (plain grey curve) increases for
x < 0.6, becoming larger than 1 for x > 0.49. The curve
of the θ -ratio crosses the curve of the δ-ratio at x = 0.65
where the amplitude of δ−activity remains higher. The ratio
between β− and α−activity (dotted grey line) is larger than
the θ − α ratio for x < 0.19, and larger than the δ − α

ratio for x < 0.32. For larger values of x the θ ratio then
is smaller than the two other ratios reaching a maximum for
x = 0.8.

4 Discussion

4.1 Decrease of population firing rate

Tonic inhibition induces a shunting effect and inhibits fir-
ing in both Type-I and Type-II neurons by a decrease of
both the single neuron (cf. Figs. 2 and 3) and popula-
tion firing rates (Figs. 7, 8 and 13). Such an effect is
well-known in single neurons (Koch 1999; Mitchell and
Silver 2003; Ulrich 2003; Brickley and Mody 2012) but,
to our best knowledge, has not been found yet in popula-
tions. We mention that most previous studies investigate the
effect of shunting inhibition on Type-I neurons, whereas the
present work is one of the first to consider Type-II neu-
rons as well. The most prominent difference between Type-I
and Type-II neurons is the way how the diminuation of
neural firing emerges. In Type-I neurons, tonic inhibition
decreases the neuron excitation leading to a strong sub-
tractive effect, whereas tonic inhibition in Type-II neurons
shrinks the window of excitation level of the neuron. This
latter specific effect leads to a strong diminuation of firing
activity close to the border excitations, whereas the neu-
rons excited in the center of the excitation interval decrease
their firing much less. This stability towards tonic inhibition

Fig. 14 Summary of the effects of tonic inhibition on the synchrony and the subthreshold activity of the spiking neural network. (a) Spike
coherence measure of the neuronal population as a function of propofol concentration (x). b) Ratio of the power values in the δ-, θ− and β−band
and the power in the α
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explains the robustness of Type-II tonic firing observed in
Fig. 13.

4.2 Both subtractive and divisive effect by tonic inhibition

Figure 2 shows that tonic inhibition moves the firing rate
curve horizontally in single Type-I neurons however syn-
chronously affects the nonlinear gain as seen in Figs. 5 and
9 reflecting a divisive effect. This result is in good accor-
dance with the literature on single Type-I neurons, pointing
out a subtractive and divisive effect of inhibition (Carandini
and Heeger 1994; Doiron et al. 2001). The present work
contributes to this discussion and extends previous results
by considering neural populations. Moreover, our results
reveals a maximum nonlinear gain due to tonic inhibition
in single neurons (Fig. 6) indicating an optimal level of
tonic inhibition. This effect is also found in neural popu-
lations as shown in Figs. 9 and 10 and in the new neural
mass model, cf. Fig. 12(b). The nonlinear gain is pro-
portional to the neural firing response to small excitation
variations originating from neurons in the same population
or other neural structures. As experimental studies indi-
cate that tonic inhibition is supposed to regulate the state
of consciousness, e.g. via ESRs (Brickley and Mody 2012;
Cavelier et al. 2005; Belelli et al. 2009) and potentiate the
action of anaesthetic agents (Kretschmannova et al. 2013),
the optimum gain seems to reflect one underlying neu-
ral mechanism in the regulation of anaesthetic action and
consciousness.

Type-II neurons also exhibit such a local maximum and
the absolute value of the nonlinear gain decreases with
increasing level of tonic inhibition, cf. Figs. 5 and 9. How-
ever, in contrast to Type-I neurons, increasing tonic inhi-
bition does not maximize the gain in Type-II neurons but
decreases it only.

4.3 Analytical description of firing rates

The statistical approach employed resembles a previous
approach of (Amit and Brunel 1997; Roxin et al. 2011)
on Type-I neurons, which however is strongly based on
the specific Leaky Integrate-and-Fire model. Our statistical
approach promises to apply to more models, such as the
Morris-Lecar model for a Type-II neuron.

The work presents both analytical and numerical sim-
ulations of tonic inhibition in single neurons and single
populations and the analytical results match the numerical
simulation results very well in the case of Type-I neurons.
For Type-II neurons, the statistical approach is also valid
but more difficult to apply because the single neuron firing
rate is not known analytically due to the nonlinear dynam-
ical nature for most models. However, the first attempt to
consider the firing rate based on a linear approximation

yields reasonable accordance with the nonlinear firing rate,
cf. Fig. 3. These results point out the power of the sta-
tistical approach given in Eqs. (12) and (16). The present
work does not proceed the study of these new analyti-
cal models since this would exceed the major aim of the
work, i.e. the study of tonic inhibition, the analytical insight
promises a new avenue of analysis of population firing
statistics.

