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Abstract We developed a theory of human stance control
that predicted (1) how subjects re-weight their utilization of
proprioceptive and graviceptive orientation information in
experiments where eyes closed stance was perturbed by
surface-tilt stimuli with different amplitudes, (2) the
experimentally observed increase in body sway variability
(i.e. the “remnant” body sway that could not be attributed to
the stimulus) with increasing surface-tilt amplitude, (3)
neural controller feedback gains that determine the amount
of corrective torque generated in relation to sensory cues
signaling body orientation, and (4) the magnitude and
structure of spontaneous body sway. Responses to surface-
tilt perturbations with different amplitudes were interpreted
using a feedback control model to determine control
parameters and changes in these parameters with stimulus
amplitude. Different combinations of internal sensory and/
or motor noise sources were added to the model to identify
the properties of noise sources that were able to account for
the experimental remnant sway characteristics. Various
behavioral criteria were investigated to determine if

optimization of these criteria could predict the identified
model parameters and amplitude-dependent parameter
changes. Robust findings were that remnant sway charac-
teristics were best predicted by models that included both
sensory and motor noise, the graviceptive noise magnitude
was about ten times larger than the proprioceptive noise,
and noise sources with signal-dependent properties provid-
ed better explanations of remnant sway. Overall results
indicate that humans dynamically weight sensory system
contributions to stance control and tune their corrective
responses to minimize the energetic effects of sensory noise
and external stimuli.
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1 Introduction

The control system for human bipedal upright stance
involves the generation of an appropriately calibrated
corrective torque based on body-sway motion detected
primarily by vestibular, visual, and proprioceptive sensory
systems (Horak and Macpherson 1996). Because body
motions are small in this task, one expects that the signal-
to-noise ratios of sensory signals are poor. Based on
previous studies of sensory integration (Ernst and Banks
2002), one might hypothesize that the nervous system
generates corrective torque based on an optimal estimate of
body orientation derived from a weighted combination of
the noisy sensory cues (Fig. 1, left side Sensory Integration
component). From Bayesian estimation theory, optimal
sensory weights can be determined that provide a sensory
representation that is a maximum likelihood estimate of a
physical variable, S, if the variances of the different sensory
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signals are known. An appropriately weighted combination
of the noisy sensory signals bSA and bSB will provide an
optimal estimate, bS, of the physical variable with lower
variance than either of the individual sensory signals. For
the Sensory Integration component shown in Fig. 1 and
with the assumptions that the sensory noise sources are
independent, Gaussian, and the Bayesian prior is uniform,
then the optimal sensory weights can be calculated from the
variances of the sensory signals.

However, the application of this estimation method to
the stance control system is more complex. The variability
of any particular sensory signal depends not only on the
inherent noise properties of the individual sensory systems,
but also is confounded by the system operating with
feedback (Fig. 1, right side Motor/Biomechanics combined
with the left side Sensory Integration). This confound
occurs because variability that might initially arise from one
particular sensory system contributes to the production of a
time varying body sway, which in turn is sensed by the
other sensory systems and, therefore, contributes to the
variability of the other sensory signals. Additionally, the
overall variability of sensory signals is influenced by the
possible contribution of a motor noise component (Harris
and Wolpert 1998) and by the filtering properties provided
by neural feedback gains, muscle (activation) dynamics,
and body dynamics (van der Kooij et al. 1999). That is,
with feedback and the addition of motor noise, the
assumption that the variability in different sensory signals
is due to independent noise sources is not satisfied.
Therefore, the relatively simple calculation of a maximal
likelihood estimate of Ŝ shown in Fig. 1 for the Sensory
Integration component of the system operating without

feedback would not directly apply to a system operating
with feedback although the general concept of sensory
weighting may still be valid.

The presence of a continuously applied external pertur-
bation adds further complications by contributing a
stimulus-evoked component to the overall variability of
sensory signals in addition to inherent variability in each
sensory system’s signal. For example, stance on a contin-
uously rotating surface directly contributes to increased
variability of proprioceptive signals which encode body
motion relative to the surface. This proprioceptive orienta-
tion signal generates body sway that is sensed by the
graviceptive system (mainly vestibular) and the visual
system (if vision is available). Therefore, variability of
neural signals from graviceptive and visual systems is
indirectly increased by the presence of an external surface
tilt stimulus. Furthermore, the variability of an overall
internal sensory orientation estimate that consists of a
weighted summation of orientation signals from individual
sensory systems will depend on the nervous system’s
choice of sensory weights for each sensory channel.

Despite these complications, it is reasonable to hypoth-
esize that the nervous system is able to account for the
intrinsic variability in sensory and motor systems, the
feedback nature of stance control, and the variability
contributed by external perturbations in order to generate
body sway behavior that is in some sense optimal. The goal
of the current study is to determine whether an optimal
estimation theory can be developed that accounts for these
various complications and that explains a wide variety of
features of experimental results from a previous study that
characterized stimulus-evoked sway in humans (Peterka
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Fig. 1 Schematic depiction of the stance control system and factors
potentially influencing its control. Considering the sensory integration
component of the system in isolation (system in the dashed box),
Bayesian estimation theory shows that optimal sensory weights can be
determined that provide a maximum likelihood estimate of a physical
variable if the variances of the different sensory signals are known.
However, unlike simpler systems that involve only sensory integra-

tion, the feedback structure of the stance control systems causes the
variability of a particular sensory signal to be influenced by intrinsic
noise in all sensory systems and by motor noise, external perturba-
tions, and the dynamic characteristics of the overall system which in
turn are related to the combined influence of the sensory-integration
process, the sensory-to-motor transformation, neuro-muscular dynam-
ics, and biomechanics
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2002) and additional features related to body-sway vari-
ability derived from a re-analysis of the previous data.

Specifically, we sought to develop an optimal theory of
stance control that provides a parsimonious explanation for
three key experimental findings. These are (1) the system-
atic changes in stance control dynamics that are dominated
by a decrease in body sway response sensitivity to stimuli
of increasing amplitude, (2) the systematic increase in
“remnant” body sway variability observed with increasing
stimulus amplitude where remnant sway variability is
defined as the variability that is not directly attributable to
the applied stimulus, and (3) the fact that the corrective
torque generated in relation to body motion appears to be
specifically selected to achieve some goal that involves
more than just the need to maintain stability.

2 Materials and methods

We used a multi-stage approach to investigate the hypoth-
esis that a model described below (Fig. 2) and associated
optimizations based on this model can account for the
experimentally observed sensory re-weighting, the proper-
ties of the neural controller, and the patterns of remnant
sway. The analysis stages include (Stage 1) estimation of

stance control system parameters and sensory weights, (Stage
2) exploration of alternative internal noise sources (sensory
only, motor only, and combinations of sensory and motor
sources) and various functional forms of these noise sources
to determine which noise source best accounts for the
experimentally observed remnant sway, (Stage 3) given a
particular noise source, identification of a behavioral criterion
that predicts the observed sensory re-weighting, (Stage 4)
given a particular noise source, identification of a behavioral
criterion that predicts the observed neural controller parame-
ters, and (Stage 5) demonstration that the identified noise
source accurately predicts spontaneous sway behavior.

2.1 Experimental study

Experimental data used in the current study were part of an
extensive experimental data set previously used to charac-
terized the human stance control system under a variety of
conditions by applying perturbations that evoked sagittal
plane body sway by tilting a visual surround viewed by a
subject and/or tilting the support surface (ss) upon which a
subject stood (Peterka 2002).

Data from 8 healthy subjects (age range 24–46 year)
who participated in this previous study were used in the
current study. All subjects gave written informed consent to
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Fig. 2 Model of human stance control in which sensory information
from proprioceptive and graviceptive systems is weighted (wp and wg)
to provide an estimate of body-in-space sway angle, bsest. However,
bsest is potentially biased from true body-in-space orientation due to
sustained perturbations such as stance on a tilted surface. The model
provides a mechanism based on feedback from a low-pass filtered
torque signal, t, to drive body motion in a direction that reduces the
corrective torque necessary to maintain stance. This torque feedback
mechanism can be thought of as providing a slowly time-varying
internal reference signal, bsref, for comparison with bsest. The

difference between bsref and bsest is fed through a time delay, neural
controller, and second order activation dynamics to produce a
corrective torque, tc, that stabilizes human stance. The different neural
feedback pathways are affected by sensory noise (vg, vt, and vp). In
addition motor noise, vm, adds variability to the corrective torque.
Besides the neural feedback pathways, intrinsic muscle/tendon
dynamics contribute to the stabilizing corrective torque. Muscle/
tendon dynamics are represented by a spring (ki) and damper (bi).
Transfer function equations for this model and model components are
given in Appendix B
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a protocol approved by the Institutional Review Board of
Oregon Health & Science University.

