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Abstract Humans can estimate the duration of intervals of

time, and psychophysical experiments show that these esti-

mations are subject to timing errors. According to standard

theories of timing, these errors increase linearly with the

interval to be estimated (Weber’s law), and both at longer

and shorter intervals, deviations from linearity are reported.
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This is not easily reconciled with the accumulation of neu-

ronal noise, which would only lead to an increase with the

square root of the interval. Here, we offer a neuronal model

which explains the form of the error function as a result of

a constrained optimization process. The model consists of a

number of synfire chains with different transmission times,

which project onto a set of readout neurons. We show that

an increase in the transmission time corresponds to a super-

linear increase of the timing errors. Under the assumption

of a fixed chain length, the experimentally observed error

function emerges from optimal selection of chains for each

given interval. Furthermore, we show how this optimal se-

lection could be implemented by competitive spike-timing

dependent plasticity in the connections from the chains

to the readout network, and discuss implications of our

model on selective temporal learning and possible neural

architectures of interval timing.

Keywords Representation of time · Timing errors ·
Synfire chains · STDP · Synaptic competition

1 Introduction

Our world changes in time, and our brain faces the challenge

to cope with these changes. Sequences of stimuli often

convey information in their order and timing, e.g. in speech

or music. Our sense of causality requires knowledge about

the natural temporal order in which events happen. Our

brain can use this knowledge together with information

about the typical duration of events to predict the evolution

of sequences of events. Also on the level of behavior, timing

is obviously crucial, as a given action can be right or wrong

based only on the time of its execution.
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Recognizing this importance, many researchers have

posed the question of how time is represented in the brain.

For some time-related stimulus features such as the speed

of motion in the visual field or the frequency of a tone,

such representations could be found in distinct brain areas

such as the middle temporal region of visual cortex for

speed and the inner hair cells for tone frequency. For the

duration of a stimulus or the interstimulus interval, however,

no single neural correlate has been identified (Buonomano

and Karmarkar 2002). Instead, lesion and imaging studies

have revealed the possible participation of a whole network

of structures such as the cerebellum, the basal ganglia, the

thalamus and various cortical regions such as prefrontal cor-

tex (PFC) and the supplementary motor area (Buonomano

and Karmarkar 2002; Lewis and Miall 2003; Ivry and

Spencer 2004). This spectrum of brain structures is ac-

companied by a variety of possible timing mechanisms.

Basically, any process in the brain could be used to represent

the time that has elapsed while the process unfolds. Models

of temporal processing have exploited neural structures that

range from single neurons (Tieu et al. 1999; Grossberg and

Schmajuk 1989), neural oscillators read out by coincidence

detectors (Matell and Meck 2004) and short-term synaptic

plasticity (Buonomano 2000) to reverberating loops within

the cerebellum (Medina et al. 2000; Yamazaki and Tanaka

2006), slowly climbing activity in PFC neurons during

working memory tasks (Durstewitz 2006) and stochastic

decay of memory traces (Kitano et al. 2003).

These neurobiological models focus on the ability of a

given neuronal circuit to represent temporal information.

However, most of them are not sufficient to explain behav-

ioral performance in timing tasks, as they do not discuss

errors in the representation. Temporal precision and the

change of timing performance under various conditions are

one major subject of psychological experiments in both

animal and man (Grondin 2001; Gibbon et al. 1997). Re-

sults from such experiments can constrain neuronal models

regarding their predictions on timing errors. A typical class

of experiments is given by the task of interval reproduction
(Allan and Kristofferson 1974). The participants are pre-

sented with an interval of duration T, e.g. a continuous tone

or a series of flashes of light. Afterwards, they are asked

to reproduce this interval for example by pressing a button

as long as they think the interval was. This experiment

results in a set of reproduced intervals, usually clustered

around some mean m with a standard deviation σ . These two

measures are used to characterize the participant’s ability

to reproduce the interval T. To explain the results from

such experiments, information-processing models are used.

They are composed from a set of functional processing

stages which interact with each other and provide some

understanding of the mechanisms behind the experimental

results. The most popular of these models is the pacemaker-

accumulator system (Creelman 1962): An oscillating or

random process (the pacemaker) generates pulses with a

fixed frequency, while another system (the accumulator)

counts the number of these pulses. The number of pulses

accumulated during an interval is used to estimate the

duration of the interval. This theory has been formalized in

several ways (Gibbon 1977; Killeen and Fetterman 1988)

and can explain a wide range of phenomena (Grondin 2001;

Gibbon et al. 1997). Another widely used concept is called

interval timers (Ivry 1996) or labeled lines (Buonomano and

Karmarkar 2002). Models within this framework assume a

number of units which operate with different time constants,

such that each of these units is tuned to a specific interval

of time.

While information-processing models are designed to

explain timing errors in behavioral experiments, they are

only rarely connected to some neural substrate and thus

can not identify the source of these errors. To connect the

experimental results with a proposed timing mechanism in

the brain, it is useful to assume that the brain performs an es-

timation of the time elapsed since the press of a button, such

that the participant releases the button when the memorized

duration of the target interval is reached. The estimation will

be subject to timing errors σ and possibly also some bias

m − T if the participant responds systematically too early

or too late. Taking this view, a neuronal model of temporal

processing is supported by psychophysical experiments if

its estimation statistics are compatible with the response

statistics found in the experiment.