In order to study the impact of tonic inhibition, the first
analytical description of population activity neglects the
interaction of neurons. A subsequent analytical study of
the population firing rate of sparsely connected neurons
in Section 3.2.3 reveal that the sparse coupling affects
the firing rate mainly about the maximum nonlinear gain,
cf. Eq. (23), whereas low and high firing rate are poorly
affected.

Moreover the new population firing rate allows to re-
derive the transfer function applied in neural mass and
neural field models and gain a novel transfer function tak-
ing into account tonic inhibition. This bridge to neural
mass models is supposed to have a strong impact on such
models due to their growing popularity in computational
neuroscience and the growing insight into the importance
of tonic inhibition effects in biological neural structures. A
first insight gives the study of stationary states in the pres-
ence of both phasic and tonic inhibition in the context of
propofol anaesthesia, cf. Fig.12(a). We observe that tonic
inhibition lowers the propofol concentration (encoded by
the factor p) for which a high-activity stationary state exists,
i.e. the stronger the tonic inhibition, the more probable is a
low-activity stationary state in neural populations. In addi-
tion, the increased sensitivity modeled by the nonlinear gain
(Fig.12(b)) is accompanied by an earlier destruction of the
high-activity resting states. This finding is in good accor-
dance with recent experimental findings close to the point
of loss of consciousness (Lewis et al. 2012) revealing a dra-
matic drop of population firing rate. Hence tonic inhibition
facilitates the destruction of high-activity resting states and
the drop of neural activity to lower activity. Taking up the
idea of loss of consciousness in general anaesthesia caused
by a jump from high to low activity, as proposed by Steyn-
Ross et al. (2001), the previous results indicate that the tonic
inhibition facilitates the loss of consciousness.

4.4 Anaesthetic action

On the microscopic level, ESRs are sensitive to anaes-
thetic drugs such as propofol (Bai et al. 2001; McDougall
et al. 2008; Bieda and MacIver 2004) and induce tonic
currents at inhibitory GABAA-receptors. On the macro-
scopic level, one of the major non-invasive indicators for
the depth of anaesthesia in patient is the electroencephalo-
gram (EEG) (Ballard et al. 2012; Sleigh et al. 2011) which is



434 J Comput Neurosci (2014) 37:417–437

known to originate from electric population activity (Nunez
and Srinivasan 2006). To learn more about the impact of
tonic inhibition on EEG (see also (Kretschmannova et al.
2013)), Fig. 13 shows the power spectrum of the mean
membrane potential which is supposed to be linked to
EEG (Nunez and Srinivasan 2006). In the excitatory popu-
lation, we observe a clear decrease of spectral power in the
α−band with increasing tonic inhibition (Fig. 13) similar to
previous experimental findings in occipital EEG-electrodes
under propofol-anaesthesia (Cimenser et al. 2011; Gugino
et al. 2001). Synchronously the decrease of α-power and the
enhancement of spectral power in the δ−band in excitatory
neurons (Fig. 14) reflect the experimental finding in occip-
ital EEG-electrodes (Cimenser et al. 2011; Gugino et al.
2001).

Since the neural mechanism during loss of consciousness
is unknown, several hypothesis have been put forward (Hutt
et al. 2013). Besides the hypothesis of Steyn-Ross et al.
discussed above, one other prominent hypothesis of Tononi
(2004) and Mashour (2005) explains loss of consciousness
by a loss of functional connectivity between brain areas as
revealed experimentally (Boly et al. 2012; Mashour 2005;
Murphy et al. 2011; Alkire et al. 2008; Liu et al. 2013;
Purdon et al. 2013). Similar model results are found in our
spiking neural network revealing clear effects of tonic inhi-
bition on the spike coherence (Fig. 14): tonic inhibition
diminishes spike coherence between neurons in the excita-
tory population (Fig. 14) and in the inter-neuron population
for small propofol concentration reflecting a fragmentation
of cortical areas as has been found in previous studies (Boly
et al. 2012; Lewis et al. 2012; Purdon et al. 2013). Hence
ESR action supports neural fragmentation as observed in
experiments. Moreover, our study predicts a maximum of
spike coherence between excitatory cells and inter-neurons
at an intermediate level of anaesthesia what, to our best
knowledge, has not been studiedexperimentally yet.