The current study made use of only a portion of the
previous data for the condition where subjects stood with
eyes closed with tilt perturbations applied to the ss at five
different amplitudes (0.5, 1, 2, 4, and 8° peak-to-peak) on
different trials. Test trials in the prior study were presented
in randomized order. A wide-bandwidth pseudorandom tilt
perturbation based on a mathematical integration of a step-
like waveform derived from a pseudorandom ternary
sequence (PRTS, (Davies 1970; Peterka 2002)) was used
to evoke the sagittal-plane center-of-mass (CoM) body-in-
space sway angle (bs). The PRTS was created using a 5-
stage shift register operation with feedback to create a
repeating sequence of numbers with each number having a
value of 0, 1, or 2. The feedback was chosen to produce a
maximal-length sequence prior to repeating (242 sequence
length). This sequence was transformed into a sampled
stimulus time series by mapping each number to a value
representing the ss stimulus velocity (0➔0, 1➔+v, and 2➔
-v°/s) and holding each velocity value for Δt = 0.25 s. This
ss velocity waveform was mathematically integrated and
scaled in amplitude to give a position waveform that was
sampled at 100 Hz and used to command the servo-motor
controlling the angular tilt of the ss. The PRTS had a period
of 60.5 s. Eight complete cycles were presented for the 0.5°
stimulus and six cycles were presented for the other
amplitudes. A stimulus based on a maximal-length PRTS
has the property that only odd-numbered spectral compo-
nents have nonzero energy and the non-zero components of
the ss velocity waveform have approximately constant
amplitude up to a frequency of ~1/(3Δt) = 1.3 Hz.

For the data used in the current study, all tests were
performed with subjects using a backboard assembly that
constrained their body mechanics to be that of a single-link
inverted pendulum. Results from the previous study
demonstrated that use of the backboard did not alter
postural dynamics in this particular experiment (Fig. 7 in
(Peterka 2002)). The mass, moment of inertia, and CoM
height of the backboard assembly were taken into consid-
eration in all of our modeling efforts.

2.2 Experimental data analysis

Body sway and stimulus waveforms were decomposed
using a discrete Fourier transform (DFT) into frequency-
component parts at frequencies (f) ranging from 0.017–
1.3 Hz. The frequency response functions (FRFs) from ss to
bs at the five stimulus amplitudes (indicated by subscript
a), Hss2bs,a(f), were calculated at each excited frequency by
dividing the mean (across stimulus cycles) DFT values
derived from bs by the mean DFT values derived from ss.
The complex numbers representing Hss2bs,a were expressed

as gain and phase values as a function of the frequency.
FRFs were calculated for each subject and then averaged
across all subjects since the FRFs were previously shown to
have similar form despite variations in subject’s anthropo-
metric measures (Peterka 2002). See Appendix A for details
of equations used for the calculation of experimental FRFs.

The single-sided power spectral density (PSD) of
remnant body sway at each stimulus amplitude, Pbsr,a(f),
was calculated using methods that exploit the periodic
nature of the PRTS (van der Kooij and de Vlugt 2007), see
Appendix A. Remnant PSDs were calculated for each
subject and then averaged across subjects to reduce the
variance of the final estimates of the Pbsr,a(f) spectra. At the
odd-harmonic frequencies that correspond to frequencies
excited by the PRTS stimulus, the remnant PSD values
represent the variance of the body sway that was not
attributable to the stimulus-evoked sway. At the even-
harmonic frequencies that were not excited by the stimulus,
the remnant PSD values represent the variability in body
sway at these frequencies.

2.3 Stance control model

We developed a feedback control model to aid in the
interpretation of the experimental results (Fig. 2). The
model is a slightly modified version compared to the model
originally proposed in (Peterka 2002). The differences
include: 1) the PID (Proportional, Integral, Derivative)
controller was replaced by a PD controller, and torque
feedback was added that better accounts for the low
frequency gain declines and phase advances seen in
experimental FRFs (Peterka 2003; Cenciarini and Peterka
2006); 2) hypothetical sensory and motor noise sources were
added; and 3) muscle activation dynamics were included to
represent the filtering action of the conversion from motor
control signals to muscle force. For the eyes closed con-
dition, the model includes feedback from proprioception that
signals body sway relative to the surface, from graviception
(mainly vestibular origin) that signals body sway relative to
earth vertical, and from somatosensory receptors that sense
the torque acting on the body to control stance. The signals
from proprioception and graviception are assumed to provide
accurate, wide-bandwidth (i.e. no dynamics) orientation
estimates. As such, these signals do not represent the
dynamic characteristics of primary sensors, but rather
represent processed sensory representations of body motion
that are likely available for stance control (Angelaki et al.
1999; Merfeld et al. 1999; Casabona et al. 2004; Bosco et al.
2005). Sensory integration was represented as a weighted
combination of the proprioceptive and graviceptive contri-
butions with weight factors wp and wg, respectively. These
weight factors quantify the relative contribution from these
two sensory systems such that wp + wg = 1. These combined
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sensory signals form an internal body-in-space orientation
estimate, bsest, which is compared to an internal reference
of bs = 0 (not shown in Fig. 2) to produce an error signal
that contributes to the generation of corrective torque. We
previously found that low-frequency FRF characteristics
could be explained well if we assumed there was also a
feedback contribution from a low-pass filtered, torque-
related sensory signal (Peterka 2003; Cenciarini and Peterka
2006). This torque feedback can be thought of as providing
an additional, but in this case a slowly time-varying
reference signal, bsref, that produces an error signal and
subsequent corrective torque that drives the steady-state
value of bs to an orientation that requires very little
corrective torque. For example during a sustained surface
tilt, an error signal based only on bsest would result in a
sustained body tilt away from vertical with greater body tilt
for larger values of wp. However when the torque feedback
loop is included, the body will be driven slowly back toward
an upright vertical orientation. Thus, the system can maintain
an upright stance orientation on a tilted surface while still
taking advantage of a weighted combination of propriocep-
tive and graviceptive cues.

The signal representing the combined proprioceptive,
graviceptive, and torque sensory information drives a
“neural controller” that generates corrective torque, tc, that
includes a position-related component (kp gain factor) and a
velocity-related component (kd gain factor). A time delay is
included in the control loop that represents the combined
delay due to various subsystems (sensory transduction,
sensory processing, neural transmission, muscle activation).
The corrective torque is applied to the ankle joint of an
inverted pendulum body to produce body sway.
Appendix B includes the equations of inverted-pendulum
body dynamics, muscle-tendon, activation, and neural
control dynamics and also the transfer functions that were
used in the different stages of analysis.

In this paper, “transfer functions” refer to the Laplace
transform domain representations of the model-derived
differential equations that characterize the dynamic rela-
tionship between the various input variables in the model
(e.g., ss signal, noise signals, etc.) to output signals (most
often bs). The frequency domain representation of a transfer
function is easily obtained, and can be displayed as gain
and phase functions versus frequency. The model-derived
transfer functions can be compared, when useful, with
experimentally derived transfer functions which we refer to
as “frequency response functions” to distinguish between
model and experimental results.

2.4 Stage 1 analysis: model parameters from fits to FRFs

The goal of the first stage was to investigate whether
the FRFs from ss to bs could be described by the stance

control model, and whether the systematic change in
response dynamics could be captured by only a change in
the sensory weights. The stance control model shown in
Fig 2 was fitted to the five FRFs to determine a parameter
vector q

»
1

� �
containing intrinsic joint stiffness (ki) and

damping (bi), the neural controller proportional (kp) and
derivative (kd) gains, a neural time delay (τd), the gain
(kt) and time constant (τt) of the low-pass filter in the
torque feedback loop, and proprioceptive and gravicep-
tive weights (wp and wg) for each of the five ss
amplitudes, a. The parameter vector was found by the
minimization of a loss function (J1) that was summed
across the FRFs and model transfer functions from the
five stimulus amplitudes (indicated by subscript a), and
the sum across frequency of the squared normalized
difference between the experimental FRFs, Hss2bs,a (f),
and the model transfer functions of surface stimulus to
body sway, Hss2bs,a(f,θ1):

q
»

1 ¼ arg
min

q1
J1ð Þ; J1 ¼

X5
a¼1

Xfmax

f¼fmin

1

f

Hss2bs;aðf Þ � Hss2bs;a f ; q1ð Þ�� ��
Hss2bs;a

�� ��
 !2

The differences between the FRFs and the model transfer
functions were 1) normalized by the FRF magnitude to insure
that differences in frequency regions where FRFs have lower
gain values were just as important as differences between high
gain values and 2) weighted by the inverse of the frequency to
prevent over-fitting of the higher frequency data where, on a
logarithmic scale, there were more data values.

2.5 Stage 2 analysis: noise models to explain remnant sway

The goal of the second stage of analysis was to identify
intrinsic noise models that could account for the body sway
remnant PSDs, Pbsr,a(f) estimated from experimental data.
Fits included the levels and shapes of sensory and motor noise
spectra. For the noise spectra we initially considered both
white noise filtered by a first order low-pass filter and noise
with a spectral distribution of 1/f α noise, i.e. white (α = 0),
pink (α = 1), or Brownian noise (α = 2). The results of the
low-pass filtered white noise models in all cases provided
poorer fits to remnant PSD than the 1/f α models, and were
therefore disregarded in the results presented in this study.

The level of sensory and motor noise was a combination
of baseline motor noise level and, dependent on the noise
model, a signal dependent component expressed by a noise-
to-signal ratio (NSR) scalar r. The NSR was either defined
with respect to the mean-square value of the signal or to a
frequency-dependent PSD.