One prominent finding of timing experiments is that

timing errors increase monotonically with the duration of

the interval to be processed. This increase is characterized

by the Weber fraction, defined by σ/m. The shape of

this fraction as a function of the interval T is then to be

reproduced by a neuronal model. According to “scalar ex-

pectancy theory” (SET, Gibbon 1977), temporal perception

obeys Weber’s law, which means that the Weber fraction

does not depend on T. Indeed, many studies were conducted

that seem to confirm this “scalar property” (Gibbon et al.

1997). However, a model that tries to explain a constant

Weber fraction faces an inherent problem: If the timing

errors arise from noise affecting the timing units without

correlations, or with a finite correlation length, these timing

errors will increase as
√

T, as the variances σ 2
add up

linearly over time. Thus, the observed linear increase of the

timing error needs another error source. SET, and also some

other information-processing theories solve this problem by

assuming that the observed scaling of the errors is built in

one of the processing stages such as the counter (Killeen

and Fetterman 1988) or a memory stage (Gibbon 1977).

Some of the neuronal models also use ad hoc assumptions
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about scalar variability, e.g. in the distribution of synaptic

weights (Matell and Meck 2004) or in the rise times of firing

rates (Grossberg and Schmajuk 1989), to generate the scalar

property. Others assume special properties of the noise, such

as a low-pass filtered frequency band (Tieu et al. 1999) or

independence of the stimulus duration (Staddon and Higa

1999). There are also a few attempts to explain Weber’s

law by inherent properties of the model (Okamoto and

Fukai 2001). However, none of these studies discusses the

relation of the steeply increasing errors with the principle

of optimality: If it is possible to represent time with an

error of the order of the square root of the interval duration,

why should a brain under evolutionary pressure use some

mechanism that is worse than that? Moreover, there is also

evidence that the scalar property is not universally valid

in temporal processing. The Weber fraction increases both

at short and long intervals, with a minimum in between

(Bizo et al. 2006; Drake and Botte 1993; Getty 1976).

While the increase at short intervals can be explained by

an additional, time-independent error (“generalized Weber’s

law”), the increase at longer intervals was mostly ignored in

information-processing models (but see Staddon and Higa

1999), because it is not compatible with the predictions from

SET. To date, there is no neurocomputational model that

accounts for the entire Weber fraction with its decreasing,

constant, and also increasing parts.

In this paper, we offer a model in which the U-shaped

form of the Weber function emerges directly as a result

of an optimization process. The model consists of a num-

ber of timing units with different time constants. These

units project onto a set of readout neurons, which shows

a unique spike pattern for each interval to be represented.

In this framework, synaptic plasticity implements an opti-

mal selection of timing units under limited resources. For

the units itself, we demand high temporal precision and

reliability to obtain optimal results, and also a sufficiently

wide range of time constants. In a noisy brain, arguably the

most precise temporal code is provided by synfire chains

(Abeles 1991). A synfire chain is a feed-forward network

with strongly converging and diverging connectivity. Such

a network is able to stably propagate a wave of neural

activity from pool to pool at a precision in the range of

milliseconds (Herrmann et al. 1995; Diesmann et al. 1999)

even in the presence of usual biological inaccuracies. This

property makes synfire chains exquisite timing devices: If

an activity volley is injected at stimulus onset, the time

elapsed after the onset is reliably converted into the position

of the volley in the chain. In this way, synfire chains can

integrate two of the main concepts of timing: If each of

the pools is used, the chain is equivalent to a delay line

and can be compared to a pacemaker-accumulator system,

in the sense that each pool corresponds to a pulse that is

accumulated and the transmission speed from one pool to

the next corresponds to the pulse frequency. On the other

hand, it is also possible to use several chains as interval

timers, if they have different transmission speeds and only

the last pool of each chain is used for time estimation. And

finally, it is also possible to connect the final pool of a chain

with the first one, which results in a neural oscillator with

a frequency given by the number of pools and the trans-

mission speed.

For a single synfire chain, timing errors again increase

like the square root of the interval length. However, we

arrive at the result that the timing errors increase super-

linearly with the delay of transmission from one pool to

next. As the number of pools in a chain can be assumed

to be limited, this constitutes an additional error source for

longer intervals, as they can only be represented by chains

with a larger delay. Under these conditions, we show that

the observed U-shaped form of the Weber fraction arises

from optimal selection of the chain with the lowest possible

timing error for any given interval to be represented. Finally,

we propose a combination of spike-timing dependent plas-

ticity [STDP (Bi and Poo 1998)] and homeostatic plasticity

(Turrigiano 1999) for the connections from the chains to

the readout neurons implements an optimal and unique

selection of chains. This selection is based on the fact that

the effective learning rate of STDP depends on the temporal

distribution of the input pattern.

The paper is organized as follows: In Section 2, we de-

scribe the model structure and provide the equations that are

used to simulate the neurons, synapses and plasticity rules.