At a first glance the different EEG-spectral features and
their explanations seem to contradict each other. How-
ever, we point out that frontal and occipital EEGs are
generated in different brain areas involving different neu-
ral structures and possible neuron interactions, as revealed
in a recent experimental animal study on the anaesthetic
effect in prefrontal and occipital visual cortex (Sellers
et al. 2013). Our results reveal an initial increase and then
decrease of the nonlinear gain in single Type-I neurons
and their sparsely-connected populations while increas-
ing tonic inhibition and a gain increase in fully-connected
and synchronized populations. The numerical simulations
of sparsely-connected networks show a clear diminua-
tion of spectral power in the excitatory population which
can be explained by the loss of spike coherence in the
population. In contrast, successful neural mass models of
EEG (Hindriks and van Putten 2012; Hutt 2013) explain

the power increase by an enhanced nonlinear gain. Conse-
quently, the connectivity type of neuron networks and their
ability to synchronize may decide whether tonic inhibition
yields a diminuation or enhancement of the population gain.

We point out that previous theoretical studies on synap-
tic anaesthetic action (McCarthy et al. 2008; Ching et al.
2010; Bojak and Liley 2005; Steyn-Ross et al. 2001; Sleigh
et al. 2011; Hutt and Longtin 2009; Hutt 2012) are able to
describe more spectral phenomena in EEG than the present
work. At a first glance this indicates that synaptic action
should not be omitted in the description of spectral EEG fea-
tures. However, these previous synaptic models are limited
since they may consider cortex only (Bojak and Liley 2005;
Steyn-Ross et al. 2001) or may take into account a cortico-
thalamic feedback (McCarthy et al. 2008; Ching et al. 2010)
but neglect various sub-cortical structures where the ESRs
have been found primarily, such as areas in the reticu-
lar activating system (Vanini and Baghdoyan 2013). Hence
synaptic models do not give the full picture of the anaes-
thetic action in the brain. For instance, the strong increase
at low frequencies (< 1Hz) (Lewis et al. 2012; Sellers et al.
2013) is poorly modeled by synaptic action, but may origi-
nate from the slow action of extra-synaptic receptors (Belelli
et al. 2009). In addition, the dramatic drop of activity during
loss of consciousness (Lewis et al. 2012) indicates a nonlin-
ear jump in neural activity. This transition may be explained
in synaptic models by nonlinear interactions (Steyn-Ross
et al. 2001; Sleigh et al. 2011; Friedman et al. 2010), or
much more simple by a shift of the population firing rate
induced by ESR action, cf. Fig. 12.

Summarizing, ESRs supports the reduction of neural
activity, be it diminished EEG power or drop of the popu-
lation firing rate, but it does not explain the characteristic
spectral power features observed in Local Field Potentials
and EEG which may originate from synaptic anaesthetic
action.

5 Conclusion

The experimental observation that extra-synaptic GABA-
receptors may play an important role for the information
processing in neural populations stimulated us to perform
the present theoretical work. We elaborate on a recently
proposed statistical approach that allows us to traverse the
scales from single-neuron level to mesoscopic population
level. This analytical link enables us to derive analytical
expressions for the steady-state population firing rate based
on the steady-state single neuron firing rate and hence
allows to study analytically the effect of extra-synaptic tonic
inhibition in neural populations. The present study shows
this link for both Type-I (Leaky Integrate-and-Fire) and
Type-II (Morris-Lecar) models.
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Extra-synaptic GABA-receptors are highly sensitive to
anaesthetic drugs and the present work highlights a strong
effect of tonic inhibition on the nonlinear gain in single
neurons and neural populations. Our work shows in detail
different spectral features observed in EEG under anaesthe-
sia induced by the tonic inhibition effect on the nonlinear
gain. These findings are in line with previous studies on
phasic inhibition (Hindriks and van Putten 2012; Hutt et al.
2013; McCarthy et al. 2008; Ching et al. 2010). We con-
clude that one of the major effects of tonic inhibition is the
control of sensitivity and network interactions by tuning of
the nonlinear gain. Future work will extend the analysis of
population firing statistics to nonlinear dendritic integration
effects of tonic inhibition in single neurons (Zhang et al.
2013) and further elaborate this aspect in the context of
populations. This will allow to better explain different EEG-
spectral features measured under anaesthesia and validate
hypotheses on loss of consciousness.
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