The noise model parameter vector q
»
2

� �
was determined

by minimization of a loss function (J2) that is the sum of the
squared normalized differences between the estimated and
model body sway remnant across all stimulus amplitudes:
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q
»

2 ¼ arg
min

q2
J2ð Þ; J2 ¼

X5
a¼1

Xfmax

f¼fmin

1

f

Pbsr;aðf Þ � Pbsr s;a f ; q
»
1; q2

� �
� Pbsr m;a f ; q

»
1; q2

� �
Pbsr;aðf Þ

0@ 1A2

At each stimulus amplitude, the PSD of the model-
predicted body sway remnant is the sum of Pbsr sðf Þ and
Pbsr mðf Þ, which represent the body sway remnant PSDs
produced by sensory and motor noise sources, respectively.
The difference between the experimentally measured
remnant PSDs and model-predicted remnant PSDs was
normalized by the experimental remnant PSD and weighted
by the inverse of the frequency.

2.5.1 Sensory noise models

In the case of sensory noise, the PSD of the model-
predicted body sway remnant is shaped by the transfer
function from the sensory noise sources to body sway, and
by the spectral properties of sensory noise sources:

Pbsr s f ; q
»

1; q2
� �

¼ Pvt f ; q
»

1; q2
� �

Hvt2bsðf ; q»

1Þ
��� ���2

þ Pvp f ; q
»

1; q2
� �

Hvp2bsðf ; q»

1Þ
��� ���2

þ Pvg f ; q
»

1; q2
� �

Hvg2bsðf ; q»

1Þ
��� ���2

where Pvt, Pvp, and Pvg are the PSDs of torque, proprio-
ceptive, and graviceptive noise, respectively. The subscripts
of the transfer functions denote the input and output of the
transfer functions that are given in Appendix B. For
example Hvt2bs is the transfer function from torque signal
noise to body sway. We implemented different models of
the sensor noise spectra (Pvt, Pvp, Pvg).

2.5.2 Signal-independent sensory noise

In the first sensory noise model (S1) the noise spectra of the
different sensory systems have the same spectral shape and
only differ in level. The spectra for S1 are given by:

Pvt f ; q2ð Þ ¼ ntPsðf Þ Pvp f ; q2ð Þ ¼ npPsðf Þ Pvg f ; q2ð Þ ¼ ngPsðf Þ

where the level of the noise is denoted by the scalar n and
the t, p, and g subscripts of n denote the torque,
proprioceptive, and graviceptive sensory signals, respec-
tively. In sensory noise model S1, Ps(f) is a PSD that is the
same for all sensory noise signals, and has a spectral shape
characterized by 1/f α noise:

Psðf Þ ¼ 1

f as

For the S1 model, the noise-model parameter vector θ2
included the parameters nt, np, ng, and αs to be identified by
minimization of the J2 loss function.

2.5.3 Signal-dependent sensor noise

Wealso considered caseswhere the noise spectra scaledwith the
average signal level (mean-square value) or with the spectrum of
the signal evoked by the external surface tilt stimulus.

The spectra for sensor noise model S2 is the sum of the
S1 spectrum and an additional part that scales with the
sensor spectrum induced by the external stimulus. Specif-
ically, the torque, proprioceptive, and graviceptive sensor
noise spectra are given by:

Pvt f ; q2ð Þ ¼ ntPsðf Þ þ rsPtðf Þ
Pvp f ; q2ð Þ ¼ npPsðf Þ þ rsPpðf Þ
Pvg f ; q2ð Þ ¼ ngPsðf Þ þ rsPgðf Þ
where the rs’s are scalar noise-to-signal ratios that
multiply the PSDs Pt(f), Pp(f), and Pg(f) that denote the
stimulus-dependent portion of the overall sensory noise
spectra (see Appendix B). For the S2 noise model, the
noise-to-signal ratio rs was the same for every sensory
system. An alternative model was also investigated that
allowed different rs values for each sensory system, but
optimization results suggested that a model of this form
was over-parameterized.

For sensory noise model S3, the shape of the spectrum
resembles 1/f α noise as in S1 but the noise level also scales
with the average mean-square value of the sensory signal
induced by the external stimulus. The three sensor noise
spectra are given by:

Pvt f ; q2ð Þ ¼ nt þ rsE t2
� �� �

Psðf Þ
Pvp f ; q2ð Þ ¼ np þ rsE p2

� �� �
Psðf Þ

Pvg f ; q2ð Þ ¼ ng þ rsE g2
� �� �

Psðf Þ
where E{(∙)2} denotes the mean-square value of the sensory
signals evoked by the external stimulus. These mean-square
values can be calculated from the corresponding spectrum (see
Appendix B). For S3 noise model, the noise-to-signal ratio rs
was the same for every sensory system. As with the S2 model,
a model of the form of S3 that allowed different rs values for
each sensory system appeared to be over-parameterized.

2.5.4 Motor noise models

In the case of motor noise, the spectral shape of the body-
sway remnant PSD attributable to motor noise (Pbsr_m) is
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determined by the transfer function from the motor noise
source to body sway (Hvm2bs) and the spectral shape of the
motor noise (Pvm):

Pbsr mðf ; q»

1; q2Þ ¼ Pvmðf ; q2Þ Hvm2bsðf ; q»

1Þ
��� ���2

For the motor noise spectrum we considered different
models. In all models the motor noise spectrum was signal
dependent. The different motor noise models included a base-
line level (nm) and a part that scaled linearly (rm) with either
the mean-square value E tc2

� �� �
or the spectrum (Ptc) of the

corrective torque signal induced by the external stimulus.
For the first motor noise model (M1), the spectrum

resembled 1/f α noise that scaled with the mean-square value
of the corrective torque induced by the external stimulus:

Pvm f ; q2ð Þ ¼ nm þ rm1E tc
2

� �� � 1

f am

In the second motor noise model (M2), the spectrum was
the sum of a signal-independent component with a 1/f α

spectral shape and a signal-dependent part that scaled with
the spectrum of the corrective torque induced by the external
stimulus. For M2 the motor noise spectrum is given by:

Pvm f ; q2ð Þ ¼ nm
f am

þ rm2Ptcðf Þ
	 


The third motor noise model is a combination of M1
and M2.

Pvm f ; q2ð Þ ¼ nm þ rm1E tc
2

� �� � 1

f am
þ rm2Ptcðf Þ

In M3 the noise level scaled both with the mean-square
value of the signal and with the spectrum at the excited
frequencies. This was done to account for the character-
istics of the experimental body-sway remnant PSD that
showed an increase in noise at the non-excited frequencies
with increasing stimulus amplitude but an even larger
increase at the excited frequencies.

2.6 Stage 3 and 4 analyses: Prediction of sensory weights
and neural feedback parameters

The goal of the Stage 3 and 4 analysis stages was to identify
a behavioral optimization criterion that could predict the
identified control-model parameters identified in the Stage 1
analysis. More specifically, we aimed to predict the control-
model parameters that could be regulated by the nervous
system to achieve some desired goal: these parameters are
the sensory weights (Stage 3 analysis) and the neural
controller feedback gains (Stage 4 analysis). To this end, a
loss function related to behavioral criteria was minimized:

q
»

3 ¼ arg
min

q3
J3ð Þ

We consider six different behavioral criteria that includ-
ed four “performance” criteria and two “effort” criteria. We
defined performance criteria as kinematic criteria related to
body-sway motion. In the case of minimization of a
performance criterion, Jp3 is given by:

Jp3 ¼
Xfmax

f¼fmin

Δf 2pf nð Þ2
Pssðf Þ Hss2bs f ; q

»

1; q
»

2; q3
� ���� ���2 þ Pvpðf Þ Hvp2bs f ; q

»

1; q
»

2; q3
� ���� ���2 þ Pvgðf Þ Hvg2bs f ; q

»

1; q
»

2; q3
� ���� ���2:::
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Jp3 is the model-predicted mean-square value (deter-
mined by calculating the mathematical integral of the
various PSDs) of either body-sway angle (n = 0),
velocity (n = 1), acceleration (n = 2), or jerk (n = 3).
As in any linear system, the output spectrum (in this
case body sway) is the sum of all input spectra multiplied
by the squared absolute transfer function of the
corresponding input signals (sensory noise, motor noise,

and the external tilt stimulus) to the output (Bendat and
Piersol 2000). The term 2πf n is a n-order differential
operator in the frequency domain applied to the spectrum
of body sway, in order to obtain spectra of body sway
velocity, acceleration, or jerk.

We defined an effort criterion as a kinetic criterion
related to the generation of corrective torque. In the case of
minimization of an effort criterion, J e3 is given by:

J e3 ¼
Xfmax
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For n = 0, J e3 is the mean-square value of the corrective
torque and for n = 1, J e3 is the mean-square value of the
derivative of corrective torque (referred to as torque
change). Similar to the Jp3 calculation, the mean square
value of torque (n = 0) or torque change (n = 1) was
obtained by integrating the model-predicted PSD of
corrective torque or torque change. The PSD of corrective
torque or torque change was the sum of all input spectra
multiplied with the squared absolute transfer function of the
corresponding input signals to the output.