Section 3 defines the notions of transmission delay and

timing error and demonstrates how the temporal statistics

of synfire chains affect temporal processing. Furthermore,

we discuss the effect of variations in the model parameters,

especially the rise time of the postsynaptic potentials (PSPs)

on the delay and the timing error. In Section 4, we combine

these results to a theory of optimal temporal processing

and show how the U-shaped form of the Weber fraction

emerges. Section 5 discusses the implementation of the op-

timal and unique selection of chains by synaptic plasticity.

Finally, in Section 6 the results are discussed regarding their

implications for selective learning, effects of attention, and

also possible extensions of the model.

2 Neuron and network model

2.1 Network structure

The model consists of neurons which are described by

their membrane potential Vi, and connected by synapses

of strength wij, where i denotes the postsynaptic and j the



452 J Comput Neurosci (2008) 25:449–464

2

1

1w 2w

44 46 48 50 52

44 46 48 50 52

44 46 48 50 52 t [ms]

M

C
2

C
1

16

17

18

49

50

51

52

53

54

55

56

pool #

pool #

Fig. 1 Left: Illustration of the model structure. A readout network M
receives convergent connections to from different synfire chains such

as C1 and C2. By the competition between the respective weights, w1

and w2, the network determines which chain optimally responds at a

time interval represented by the output unit in M. Right: Raster plot

showing the spikes in the readout network M and selected pools from

the chains C1 and C2. Each dot corresponds to a spike. In C1, activity

propagates faster and with smaller jitter σP compared to C2

presynaptic neuron. The neurons are organized in different

networks (see Fig. 1, left): Synfire chains consist of L pools

denoted by Pl which contain N neurons each. Each neuron

in a pool Pl has a probability of pS to be connected to any

neuron in the subsequent pool Pl+1 with strength wS

p(wij) =
{

pS for wij = wS
1 − pS for wij = 0

∀ i ∈ Pl+1, j∈ Pl.

(1)

If all neurons in pool Pl fire nearly synchronously with a

small temporal jitter, this induces on average NwS inputs in

each neuron in the subsequent pool Pl+1. Thus, the firing

times from the preceding pool are averaged and the jitter

is reduced in the firing times of pool Pl+1. As each neuron

in pool Pl+1 in turn projects on average to NwS neurons,

the activity in pool Pl+2 will be even more synchronized.

If all neurons in the chain are disturbed by synaptic noise,

the temporal jitter in the spike times will not decrease to

zero, but converge to a near-synchronized fixed point where

the effect of the connectivity and the noise are balanced

(Herrmann et al. 1995; Diesmann et al. 1999, see Fig. 1,

right).

Apart from the synfire chains, there is a readout network
M consisting of M neurons with no connections among

each other (wij = 0 ∀i, j∈ M), but which connections

from the synfire chains. A pool Pl is connected to a readout

neuron i ∈ M by the rule

p(wij) =
{

pM for wij = wS
1 − pM for wij = 0

∀ j∈ Pl. (2)

The set of all neurons in a given synfire chain is denoted by

Cα , as all the parameters are identical across chains except

for α, which is defined below. The values of all parameters

regarding network connectivity are listed in the left column

of Table 1.

Table 1 Values of all model parameters that are used unless otherwise

stated

Network Neuron and Synaptic

parameters synapses plasticity

L 120 Vrest −60 mV Ap 0.2

N 100 τ 30 mV Ad 0.21

M 20 Vthr −40 mV τp 5 ms

pS 0.345 Vreset −65 mV τd 5 ms

wS 0.375 λ+ 96.9 gP 0.1

pM 0.1 λ− 92.29 gI 0.015

wM 0.3 ε+ 0.1

ε− 0.1

α 0.5 ms
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2.2 Neuron model and synapses

The neurons are modeled as leaky integrate-and-fire units

embedded in a stochastic background network. While the

membrane potential Vi stays below a threshold Vthr, the time

evolution of Vi is given by

τ
dVi

dt
= − (Vi − Vrest) +

∑
k:wik �=0

wik

α

Sk∑
j=1

PSP

(
t − tsp

kj

)

+ Inoise + Iext. (3)

Without any input (Inoise = Iext = 0, Sk = 0 ∀k), Vi relaxes

exponentially to the resting potential Vrest with time con-

stant τ . Inoise represents synaptic input from the stochastic

background network, which is collapsed into an excitatory

and an inhibitory part

Inoise = ε+N (λ+, λ+) − ε−N (λ−, λ+), (4)

where ε+, ε− > 0 and N (m, σ 2) denotes a random vari-

able with a Gaussian distribution with mean m and stan-

dard deviation σ . In this form, the Gaussians approximate

two Poisson processes with rates λ+ and λ−, respectively.

Using the standard parameter values (see Table 1, middle

column), ignoring the threshold Vthr and without further

input, the membrane potential converges to a mean of

〈V〉 = −46.4 mV and a standard deviation of σV = 1.4 mV.

Whenever the membrane potential Vi crosses the thresh-

old Vthr from below, the neuron i fires a spike. Vi is then set

to the reset potential Vreset and the current time t is included

in the set of firing times of neuron i by increasing the num-

ber of spikes Si by one (Si → Si + 1) and setting tsp

i Si
= t.