For the Stage 3 analysis the goal was to find which of
the six behavioral criteria could predict the change in
sensory weights due to increasing ss stimulus amplitude.
For each of the six behavioral criteria, the parameters, q

»
3,

identified by the Stage 3 analysis were the sets of sensory
weights (wp’s and by definition the wg’s since wg = 1–wp)
that minimized the model-predicted mean-square value (Jp3
or J e3 ). In the calculation of Jp3 and J e3 , the control-system
parameters, q

»
1, identified in the Stage 1 analysis (except for

the sensory weights) and the noise-model parameters, q
»
2,

identified in the Stage 2 analysis were held fixed.
For the Stage 4 analysis the goal was to find which of

the six behavioral criteria could predict the specific values
of neural controller feedback gains. For each of the six
behavioral criteria, the parameters, q

»
3, identified by the

Stage 4 analysis were the neural controller positional (kp)
and derivative (kd) gains that minimized the model-
predicted mean-square value (Jp3 or J e3 ). In the calculation
of Jp3 and J e3 , the control-system parameters, q

»
1, identified

in the Stage 1 analysis (except for the neural controller
gains) and the noise-model parameters, q

»
2, identified in the

Stage 2 analysis were held fixed.

2.7 Stage 5 analysis: prediction of spontaneous sway
characteristics

The goal of the Stage 5 analysis was to investigate
whether the identified stance control model along with
the identified internal noise sources was able to predict
the structure of spontaneous sway. Spontaneous sway is
the body sway during quiet stance when there is an
absence of external perturbations. A random walk
analysis of spontaneous body sway reveals a structure
that can be visualized by a stabilogram diffusion plot
(Collins and De Luca 1993). In such a plot the mean
squared difference between two samples are given as a
function of the difference in time between two
corresponding samples. Two regions have been identified
in stabilogram diffusion plots. In the short term region,
corresponding to time differences less than ~1 s, body
sway can be characterized as a persistent (unstable)
random walk. In the long-term region body sway can be
characterized as an anti-persistent (stable) walk.

The model identified in Stage 1 was simulated in Matlab
Simulink with input noise disturbances defined by the
simplest sensory noise model (S1) from the Stage 2 analysis.
The S1 noise model was used because this model resulted in
reasonably good fits to the experimental body sway remnant
PSDs (see Section 3) and was easy to simulate. Although the
results from the Stage 2 analysis showed that some other
sensory noise models and combinations of sensory and
motor noise models resulted in even better fits to the remnant
PSDs, we reasoned that if S1 gave reasonable predictions of
spontaneous behavior, the more complex noise models
would give similar results since the differences between S1
and the more complex noise models were small. For the
fitted sensory weights we used the condition closest to quiet
stance condition, i.e. the condition with the smallest support
surface amplitude. The sensory noise signal was generated
from a white noise signal that was transformed to the
frequency domain using a DFT. This spectrum was shaped
according to the identified S1 sensory noise, and transformed
back to the time domain. The model-derived stabilogram
diffusion function was calculated from the time series of
body center-of-pressure (CoP) displacements that were
calculated from the simulated body sway. A mean experi-
mental stabilogram diffusion function was also calculated by
averaging across the eight diffusion functions of individual
subjects calculated from 360 s recordings of anterior-
posterior CoP data obtained in eyes closed conditions. Curve
fits to the model-derived and experimental stabilogram
diffusion functions provided estimates of the short and long
term diffusion coefficients, scaling coefficients, and critical
coordinates that were compared to previously reported
values (Collins and De Luca 1995).

3 Results

3.1 Stage 1 analysis

The experimentally determined gain and phase values of
the mean FRFs showed systematic changes as a function of
the amplitude of the surface tilt stimulus (Fig 3(a), points
connected by dotted lines). The FRF gain values at each
individual frequency generally decreased with increasing
stimulus amplitude such that the sets of gain values
corresponding to the different stimulus amplitudes main-
tained very similar shapes across the frequency range. The
FRF phase data from different stimulus amplitudes had
similar values at frequencies of about 0.1 Hz and below but
showed some divergence at higher stimulus frequencies
with the largest phase lag for the lowest stimulus amplitude
and the least phase lag for the highest stimulus amplitude.

The model transfer function curve fits to the experi-
mental FRFs in the Stage 1 analysis provided a good
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description of the experimental data that captured the major
features of the gain and phase changes with frequency and
as a function of stimulus amplitude (Fig. 3(a), solid curves).
Note that in the Stage 1 analysis, the internal sensory and
motor noise characteristics were not taken into account
since they do not affect the estimated FRF or the model
transfer function between the external surface tilt stimulus
and the body sway response. Most of the identified
parameters values (given in Fig. 3 legend) were similar to

those previously reported for the particular set of parame-
ters (kp, kd, ki, bi, τd, and wp) that were included in both the
current model (Fig. 2) and the previous model (Peterka
2002). However, the time delay parameter, τd = 97 ms,
from the current analysis was noticeably shorter than the
time delay previously reported (about 170 ms). This is
explained by the fact that the previous model did not
include muscle-activation dynamics. Specifically, both
muscle-activation dynamics and a time delay impart a
phase lag at higher frequencies. Inclusion of muscle-
activation dynamics accounts for some of the phase lag
observed at higher frequencies and the time delay that is
needed to account for the remainder of the phase lag is
reduced.

The Stage 1 analysis demonstrated that a good descrip-
tion of the experimental FRFs could be obtained even
though the analysis imposed a strong constraint that, with
the exception of wp and wg = 1–wp , no model parameters
could vary as a function of stimulus amplitude. The success
of the model description in accounting for the experimental
FRFs indicates that the Fig. 2 model provides a parsimo-
nious interpretation that attributes all of the amplitude-
related changes in FRFs to a sensory re-weighting
phenomenon whereby the proprioceptive (wp) and
corresponding graviceptive (wg = 1–wp) contributions
change with stimulus amplitude. In particular, the identified
wp decreased with increasing stimulus amplitude (Fig. 3
(b)). Again, this pattern of wp change with stimulus
amplitude is similar to that previously identified (Peterka
2002) using a slightly different model and allowing all
model parameters in individual fits to vary across subjects
and stimulus amplitudes.

3.2 Stage 2 analysis

The goal of the Stage 2 analysis was to determine whether
internal sensory and/or motor noise sources could be
identified that were able to account for the experimentally
observed remnant power spectra of body CoM sway
variability and were compatible with the previously
identified model parameters identified in the Stage 1
analysis.

As shown in Fig. 4(a), both the remnant sway and the
stimulus-evoked sway increased with increasing stimulus
amplitude. The frequency distributions of the remnant sway
are represented by the family of power spectra shown in
Fig. 4(b). The remnant PSD values at each individual
frequency generally increased with increasing stimulus
amplitude and the sets of PSD values corresponding to
the different stimulus amplitudes maintained similar shapes
across the frequency range when plotted on log-log scales.
The PSDs generally decreased in magnitude with increasing
frequency. For frequencies below about 0.3 Hz, the PSDs

(a)

(b)

Fig. 3 Results of the Stage 1 analysis. (a) Gain (upper graph) and
phase (lower) of the mean experimental frequency response functions,
FRFs, (points connected by dotted lines) and model fitted transfer
functions (solid lines) of surface tilt to body sway for the five different
stimulus amplitudes. The proprioceptive weight parameters, wp, were
allowed to vary over experimental conditions. Graviceptive weights,
wg, also varied but were linked to wp values such that wg=1-wp. The
model-fitted parameters that were constant over the five stimulus
amplitudes were joint stiffness (ki=40.5 Nm/rad) and damping (bi=
68.8 Nms/rad), the neural controller proportional (kp=943.9 Nm/rad)
and derivative (kd=313.5 Nms/rad) gains, the lumped neural time
delay (τd=0.097 s), and the gain (kt=0.0018 rad/Nm) and time
constant (τt=17.4 s) of the low-pass filter of the torque feedback loop.
(b) The model-fitted proprioceptive weights decreased with increasing
stimulus amplitude and accounted for the systematic decrease in gain
with increasing stimulus amplitude
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decreased approximately in proportion to f-1, and for
frequencies above about 0.7 Hz there was a steeper
decrease that was approximately proportional to f-4.

A detailed feature of the remnant PSDs is the saw-tooth
shape of the PSDs. This saw-tooth structure is most evident
in the PSDs at lower frequencies and higher stimulus
amplitudes where the PSD values at even-frequency
harmonics tended to be lower in magnitude than the
adjacent odd-frequency harmonics. The PRTS stimulus
only had power at odd frequencies and these were the
frequencies that tended to have the greater remnant power.
However, it is important to understand that there is no a
priori expectation that the remnant PSD will have greater
amplitudes at frequencies where there is stimulus energy as
compared to frequencies where there is no stimulus energy.
Therefore, the presence of the saw-tooth pattern is
indicative of some coupling between the stimulus and the
remnant body sway. A likely source of this coupling is a

contribution from internal noise sources that have a signal-
dependent component, meaning that the magnitude of the
noise depends, to some extent, on the magnitude of sensory
and/or motor signals within the stance control system.