A spike in neuron j influences the membrane potential Vi of

all neurons i : wij �= 0 it is connected to presynaptically. The

time evolution of the induced PSP in neuron i is described

by an α function

PSP(t) = t
α

exp

(
− t

α

)
, (5)

where α is the rise time of the PSP. The synaptic weights

wij in Eq. (3) are normalized by α to ensure that the total

impact of a single spike on the postsynaptic membrane

potential does not change with α. As mentioned before,

different synfire chains denoted by Cα will differ only in this

parameter. No additional synaptic delays are incorporated,

so α is the only parameter that determines the time course

of the PSP. Introducing a distribution of delays does not

qualitatively change the results.

2.3 Synaptic plasticity

The connections from the chains to the readout neurons

{wij : i ∈ M} are subject to two forms of synaptic plastic-

ity: STDP (Bi and Poo 1998) and homeostatic plasticity

(Turrigiano 1999). STDP is applied after each spike tsp

ik in

neuron i. For all spikes tsp

jl in neurons that are connected to

neuron i
{
tsp

jl : wij �= 0 ∨ w ji �= 0
}
, the time t = tsp

jk − tsp

il is

calculated and the respective weights are updated by adding

�w =
{

Ap exp(−t/τp) if t > 0

−Ad exp(t/τd) if t < 0

(6)

Thus, the synapse between two neurons is strengthened if

the presynaptic spike occurs earlier than the postsynaptic

spike (t > 0), but if this order is reversed (t < 0), the

synapse is weakened. This introduces the notion of causality

into the learning rule.

Synaptic weights under control of the STDP learning

rule tend to diverge either to zero or infinity, depending

on the network’s activity (van Rossum et al. 2000). One

way to prevent this is to complement STDP by a home-

ostatic learning rule, which adjusts the synaptic weights

such that the network achieves a certain mean firing rate

agoal. A simple implementation of this mechanism is given

by a proportional-integral feedback controller (van Rossum

et al. 2000)

dw

dt
= gPw(agoal − a) + gIw

∫ t

0

dt(agoal − a). (7)

This equation is applied to update w after each trial based

on the actual mean firing rate a of all readout neurons. This

seems more appropriate then using it every time step, as

homeostatic plasticity is believed to act slowly (Turrigiano

1999). Parameter value for both forms of plasticity are listed

in Table 1, right column.

3 Temporal statistics of synfire chains

3.1 Quasi-spatial representation of time

An interval can be represented by a synfire chain if the

stimulus onset triggers a volley of activity in the first pool

P1 of the chain. This volley can be characterized by the

number of spikes a(1) in the first pool and the temporal

jitter σP(1) of these spikes around the mean t(1), which

is defined to be zero. We assume that the volley follows a

Gaussian distribution N (t(i), σP(i)2), which turns out to be

a good approximation for the simulated data. For a large

range of initial conditions (a(1), σP(1)), activity will then

stably propagate through the pools, approaching a fixed

point (a, σP) in both parameters (Diesmann et al. 1999).

The time at which the activity wave has reached pool Pi
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can be estimated by the mean spike times of the neurons in

that pool

t(i) = 1

a(i)

N∑
n=1

Sn∑
j=1

tsp

nj , with a(i) = ∣∣{tsp

nj : n ∈ Pi
}∣∣.

(8)

a(i) is the number of spikes in pool Pi, which may also be

larger than N if there are neurons that spike more than once.

For practical calculation in simulations, only those spikes

enter this equation which give rise to a firing rate above a

threshold value defined from the background firing rate. The

rate is calculated by counting the number of spikes in a time

bin of 0.1 ms.

From t(i), we define the transmission delay �t(i) from

pool Pi to pool Pi+1 as

�t(i) = t(i + 1) − t(i). (9)

An interval can only be reliably estimated if �t(i) has a

robust relation to i. For a synfire chain, one would expect

that �t(i) converges to a fixed point value �t, as a(i) and

σP(i) do. In Fig. 2 (left panel), �t(i) is shown for initial

conditions (a(1), σP(1)) = (100, 4 ms), which is close to

the border of the basin of attraction of the fixed point

(a, σP). As expected, the mean of �t(i) converges to a fixed

point after a short transient, establishing an approximately

linear transformation of time into the position of the volley

in the chain. This representation does not need to be literally

spatial, as the pools are defined only by the topology of their

connections and not their spatial position.

The exact form of the transient depends on the initial

conditions. For instance, starting close to the border of the

basin of attraction that surrounds the fixed point results in

an overshoot of �t(i) in the first pools (Fig. 2, left). In

the following, we suppress the effect of the transients by

choosing initial conditions that are close to the fixed point.

3.2 Timing errors

While the mean of �t(i) converges to a constant �t, fluc-

tuations in the actual realizations of �t(i) remain. They can

be considered Gaussian random variables

�t(i) = N
(
�t, σ 2

�t
)

(10)

with mean and standard deviation independent of i. The

temporal jitter σ�t can be derived directly from the para-

meters a and σP for the steady state. Adding two random

variables with a Gaussian distribution results in a Gaussian

variable where mean and variance are the sum of those from

the two original variables. �T is the sum of two random

variables t(i + 1) and −t(i) which are themselves the sum

of a variables tsp

nj each, divided by a. The spike times, in turn,

have a Gaussian distribution with standard deviation σP (cf.

Section 3.1). As a and σP are constant in the steady state,

both t(i + 1) and −t(i) have a standard deviation of σP/
√

a,

and σ�t, so that we find

σ 2

�t = 2

a
σ 2

P = const. (11)

The estimate of an interval T can now be written as

T(i) =
i∑

l=1

�t(l) = �t · i + N
(
0, σ 2

T
)

(12)
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0
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Fig. 2 Left: Transmission delay �t(i) as a function of the pool

number i. After a transient, the mean of �t(i) converges to a constant

�t, while some finite jitter σ�t remains. Right: Timing error σT as

a function of the stimulus duration T for PSP rise times α = 0.5ms

(lower curve) and α = 1.5ms (upper curve). The dots represent the

simulation data and the line is a plot of Eq. (14) with σ�t fitted to the

data. The coefficient σ�t is fitted to 0.035067 (±28) for α = 0.5 and

0.13093 (±15) for α = 1.5
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The second equality results from Eq. (10). σT is the timing

error which appears in psychophysical experiments. Again,

the variances of �t(i) add up and the timing error results in

σT(i)2 =
i∑

l=1

σ 2

�t(l) = σ 2

�t · i, (13)

where the second equality holds at the fixed point value of

σ�t [Eq. (11)]. Using Eq. (12), one sees that the timing error

increases with
√

T

σT(T) = σ�t · √
T. (14)

Note that the timing error σT and the spike time jitter σP
refer to quite different concepts. σP denotes the standard

deviation of the spike times within a pool and also within

the same trial. This jitter must not increase with time, or

else activity can not be stably propagated. On the other

hand, σT is the accumulated error of the estimating the

transmission delay �t across trials. Increase of σT means

that the temporal information encoded in the synfire chain

is gradually lost at longer times, although it may still stably

propagate activity in each individual trial.

In Fig. 2 (right panel), we have plotted the estimate of σT
for two different synfire chains C0.5 and C1.5, based on 1000

simulations each. One sees that both curves can be fitted

with a
√

T-law, with 94.7% of the total variance explained

for C0.5, and 95.2% for C1.5.

Linear representation of time and a
√

T law for timing

errors are also key properties of a pacemaker-accumulator

system (Gibbon 1977), so in this sense a synfire chain is

equivalent to this class of models.

3.3 Parameter variations

A synfire chain can be seen as a timing device with a time

constant of L�t. In this section, we examine how we can

increase �t to obtain different time scales without changing

the pool number L.

3.3.1 Effect of varying α

The position of the fixed point in a and σP, and thus,

�T and σ�T depends strongly on the parameters of the

synfire chain. The easiest way to change �T is to vary the

rise time α of the PSP. If the time until each spike fully

affects the postsynaptic membrane potential increases, the

transmission time of the entire volley will also be delayed.

Moreover, this parameter has already been studied in its

influence on the fixed point in a and σP (Diesmann 2002).

We assess the effect of α by running simulations with 20

trials each, raising α by 0.05 ms after each set of trials. The

dependency of �t, a and σP on α turns out to be well fitted

by a polynomial of second order

f(x) = Ax2 + Bx + C. (15)

As seen from the coefficients in Table 2, �t and σP increase

mostly linear with α. As A 
 B, the quadratic term only

becomes relevant as a small correction at higher α. a, on the

other hand, decreases quadratically over the whole range

of α, but only moderately in total (A, B 
 C). For σ�t,

a fit to Eq. (15) only works well for small values of α.

Furthermore, when we check whether Eq. (11) holds for

the simulated data, it turns out that it does only for α ≤ 2

(Fig. 3, left panel). As we are interested in the relationship

between σ�t and �t, we fit a curve to the data points in

these two dimensions. As a boundary condition, we demand

σ�t(0) = 0, as it makes no sense to assume a timing error

if activity travels through the chain infinitely fast. With this

constraint, the data turns out the be fitted very well with a

third-order polynomial

σ�t(�t) = A�t3 + B�t2 + C�t. (16)

The coefficients are listed in the final row of Table 2. Once

again, the dependency is mostly linear, as A, B 
 C, with a

nonlinear correction is of the order of �t3
. The fit explains

82.4% of the variance in the data (Fig. 3, right panel).

What is the reason for the nonlinearities in �t, σP and

σ�t that become relevant at higher values of α? Note that

α has an upper limit at 2.7 ms. At this point, a bifurca-

tion occurs, i.e. the fixed point becomes unstable or even

collides with the saddle point at the border of the basin of

attraction, making them both vanish (see Diesmann 2002

for a discussion of these scenarios). We propose that the

nonlinearities occur as α approaches the bifurcation point.