The Stage 2 analysis considered potential noise sources
that included only sensory noise (proprioceptive, gravicep-
tive, and force/torque noise), only motor noise, or combi-
nations of sensory and motor noise with various plausible
functional forms (see Methods). Both signal-independent
and signal-dependent noise sources were investigated. The
sensory noise sources were added to the sensory system
signals in the Fig. 2 model prior to sensory integration by
linear summation of the proprioceptive and graviceptive
signals, and prior to the low-pass filtering associated with
the processing of the force/torque signal. Thus, these
sensory noise sources represent variability due to peripheral
encoding as well as variability due to central processing of
peripheral signals within a given sensory system. The
motor noise source contributed to the overall corrective
torque and represents the variability associated with
generating the desired corrective torque by muscle
activation.

The Stage 2 analysis used various combinations of
sensory and/or motor noise models in combination with the
stance control model parameters identified in the Stage 1
analysis to predict the remnant PSDs shown in Fig. 4(b).
For the various types and combinations of noise models
investigated, the parameters of the noise models were
adjusted to minimize a loss function to obtain optimal fits
to the family of remnant sway PSDs.

Table 1 summarizes the minimum value of the loss
function for different sensory and motor noise models, and
combinations of these models. The uniformly large loss
function values for all of the motor-only noise models (M1-
M3) indicate that none of these models provided adequate
fits to the remnant PSDs. All of the sensory-only noise
models (S1-S3) provided much lower loss function values
than the motor-only noise models, but several noise models
that included both sensory and motor noise (S2M1, S1M3,
S2M3, and S3M3) yielded still lower and similar loss
function values of about 100. Both motor and sensory noise
models that included signal-dependent noise terms were
able to capture the saw-tooth structure of the remnant
PSDs.

The results of four representative fits of noise models to
the remnant PSDs are shown in Fig. 5. One includes only
motor noise (M3 top left), one includes only sensory noise
(S1 bottom left), and two include combinations of motor
and sensory noise (S2M1, S1M3 right column). All of the
noise models predicted remnant PSDs that increased in
magnitude with increasing stimulus amplitude. However,
there were large differences between noise models in the
extent to which the various models could account for the

(a)

(b)

Fig. 4 (a) The body-sway variability can be decomposed into a part
that is evoked by the stimulus and into the remnant sway that is not
directly attributable to the applied stimulus (Appendix A). Both the
experimental stimulus-evoked and remnant body sway increased with
stimulus amplitude (mean values across the 8 subjects are shown). (b)
The power spectral density of the body sway remnant decreased with
increasing frequency and increased with increasing stimulus ampli-
tude. At the excited frequencies (the odd-harmonic frequencies of the
fundamental 0.017 Hz frequency), the power was typically higher than
at the adjacent non-excited, even-harmonic frequencies
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stimulus-amplitude dependency, the variation across the full
frequency range, and the detailed saw-tooth structure of the
experimental remnant PSDs. The remnant PSDs predicted
from the motor-only noise models were similar to the
experimental PSDs only in the mid-frequency range of about

0.1 to 0.3 Hz, and even in this range the prediction for the
highest stimulus amplitude was uniformly lower than the
experimental data. At both lower and higher frequencies, the
motor-only models predicted much lower PSD values across
all stimulus amplitudes than experimentally measured.

Table 1 Noise model parameters for motor, sensory, or combined motor and sensory noise sources

Noise Model Motor noise parameters Sensory noise parameters Fit Error

rm1 nm αm rm2 np ng nt αs rs

M1 0.0114 588 1.31 395

M2 274 1.87 0.0449 573

M3 0.0098 540 1.35 0.0109 390

S1 5.03×10-4 0.0067 8037 1.26 150

S2 4.99×10-4 0.0063 9573 1.22 0.0130 136

S3 5.07×10-4 0.0039 7033 1.28 0.00346 146

S1M1 1.63×10-6 0.148 3.64 6.09×10-4 0.0067 2727 1.21 115

S1M2 0.445 3.58 0.0143 5.44×10-4 0.0061 0 1.27 128
aS1M3 1.45×10-6 0.157 3.67 0.0163 6.01×10-4 0.0063 1850 1.20 102
aS2M1 2.19×10-6 0.0487 3.61 5.84×10-4 0.0072 10225 1.07 0.0140 101

S2M2 0.409 3.60 0 5.60×10-4 0.0061 112 1.26 0.0126 126
aS2M3 6.44×10-7 0.0344 3.88 0 5.89×10-4 0.0064 5182 1.17 0.0130 98

S3M1 9.99×10-7 0.142 3.75 6.29×10-4 0.0059 322 1.25 8.20x10-4 116

S3M2 0.959 3.38 0.0147 5.23×10-4 0.0044 0 1.25 0.0025 128
aS3M3 3.93×10-6 0.558 3.43 0.0166 6.03×10-4 0.0064 45 1.17 0 103

a indicates the noise models that had low and comparable fit errors values

The functional form of the various sensory and motor noise models are given in Methods. The fit error is defined as the value of the loss function
J2 (see Methods)

Fig. 5 Results of the Stage 2
analysis. Examples of different
noise model predictions of rem-
nant power spectra for models
with sensory only, motor only,
or combinations of sensory and
motor noise. The model predic-
tions were derived from noise
model fits to the remnant power
spectra across the 5 stimulus
amplitudes using control model
parameters derived from the
Stage 1 analysis. The fit error
and the ratio between gravicep-
tive and proprioceptive noise are
shown for each noise model
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The simplest sensory-only noise model (S1) provided a
much better fit (Fig. 5) to the remnant PSDs than any of the
motor-only noise models. The PSD fits from this model
were quite close to the experimental data for all stimulus
amplitudes over frequencies ranging from about 0.06 to
1.3 Hz (the highest frequency evaluated). Only the model
predictions for the lowest frequencies and the highest
stimulus amplitudes appeared to be inconsistent with the
experimental data. Additionally, because this simple model
did not include a signal-dependent noise component, the
model prediction was unable to account for the saw-tooth
structure of the PSDs. The sensory-only models that
included signal-dependent noise (S2, S3; plots not shown)
were both able to account for the saw-tooth PSD structure,
but there were only modest reductions in their loss
functions compared to the S1 model.

The four models with combined sensory and motor noise
and with the lowest loss functions (S2M1, S1M3, S2M3,
and S3M3) all provided similar fits to the remnant PSDs
(two of these fits are shown in Fig. 5) and all included
signal-dependent terms that account for the saw-tooth
nature of the PSDs. Although the quality of these fits and
their associated loss functions are similar, the parameters of
these four fits (Table 1) demonstrate that it is difficult to
reach a strong conclusion as to whether the signal-
dependent noise should be attributed to a motor or sensory
source. In S2M1 and S2M3 the sensor noise is highly
signal-dependent in comparison to the motor noise. But in
S1M3 and S3M3 the motor noise is highly signal-
dependent in comparison to the sensory noise.

All of the sensory noise models included parameters that
defined the general magnitude of noise associated with the
sensory systems. The noise magnitude estimates for
proprioceptive noise, np, and graviceptive noise, ng, were
similar across all noise models. A consistent finding was
that the noise magnitude in the graviceptive system was
about 11 times greater than the noise in the proprioceptive
system (mean ng/np = 11.1 ± 0.83 SD for the four models
with the lowest loss function values). This disparity in noise
between these two sensory systems accounts for the large
increase in remnant sway as the stance control system shifts
toward greater use of graviceptive cues (increasing wg) and
decreasing use of proprioceptive cues (decreasing wp) with
increasing stimulus amplitude.

Estimates of torque noise magnitude, nt, were consistent
across the three models that included only sensory noise (S1-
S3, Table 1). However, the torque noise estimates became
quite inconsistent across noise models when both sensory
and motor noise components were included. This inconsis-
tency is attributable to the fact that motor noise and the low-
pass filtered torque noise both accounted similarly for the
enhanced amplitude of remnant sway at low frequencies such
that removal of both motor and torque noise from the model

resulted in remnant sway predictions that severely under-
estimated the actual remnant sway at low frequencies (results
not shown). The interaction between motor and torque noise
was evident in that the noise model fits that assigned large
values to nt also assigned small values to nm, the parameter
representing the fixed portion of motor noise. Conversely, fits
with small nt values had large nm values. Thus, the Stage 2
analysis indicated that it was necessary to include some fixed
internal noise source that contributed to low frequency
remnant sway, but the analysis was not able to determine
whether this noise source had a sensory or a motor origin.

3.3 Stage 3 analysis

The goal of the stage 3 analysis was to determine whether
the pattern of wp and wg changes with stimulus amplitude
identified in the Stage 1 analysis could be predicted. The
hypothesis was that the stance control system selected wp

and wg values to minimize a behavioral criterion. Six
different behavioral criteria were investigated that included
the minimization of the mean-squared value of body CoM
sway angular position, sway angular velocity, sway angular
acceleration, sway angular jerk, corrective torque, and the
rate-of-change of corrective torque. Minimizations of these
behavioral criteria were used to predict the wp values at the
5 stimulus amplitudes. The stance control model parameters
(except for the wp and wg parameters) were held fixed at
values previously identified in the Stage 1 analysis, and the
internal noise properties were set to those that provided
good fits to the remnant sway PSDs in the Stage 2 analysis.

The wp Stage 3 predictions overlayed with the wp values
from the Stage 1 analysis are shown in Fig. 6 for the six
behavioral criteria. The wp predictions were essentially
identical for all of the sensory/motor noise models from the
Stage 2 analysis that gave similar predictions of the
remnant sway PSDs (cost function values of about 100).
The particular wp prediction shown in Fig. 6 is from the
S1M3 noise model. The wp predictions for the sensory only
noise models were also nearly identical to the results shown
in Fig. 6 (wg not shown since wg = 1 - wp).

All of the behavioral criteria predicted decreasing values
of wp with increasing stimulus amplitude. This is intuitively
expected when the proprioceptive noise is much smaller
than the graviceptive noise. At low stimulus amplitudes
there is little stimulus-evoked sway, so the overall magni-
tude of any of the behavioral measures, which is due to
both stimulus-evoked and internal noise components, is
smallest when the system is relying primarily on the lower-
noise proprioceptive system. However, with increasing
stimulus amplitude, the stimulus-evoked sway would
become quite large if wp remained the same. The overall
sway and all of the behavioral criteria can be reduced if the
stance control system shifts toward increased reliance on
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the graviceptive cues (even though the graviceptive system
is much noisier than proprioception), thus reducing the
responsiveness of the system to surface perturbations.

While all of the behavioral criteria produced the correct
trend of decreasing wp with increasing stimulus amplitude,
the sway velocity behavioral criterion provided wp pre-
dictions that were closest to the wp values identified in the
Stage 1 analysis. Sway acceleration, sway jerk, and rate-of-
change in torque criteria all overestimated wp. The sway
position and torque criteria both provide good wp predic-
tions at the lowest stimulus amplitudes (0.5° and 1°) but
underestimated wp at the larger stimulus amplitudes.

In contrast to wp predictions based on sensory or
combined sensory/motor noise models, models that includ-
ed only motor noise were completely unable to predict wp

changes with stimulus amplitude (Fig. 6). Specifically,
models with only motor noise predicted that wp should be
zero independent of the stimulus amplitude. This result is
intuitively expected because, with wp = 0, the surface-tilt
stimulus evokes the smallest possible body sway for any
given stimulus amplitude.

3.4 Stage 4 analysis

The goal of the stage 4 analysis was to determine whether
the neural controller kp and kd parameters identified in the
Stage 1 analysis could be predicted. The hypothesis was
that the stance control system selected specific kp and kd
values to minimize a behavioral criterion. The same six
behavioral criteria investigated in the Stage 3 analysis were
also applied to the Stage 4 analysis. Minimizations of these

behavioral criteria were used to predict the kp and kd values
at the five stimulus amplitudes. The stance control model
parameters (except for the kp and kd parameters) were held
fixed at values previously identified in the Stage 1 analysis,
and the internal noise properties were set to those that
provided the best fits to the remnant sway PSDs in the
Stage 2 analysis.

For all six behavioral criteria, the Stage 4 analysis
produced kp and kd values that did not noticeably change
with stimulus amplitude. This is consistent with the Stage 1
results which showed that it was not necessary to change
the values of kp and kd parameters as a function of stimulus
amplitude in order to account for the amplitude-dependent
changes in FRFs (Fig. 3).

Minimizations of the six different behavioral criteria led
to six different sets of kp and kd parameters. Each of these
six sets of kp and kd values, combined with the passive
stiffness (ki) and damping (bi) factors from the Stage 1
analysis, are plotted in Fig. 7 along with the kp + ki and kd +
bi values obtained from the Stage 1 analysis. Additionally,
the plot shows the three different nested regions that
correspond to the ranges of kp + ki and kd + bi values that
are compatible with stability of the stance control model
system for three different time delay values. The largest
region is for the shortest time delay of 100 ms which is
close to the time delay of 97 ms identified in the Stage 1
analysis. The stability regions associated with increasing
time delay values become progressively smaller (regions
for 150 ms and 200 ms time delay values are shown). For
time delays of above about 340 ms, no kp and kd values can
be selected that provide stability.

Fig. 6 Results of the Stage 3
analysis. Comparison of the ex-
perimental proprioceptive
weights, wp, (from Stage 1
analysis, triangles connected by
dotted lines) and wp values (dots
connected by thick lines) pre-
dicted by different behavioral
criteria based on the minimiza-
tion of the sum of mean-square
value of body sway, sway ve-
locity, sway acceleration, sway
jerk, corrective torque, or the
torque rate-of-change. The wp

predictions were based on the
S1M3 remnant noise model.
Predictions of wp were uniform-
ly zero for all motor-only noise
models (M1, M2, or M3,
squares connected by thin lines)
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Minimizing the mean squared value of torque provided
the closest prediction of the kp and kd values identified in
the Stage 1 analysis (Fig. 7). The sway velocity minimiza-
tion provided kp and kd predictions that were almost as
close to the Stage 1 results as the torque prediction. The
predictions from the other four behavioral criteria were
noticeably more distant from the Stage 1 results.

3.5 Stage 5 analysis

The goal of the stage 5 analysis was to demonstrate that the
stance control and noise models, which were characterized
entirely by analysis of stimulus evoked sway, could also
predict spontaneous sway behavior. Quiet standing center-
of-pressure (CoP) displacement was simulated using the
model parameters identified in the Stage 1 and 2 analyses.
The results of the simulation were used to calculate a
stabilogram diffusion function of the CoP movements in the
anterior-posterior direction, and to measure the short and
long term diffusion coefficients and the critical point
coordinates that describe its characteristic shape (Fig. 8
(a)). The model-derived stabilogram diffusion plot showed
the typical shape described previously (Collins and De
Luca 1993). That is, the function increased linearly with
increasing time interval until the critical time point at Δtc,
and then continued to increase linearly, but with a lower
slope, at long time intervals. The results of the simulation
were compared with the average across-subject stabilogram
diffusion function (Fig. 8(b)) calculated from 363 s record-

ings of anterior-posterior CoP data obtained in eyes closed
conditions. The diffusion coefficients and critical point
coordinates of the model simulations and experiments
resembled one another. The values of these parameters
were in the range of those estimated from 30 s records of
anterior-posterior CoP in eyes closed conditions (Collins
and De Luca 1995), except for Ds and ΔXc, which were
larger in our study for both the simulated and the
experimental results. These differences may be due to the
sensitivity of RMS measures of spontaneous sway to
sample durations whereby the RMS sway increases with
sample duration (Carpenter et al. 2001). Since our
experimental data records were more than ten times longer
than the duration of earlier studies, the sway magnitude, as
reflected by the Ds and ΔXc parameters, was also larger.

4 Discussion

Sensory re-weighting mechanisms have been shown to
contribute to human stance control (Kiemel et al. 2002;
Peterka 2002) as well as to other sensorimotor tasks
(Safstrom and Edin 2004; Mugge et al. 2009). Previous
investigations indicate that an optimal weighting of infor-
mation from multiple noisy sensory sources can be used to
formulate an overall estimate that has lower variance than
an estimate formed from any of the individual sensory
sources, and that re-weighting can occur to compensate for
conditions that degrade the accuracy of a particular sensory
source (Ernst and Banks 2002). However in a sensorimotor
feedback control system such as the stance control system,
the inherent noise of sensory systems is only one factor
influencing an overall body orientation estimate and
therefore the variability of body sway. Other factors include
the contributions of motor noise and the variability caused
by the continuous application of a noise-like external
perturbation. Optimal estimation and control theory predicts

(a) (b)

Fig. 8 Results of the Stage 5 analysis. Shown are the stabilogram
diffusion functions, SDFs, and their diffusion coefficients (short term,
Ds, and long term, Dl) derived from linear fits (dotted lines) to the
SDFs, and critical coordinates (critical time, Δtc, and displacement,
ΔXc) determined by the intersection of both linear fits. The model-
predicted SDF (a) was close to the experimentally estimated SDF
derived from eyes-closed, quiet stance data of the same subjects (b)

Fig. 7 Results of the Stage 4 analysis. The shaded areas indicate the
derivative (combination of neural controller kd and intrinsic damping
bi) and proportional (combination of neural controller kp and intrinsic
stiffness ki) gains for which the stance control model was stable. Both
the derivative and proportional gains are normalized by the gravita-
tional stiffness mgh. The area of stable operation decreases when the
time delay increases. The square symbol denotes the gains derived
from the Stage 1 analysis of experimental data. The other symbols
indicate the neural controller plus intrinsic visco-elastic gains
predicted by minimizing different behavioral criteria using the S1M3
remnant noise model. The experimentally derived gains are in
between the predictions made by minimization of torque and velocity
criteria
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that an improved orientation estimate can be obtained by
down-weighting of the particular system that is perturbed
(van der Kooij et al. 2001). However in the stance control
system, down-weighting of one sensory system must be
compensated by up-weighting of another to insure there is
sufficient torque generated to resist gravity (Cenciarini and
Peterka 2006). Depending on the sources of internal noise,
the re-weighting that compensates for an external perturba-
tion should also affect the variability of the remnant body
sway, and thus give insight into the internal sources of
variability.