This also explains why the effect of α is stronger for σ�t
compared to the other parameters: Close to a bifurcation

point, the transients that lead to the fixed point become

longer and more variable. That does not affect the jitter of

individual pools, nor the mean transmission delay, but it

Table 2 Coefficients of

Eq. (15) fitted to the data sets of

a, �t and σP (first three rows),

and coefficients of Eq. (16)

fitted to the data set of σ�t
(final row)

Parameter A B C Explained variance (%)

a −1.298 1.21 98.20 83.8

�t 0.1739 1.504 0.113 96.9

σP 0.01625 0.522 0.0348 92.5

σ�t 2.677 ·10
−3 −8.833 ·10

−3
0.0486 82.4
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Fig. 3 Left: The variance in the transmission delay σ�t as a function

of the PSP rise time α. Right: σ�t as a function of mean transmission

delay �t. The dots are data from the simulation. In the left panel,

the line is a plot of Eq. (11) with the values of a and σP from the

simulation. In the right panel, the line is a fit to Eq. (16) using the

parameters in Table 2, final row

makes the time that the volley spends in the first few pools

highly unpredictable, which increases the total timing error

σT , and thus, indirectly also σ�t.

3.3.2 Effect of other parameters

While the focus of this study is on the influence of α, here

we briefly discuss how other model parameters affect �t
and σ�t. Although σ�t increases with �t as α is increased,

it is conceivable that these two measures are anticorrelated

as another parameter is changed. We checked whether this

is possible, with all those parameters that directly affect

the dynamics of the network. Individual parameters to be

changed are, apart from α, the synaptic weights wS, the con-

nection probability pS, the number of neurons in a pool N
and the membrane time constant τ . While changing pS and

N, wS is normalized to 0.345/pS and 100/N, respectively.

Without this normalization, pS and N would have similar

effects as wS, as the total number of presynaptic synapses of

a neuron is changed.

Furthermore, the statistics of the membrane potential is

important for the dynamics, described by 〈V 〉 and σV. 〈V 〉
enters the dynamics only by its distance from the firing

threshold Vthr − 〈V 〉. This distance is most easily changed

by modifying Vthr. σV, on the other hand, can only be

modified by jointly changing λ+ and λ− such that 〈V 〉
stays constant. This is guaranteed if there is a certain linear

relationship between the two rates (Diesmann 2002).

We increased and decreased each parameter individually

until the chain either breaks down (synchronizing effect

too weak) or activity volleys form spontaneously without

external stimulation (synchronizing effect too strong). Then,

we calculated �t and σ�t at parameter values slightly before

one of the two events occur. Figure 4 shows the results

for all cases where �t increased. In all these cases, σ�t

increases as well. We also included α in the analysis for

comparison. From Fig. 3, as well as from Eq. (16), the

coefficients in Table 2 and the upper limit of α at 2.9 ms,

one can see that changing α increases �t up to 5.44 ms and

σ�t up to 0.44 ms. Thus, changing α makes it possible to

increase �t much more than any of the other parameters,

and, as seen from Fig. 4, also at the lowest relative error.

Note that this analysis does not exclude the possibility of

increasing �t without an increase of σ�t. For instance, one

could increase α and also increase the number of neurons

in a pool N to compensate for the increase in σ�t. However,

such a compensation would always result in a decrease of

�t as well, limiting its possible range. Furthermore, Fig. 4
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Fig. 4 Effect of the variation of the model parameters on the chain

transmission characterized by �t and σ�t. The common starting point

of each line corresponds to the combination of standard parameters

listed in Table 1. Only one single parameter is varied at a time. Each

line is drawn up to the point where the synfire chain becomes unstable.

The only exception is the line for α, which actually extends up to �t =
5.44 ms and σ�t = 0.44 ms
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illustrates that the effect of any other individual parameter

then α is rather limited. We conclude that one can only

attenuate the increase of σ�t, but not abolish it completely

over the full range of �t.
Nevertheless, different combinations of parameters may

still extent our results. For instance, it was shown in

Wennekers and Palm (1996) that �t could be increases by a

factor of 2 to 5 by changing the membrane time constant τ

and the external input Iext (and thus, Vthr − 〈V 〉), compared

to an increase of merely 25% which we report here. What

we have shown is that α is the most efficient parameter in

changing �t in the sense that it induced the largest dynamic

range for �t with the least relative increase in σ�t.

4 Optimal temporal processing

If there are different synfire chains Cα with different trans-

mission delays �t, a given interval T could be potentially

represented by each of these chains. This redundancy opens

the possibility to optimize the representation of time, in the

sense of minimizing the timing error σT for each interval T.

The principle of optimization has already been used before

in a more abstract pacemaker-accumulator system (Killeen

and Weiss 1987).

An interval T is represented by a pool i in the chain Cα

with transmission delay �t. Only one of these parameters

can be freely varied, the other one is fixed by the implicit

equation T = T(i, �t). σT depends on both parameters, but

much stronger on �t (σT = O(�t3), Eq. (16) and Eq. (13))

than on i (σT = O(
√

i), Eq. (13)). Thus, minimization of

σT requires using the lowest possible transmission delay

min(�t) and represent all intervals by the different pools

i of the fastest chain Cmin(α).

This optimization results in a timing error that increases

as σT = O(
√

T). This explains only part of the experimental

results, namely the decreasing Weber fraction for short

intervals. At longer times, optimization must be constrained

such that a linear or faster-than-linear increase of σT results.