We showed that a stance control model (Fig. 2)
accounted very well for the experimental response dynam-
ics and remnant sway. This model included two parallel
feedback pathways (proprioceptive and graviceptive feed-
back), an inner torque feedback loop, and muscle-tendon
dynamics. A systematic decrease in the proprioceptive
weight and corresponding increase in the graviceptive weight
was sufficient to account for the decrease in the experimen-
tally measured FRF gain that characterizes the sensitivity of
body sway evoked by the surface rotation stimulus.

Both sensory and motor noise sources were investigated
as possible sources for body sway variability. We compared
different models of sensory and motor noise, and combi-
nations of these models. Noise models that included only
motor noise were clearly inferior. Models that included only
sensory noise were far superior to the motor-only noise
models, but were inferior to all models that included both
sensory and motor noise. There was no single model that
included both sensory and motor noise that was clearly
superior to all others since several models resulted in
similar remnant fits. However, there were similarities
among the best combined sensory and motor noise models:
1) sensory noise provided the major contribution to remnant
body sway, 2) the noise included a signal-dependent
component although it was unclear if the signal dependency
was best attributed to sensory or motor noise; 3) the
baseline level of graviceptive noise was about ten times
larger than that of proprioceptive noise; and 4) the sensory
noise spectrum resembled 1/f α noise, with α close to one
(pink noise). In our approach we attributed the time varying
properties of body sway to external stimuli, sensory noise,
and motor noise. Possible variations in neural strategy and
muscle dynamics were captured by motor noise in our
method. Possible variations in sensory dynamics were
captured by sensory noise in our method. We note that the
estimated sensory and motor noise were not white but pink.
Compared to white noise, pink noise has enhanced energy
at low frequencies. This enhanced low frequency variability
could be thought of as capturing behavior corresponding to
slow variations in time that could be due to slow
fluctuations in sensory dynamics, neural strategy, or
alterations in neuron-pool dynamics.

A previous study of smooth pursuit eye movements
provided evidence that sensory noise is a major determiner
of behavioral properties related to the initiation of eye
movements (Osborne et al. 2005), but during continuous
eye tracking the system is apparently dominated by signal-
dependent motor noise (Medina and Lisberger 2007). Most
literature has focused on systems where motor noise, and
particularly signal-dependent motor noise appears to be
prominent. The variation in motor unit recruitment thresh-
olds and twitch forces causes muscular force to exhibit
monotonically increasing signal-dependent motor noise
(Jones et al. 2002). In systems with signal-dependent motor
noise, a minimum-variance theory accurately predicts the
trajectories of both saccades and goal-directed arm move-
ments, the speed- accuracy trade-off described by Fitt's law
(Harris and Wolpert 1998), obstacle avoidance (Hamilton
and Wolpert 2002), step tracking wrist movements (Haruno
and Wolpert 2005), and the orientation of arm impedance
relative to a curved object (Selen et al. 2009).

Compared with other studies, we evaluated more
complex models of neural noise. We found that the noise
included both a signal-independent (baseline) and signal-
dependent components. In most other studies noise con-
sisted of either a baseline level (van der Kooij et al. 1999)
or a signal-dependent component (Harris and Wolpert
1998), but not combinations of both. In computational
models that considered sensor and/or motor noise, noise
was assumed to be lowpass filtered white noise (Harris and
Wolpert 1998) or Brownian noise (Liu and Todorov 2007).
However, a robust finding in our study was that 1/f sensory
noise provided the best fits. 1/f or pink noise is a common
feature of scale free networks (Albert and Barabási 2002)
and is observed in many biological signals such as heart rate
(Saul et al. 1988) and EEG (Freeman 2008). The 1/f noise
characteristic is also found in the long range correlations
observed in human sway (Duarte and Zatsiorsky 2001).

We found that noise models that explained the structure
of remnant sway in stimulus-evoked sway conditions were
also able to predict the structure of spontaneous sway as
characterized by the characteristic 2-part shape of the
predicted stabilogram diffusion function (Fig. 8). Another
robust finding was that the baseline level of graviceptive
noise was about ten times larger than the baseline level of
proprioceptive noise. The large difference in noise levels in
these two sensory systems largely explains the increase in
remnant sway with increasing stimulus amplitude. Specif-
ically, larger surface motions increase variability in the
proprioceptive signal, thus evoking a down-weighting of
proprioception and up-weighting of graviception. Although
the shift toward greater utilization of graviception decreased
the stimulus-evoked sway, the remnant sway was increased
due to the larger amplification of graviceptive noise due to
the larger graviceptive weighting factor.
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One might hypothesize that the nervous system could
“know” that a particular type and amplitude of an external
perturbation was occurring and therefore would use this
knowledge to adjust sensory weights to reduce the
influence of the perturbation and to prevent instability.
But considering the feedback structure of the stance control
system, the presence of internal noise in sensory and motor
systems, and variability induced by a continuous external
perturbation, one would expect there to be uncertainty in
knowledge about the particular perturbation giving rise to
the complex, time-varying pattern of sensory signals.
However, a mechanism that is able adjust sensory weights
to minimize the effect of internal (sensory and motor noise)
and external perturbations does not need to know the nature
of the external perturbation. Furthermore, because larger
amplitude perturbations evoked larger sensory signal
variability, the increased variability would drive larger
changes in sensory weights (assuming that weight changes
are able to reduce overall variability for a particular
perturbation). Therefore without assuming that the system
has specific knowledge about the perturbation and its
amplitude, the weight changes would scale appropriately
with perturbation amplitude in order to prevent instability.

All the behavioral criteria investigated predicted a
systematic decrease of the proprioceptive weight with
increasing surface stimulus amplitude when sensor noise
or a combination of both sensory and motor noise were
included in the model. These model predictions were
generally consistent with the experimental results (Fig. 6).
The dominant effect of the sensory noise contribution was
demonstrated by observing that when only motor noise was
included in the model the optimal solution was to completely
ignore proprioception for all amplitudes of support surface
motion. Thus the model prediction with only motor noise was
not at all consistent with the experimental results and supports
the finding that remnant sway results were not predicted by
models with only motor noise.

In the case of sensory noise or combinations of sensory
and motor noise, the behavioral criterion that best predicted
the pattern of sensory re-weighting was minimization of
body sway velocity, and thus was not one of the commonly
used criteria such as minimization of deviation (Harris and
Wolpert 1998; van der Kooij et al. 1999; Todorov 2004),
jerk (Hogan 1984; Flash and Hogan 1985), rate-of-torque
change (Uno et al. 1989), or control effort (van der Kooij et
al. 1999; Carver et al. 2005). No single behavioral criterion
we investigated was able to accurately predict the experi-
mentally determined neural controller gains. The experi-
mental neural controller gains were midway between the
gains predicted by minimizing body sway velocity and
corrective torque. Given that the product of corrective
torque and body sway velocity equals mechanical work, it
seem likely that mechanical work, and thus metabolic

energy, is a likely candidate criterion for minimization
during standing. Metabolic energy minimization has also
been shown to predict preferred gait parameters (Donelan
et al. 2001).

In theory, humans could make predictions about the near
future of body orientation and then continuously integrate
the delayed sensory measures with predictions to form an
estimate of their current body orientation. In visuomotor
control it has been shown that the motor output that the
brain programmed to start a reaching movement or to
correct it midflight was a continuous combination of two
streams of information: a stream that predicted the near
future of the state of the environment and a stream that
provided a delayed measurement of that state (Izawa and
Shadmehr 2008). In the past we and others (van der Kooij
et al. 2001; Kuo 2005) developed models of human stance
control that also included the prediction of sensory and
body states to improve the estimation of body orientation.
However, in the current model we ignored this prediction of
future states since it was not needed to account for our
experimental data. Currently there is no experimental
evidence that prediction of future states is involved in
human stance control, but also no strong counter evidence.

In conclusion, our work supports the theory that during
stance humans dynamically weight orientation information
from multiple sensory sources and set neural feedback
gains to minimize the effect of external perturbations and
signal-dependent sensory and motor noise to minimize an
energy related criterion. A strong prediction of our results is
that sensory re-weighting is dependent on the spectrum of
external stimuli since the weighting of sensory clues is a
tradeoff between managing the disturbing effects due to
internal sensory noise and external stimuli.
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Appendix A

For the estimation of the experimental FRFs relating the ss
stimulus to the bs response and the PSDs of remnant body
sway we used a non-parametric method that exploits the
periodic nature of the PRTS perturbation signal (Pintelon
and Schoukens 2001). The input was a periodic PRTS
signal with cycle time T = 60.5 s. The input and output
signals had a sample time of Ts = 0.01 s and, therefore, each
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cycle contained Np = T/Ts = 6050 samples. In the
experiment we collected six or eight successive cycles
(each with length Np). To avoid transient responses, the
first cycle was not included in the analysis. Therefore the
data set consisted of M = 5 or 7 cycles. By calculating the
DFTs of the M data blocks and averaging them we can
separate the periodic, stimulus-related component of the bs
response from the non-periodic component of the response
(i.e., the remnant response). The periodic component is
used to calculate the FRF and the non-periodic component
is used to calculate the remnant PSD.