We propose that this constraint is given by a limited chain

length. If a chain has a maximum of L pools, the range of

intervals that can be represented by the fastest chain Cmin(α)

has an upper limit of T = min(�t) · L. For longer intervals,

a chain with a higher �t and thus, a higher σT must be

used. As the timing errors are dominated by the third-order

dependency on �t, the constraint optimization problem can

be formulated as

�t∗(T) = {min(�t) | T ≤ �t · L}. (17)

where �t∗(T) is the optimal choice of �t for representing

the interval T. In the simplest case, assuming a smooth

distribution of �t, every interval can be exactly represented

by an individual synfire chain, and Eq. (17) simplifies to

�t∗(T) = T
L
. (18)

Taken together, Eqs. (14), (16), and (18) yield the optimal

form of the timing error

σ ∗
T (T)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ�t(min(�t)) ·
√

T
min(�t)

for T ≤ min(�t) · L

A
L5/2

T 3 + B
L3/2

T 2 + C√
L

T otherwise

(19)

with the coefficients A, B, and C from Eq. (16) and Table 2

(final row). For T > min(�t) · L, the timing error is entirely
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Fig. 5 Left: Timing error, e.g. variance of the total runtime of a

chain σT as a function of T for various values of α. The solid curves
depict simulation data and the dotted line represents the optimal

timing error σ ∗
T (T) from Eq. (19). It is close to the lower envelope

of the simulation data. Right: Weber fraction σT/T as a function of

T calculated from the lower envelope in Fig. 5 (left). The U-shaped

form of the Weber fraction that is known from the psychophysical

experiments is reproduced
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dominated by σ�t. To minimize σ�t, always the final pool

L of each chain is used [Eq. (18)], so the
√

T dependency

degenerates into
√

L, which is constant for all T and enters

the coefficients of the third-order polynomial. σ ∗
T depends

mostly linear on T, with small nonlinear corrections of the

order of T 3
, just as σ�t.

In Fig. 5 (left), we have plotted σT(T ) for a number

of different Cα from simulations together with the optimal

σ ∗
T (T) from Eq. (19), which is close to the lower envelope

of the simulation data. Both from Fig. 5 and Eq. (19), one

sees the three regimes that are found in the experiments:

σT ∝ √
T for T ≤ min(�t) · L, σT increasing faster than

linear for T � min(�t) · L, and an intermediate regime

where the linear term in Eq. (19) dominates and σT/T is

approximately constant. Consequently, the Weber fraction

σT/T calculated from Eq. (19) follows the experimentally

observed U-shaped form (Fig. 5, right).

5 Optimization by competitive STDP learning

In the preceding section, we have shown how the observed

timing errors can be explained by an optimal selection

of synfire chains. In this section, it remains to be shown

how this selection is neuronally implemented and a unique

representation of time is formed from the different chains.

Here we show how both issues can be resolved if the

chains project to a set of readout neurons and the synaptic

weights of these projections are subject to both STDP and

homeostatic plasticity.

To see how the representation of an interval T can be

learned in this framework, consider the following experi-

ment (cf. Fig. 8, top panel). At time t0, a stimulus S0 (called

initiation stimulus) is given that activates the first pool of

all chains and makes the volleys travel along the chains

with their respective speeds. At a second time t1 = t0 + T,

another stimulus S1 (training stimulus) activates the readout

neurons. Around this time, inputs from the chains also

arrive. If this experiment is repeated, the connections to

those pools of the chains will grow that were active slightly

before the stimulus S1. Eventually, a certain set of readout

neurons will fire at time t1 even in the absence of stimulus

S1 if the stimulus S0 is given at time t0.

Using this paradigm, we first show in Section 5.1 that

the effective learning rate of STDP is higher for inputs from

a fast synfire chain with a peaked spike time distribution

compared to the input from a slower one, meaning that

the mean synaptic weight of the connection is higher after

a given number of trials. Second, we consider a set of

readout neurons that are connected to two different chains,

one with a low α (Cα1
) and one with a higher one (Cα2

). If

the input from the two chains arrives at the same time, we

can test the optimal selection of chains (Section 5.2): The

timing errors σT in the readout neuron should be comparable

to the smaller errors in chain Cα1
. If the inputs arrive at

different times, we can test for the unique representation

(Section 5.3): Even if a training stimulus is given at both

arrival times, the readout neurons should learn to fire only

once. Both of these properties are confirmed and can be

extended to a scenario with several input chains.