The analysis first calculates the DFTs of each cycle’s data:

SS l½ �ðkÞ ¼ DFT ss l½ �ðnÞ
� �

BS l½ �ðkÞ ¼ DFT bs l½ �ðnÞ
� �

for l = 1 to M cycles with n = 1 to Np representing the time
sample index and k representing the frequency index such
that the index k corresponds to the frequency 2π k/T Hz.

The mean DFT across the M cycles is then calculated to
determine the periodic component of the stimulus and
response:

cSSðkÞ ¼ 1

M

XM
l¼1

SS l½ �ðkÞ cBSðkÞ ¼ 1

M

XM
l¼1

BS l½ �ðkÞ

The experimental FRF between ss and bs is obtained by
calculating the ratio:

Hss2bsðkÞ ¼
cBSðkÞcSSðkÞ

Note that this ratio was only calculated at odd numbered
values of k where there was energy in the PRTS ss stimulus.
In the paper we use the frequency variable f as the argument
in the experimental FRFs, but it should be understood that f
is calculated only at discrete values corresponding to
frequencies where there was energy in the PRTS. Further-
more, when comparing experimental FRFs with model
transfer functions for the purpose of calculating fit errors
and minimizing cost functions, the model transfer functions
were evaluated at frequencies corresponding to the fre-
quencies of the FRFs.

The remnant body sway PSDs are calculated by
determining the variance of the sampled DFTs:

PbsrðkÞ ¼ bs2
bsðkÞ ¼

1

M � 1

XM
l¼1

BS l½ �ðkÞ �cBS l½ �ðkÞ
��� ���2

This calculation is made at both odd and even harmonics
of the PRTS and represents the portion of the overall PSD
of bs motion that is not attributable to periodic components
of body motion evoked by the periodic PRTS stimulus.

In the case of a linear system, Pbsr at non-excited
frequencies should only have energy related to the non-

periodic component of bs. In the case of a system with
nonlinearity, the non-excited frequencies would also
include responses to the periodic stimulus that depended
on the specific nonlinearity. It is important to understand
that the response components due to the nonlinearity
would also be periodic. Therefore the remnant PSD would
not include periodic components due to the system
nonlinearity, but would only include components due to
non-periodic noise.

Appendix B

The transfer function dynamics of the different blocks of
the human stance control model are defined here using a
Laplace transform representation (s = the Laplace variable)
of the differential equations of the various portions of the
stance control system shown in Fig. 2.

The rigid body dynamics are those of a single-link
inverted pendulum:

BðsÞ ¼ 1

Js2 � mgh

where J = 81.1 Kg m2 is the moment of inertia around the
ankle joint, m = 83.3 Kg the body mass, g = 9.801 m/s2 the
gravitational accelerations and h = 0.896 m the distance of
the center-of-mass from the ankle joint.

The body is stabilized by a corrective torque that
includes contributions from both intrinsic joint and
muscle-tendon dynamics and active neurally-mediated
control. The muscle/tendon dynamics and passive joint
properties produce a visco-elastic torque modeled by a
spring (ki) in series with a damper (bi):

PPðsÞ ¼ ki þ bis

The neural controller includes proportional (kp) and
derivative (kd) feedback gains and a lumped time delay
(τd) that represents all delays in the system:

NCðsÞ ¼ kp þ kds
� �

e�std

Prior to being summed with the signal representing
torque due to intrinsic muscle/tendon dynamics, the signal
from the neural controller is fed through the muscle-
activation block that has low-pass filter characteristics:

HactðsÞ ¼ w2
act

s2 þ 2bwactsþ w2
act

where ωact = 16.8 rad/s and β = 0.99 (Mugge et al. 2010).
The input of the neural controller is the difference between

an internal set-point and the sum of graviceptive orientation
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information weighted by wg, proprioceptive information
weighted by wp, and information related to the corrective
torque, tc, applied at the ankle joint. The sum of wp and wg is
always one. The graviceptive signal, g, is a neural
representation of the bs angle assumed to be created in the
CNS through the fusion of semicircular canal and otolith
information (Angelaki et al. 1999). The proprioceptive
signal, p, is a neural representation of the ankle joint angle
(bs-ss) assumed to be created in the CNS by the fusion of all
sensors (probably primarily muscle spindles) capable of
contributing to a joint angle signal. The torque sensor signal,
t, is a neural representation of the corrective torque applied to
the ankle joint. The contribution from force/torque feedback
provides an effective way to resist long-lasting disturbances
that would otherwise produce a sustained forward or
backward lean of the body. This mechanism is implemented
by positive feedback of a low-pass filtered version of the
torque sensor signal to provide a slowly time-varying set
point signal, bsref. The low-pass filter is:

FFðsÞ ¼ kt
t tsþ 1

where kt is the feedback gain and τt is the time constant of a
low-pass filter (Peterka 2003).

The neural signals representing proprioception, gravi-
ception, and torque are assumed to be imperfect in that
these signals are noisy. This sensory noise is modeled by
adding a noise signal to each of these sensory signals.
Because humans are not able to maintain a perfectly
constant force (Jones et al. 2002), motor noise is added to
the corrective torque in the model.

Predictions of body sway responses to surface tilt stimuli
and of sway variability are facilitated by defining the
following set of transfer functions that were used in Stages
1-4 of our model-based analysis. First we define the
sensitivity function S that will be used to simplify the other
transfer functions we derived:

S ¼ B

ð1� FF � NC � Hact þ BðPP þ NC � HactÞÞ
The transfer function that defines how a hypothetical

external torque perturbation, tex, applied to the body evokes
bs can be derived from the model and is given by:

Htex2bs ¼ bs

tex
¼ Sð1� FF � NC � HactÞ

Note that in the subscript of the preceding and in the
following transfer function equations, the ‘2’ denotes ‘to’ and
is used to express the direction of the signal flow from the
stimulus signal to the response signal. The transfer function of
the surface tilt stimulus, ss, to body sway, bs, is given by:

Hss2bs ¼ PP þ wp � NC � Hact

� �
S

The transfer functions of ss rotation to tc and to the
torque sensory signal, t, are given by:

Hss2tc ¼ Hss2t ¼ PP þ wp � NC � Hact

� �
S B=

The transfer function of ss rotation to the graviceptive
sensory signal, g, is given by:

Hss2g ¼ PP þ wp � NC � Hact

� �
S

The transfer function of ss rotation to the proprioceptive
sensory signal, p, is given by:

Hss2p ¼ S=B

The transfer function of the motor noise, vm, to bs is
given by:

Hvm2bs ¼ S

The transfer function of proprioceptive signal noise, vp,
to bs is given by:

Hvp2bs ¼ �wp � NC � Hact � S
The transfer function of gravioceptive signal noise, vg, to

bs is given by:

Hvg2bs ¼ �wg � NC � Hact � S
The transfer function of torque signal noise, vt, to bs is

given by:

Hvt2bs ¼ FF � NC � Hact � S

The transfer functions of motor noise, vm, to tc and to t
are given by:

Hvm2tc ¼ Hvm2t ¼ S B=

The transfer functions of proprioceptive signal noise, vp,
to tc and to t are given by:

Hvp2tc ¼ Hvp2t ¼ �wp � NC � Hact � S B=

The transfer functions of gravioceptive signal noise, vg,
to tc and to t are given by:

Hvg2tc ¼ Hvg2t ¼ �wg � NC � Hact � S B=

The transfer functions of torque signal noise, vt, to tc and
to t are given by:

Hvt2tc ¼ Hvt2t ¼ FF � NC � Hact � S B=

Stimulus-dependent noise calculations required the cal-
culation of the PSDs of torque, proprioceptive, and
graviceptive signals evoked by the ss stimulus. For a linear
system, the PSD of an output signal is given by the PSD of
the input signal (ss in this case) multiplied by the squared
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absolute transfer function between the input and output
(Bendat and Piersol 2000). The stimulus-evoked corrective
torque PSD, Ptc, and stimulus-evoked torque sensor signal
PSD, Pt, in the absence of noise are given by:

Ptc ¼ Pt ¼ Pss � Hss2tcj j2 ¼ Pss � Hss2tj j2

where Pss is the PSD of the surface-tilt stimulus. The PSD
of the stimulus-evoked proprioceptive signal in the absence
of noise is given by:

Pp ¼ Pss � Hss2p

�� ��2
The PSD of the stimulus-evoked graviceptive signal,

Pg, in the absence of noise is given by:

Pg ¼ Pss � Hss2g

�� ��2
The mean-square value of a signal, E{(∙)2}, can be

calculated from the integral of the power spectral density,
e.g. for the stimulus-evoked corrective torque:

E tc
2

� � ¼
Xfmax

f¼fmin

Δf � Ptcðf Þ

where Δf is the increment between adjacent frequency
points in the PSD.
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