5.1 Effective learning rate depending on timing errors

Before we explain the mechanism that brings about opti-

mality and uniqueness of the representation, we elaborate

on how the effective learning rate of STDP depends on

the temporal distribution of the presynaptic spikes. For this

purpose, we consider only connections from a single synfire

chain and neglect homeostatic plasticity. Furthermore, we

assume for simplicity that the postsynaptic spikes in the

readout neurons (i.e. the training stimulus S1) occur at a

fixed time t1 without any jitter. Assuming for example a

Gaussian distribution of S1 around t1 does not change the

following argument, as it only increases the variance of the

relative time between the pre- and postsynaptic spikes.
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Fig. 6 Illustration of the STDP learning curve (top panel), aligned

to spike time distributions from two different chains, one with a

faster transmission (middle panel) and one with a slower transmission

(bottom panel). t denotes the relative time between the presynpatic and

postsynaptic spike (cf. Eq. 6). If the means are aligned, the different

standard deviations cause a relative advantage for the narrower dis-

tribution. This is because the peaked distribution has a larger overlap

within the area in between the dashed lines than the broader one
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To illustrate the effects of different temporal spreads in

the presynaptic spike times, consider two Gaussian firing

time distributions with the same mean spike time t∗, but

different variances (Fig. 6). The temporal asymmetry in

STDP, and the exponential decrease of its efficiency with

increasing |t| (cf. Eq. (6) and Fig. 6, top panel) are the

reasons why the width of the input distribution influences

the effective learning rate: The trial average of this rate is

given by the convolution of the weight increase at a given

value of t and the distribution of t. From Fig. 6, one can see

that the area under a peaked distribution largely overlaps

with the area under the positive branch of the learning

curve up to its half width at half maximum, marked by the

two dotted lines. The mean learning rate is therefore larger

for a more strongly peaked input distribution than for a

broader one, as the latter overlaps more with areas of less

positive increase, and even with the negative branch of the

STDP curve.

In Sections 3 and 4, we have shown that the temporal

spread of the firing times in synfire chains increases with

α. Thus, by the preceding argument, the mean weight from

chain neurons to a readout neuron after a given number

of learning trials should decrease with increasing α. To

test this assumption, we fully connected all neurons in the

pool number 50 of a chain to all the readout neurons and

performed the simulated learning experiment 50 times for

each different value of α. S1 was presented 3 ms after the

mean firing time of the chain neurons in pool 50. Figure 7

shows that the synaptic weights after the learning trials

indeed decrease for increasing α. This result is independent

of the pool number and of the α used in the connections to

the readout units.

0.5 1 1.5 2 2.5
0.4

0.5

0.6

0.7

0.8

α [ms]

<w
M

>

Fig. 7 Mean synaptic weights 〈wM〉 of the connections from a pool

(shown is pool number 50) to a readout neuron after 50 presentations of

the corresponding interval. The graph is obtained by varying the PSP

rise time α used in the chain connections. All weights were initialized

by the values 0.3

5.2 Optimal selection of synfire chains

If a readout neuron is connected to two synfire chains

Cα1
and Cα2

(Fig. 1), its firing pattern may be shaped by

the input from both of them. The combination of STDP

and homeostatic plasticity introduces synaptic competition

among the chains: The weights are increased by STDP with

a different effective rate (cf. Section 5.1), but the rate of

compensation by homeostasis is the same for both chains

[cf. Eq. (7)]. Thus, the faster chain Cα1
with the higher STDP

rate will win the competition and dominate the firing pattern

of the readout neuron.

First, we study the effect of this competition for the case

that both inputs arrive at the same time. This means that

the neurons which are connected to the readout neuron have

the same mean firing time in both chains, marked by the

dotted line in Fig. 8 (top panel). S1 is given slightly after

this mean. If the input from chain Cα1
dominates the firing

pattern of the readout neuron, its timing error σT should be

lower compared to the case where it only receives input

from the slower chain Cα2
. This corresponds to a selection

of the optimal chain Cα1
.

To test if this selection takes place, we connected the

readout neurons to one pool of chain Cα1
and to another pool

of Cα2
, chosen such that the mean firing times of the two

pools are at 68 ms, which is the largest interval in the chain

C0.3. α1 was fixed to 0.5 ms, while α2 was varied from 0.3

to 2.5 ms. If there is no pool which is activated exactly at

68 ms, we chose the one that is closest to this time and shift

the starting time of the respective chain. This shift is always

less than a millisecond. Without such a shift, the deviations

of the means from 68 ms would be another source of timing

errors. For every α2, we performed 10 sets of trials with

300 trials each. The first 200 trials were used to modify

the synaptic weights to the readout neurons by STDP and

homeostatic plasticity, while in the last 100 trials, the timing

error σ M
T in the readout neurons was calculated without any

further learning. σ M
T is defined in the same way as σT for

the synfire chains (cf. Section 3), just using the neurons in

the readout network instead of those in a pool. The target

rate is set to agoal = 2 spikes per neuron and trial, one spike

from S1, and another from the chain input. The chain input

usually arrives before stimulus S1, which is set to be strong

enough to make the neurons fire even shortly after a spike

induced by the chain input.

Figure 8 (middle panel) shows the synaptic competition

between the two chains. Initially, STDP dominates the

learning dynamics and increases the two types of con-

nections according to the speed of the input chain (cf.

Section 5.1). This produces an overshoot over the firing rate

over the target rate agoal, and homeostatic plasticity is finally

strong enough to bring the weights down again. Different

from STDP, the homeostatic learning rule is blind to the
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�Fig. 8 Top: Illustration of the activation pattern in the readout neurons

M that are driven by the synfire chain Cα1
and Cα2

, cf. Fig. 1. At time

t0, the initiation stimulus S0 activates the first pool of each chains and

causes volleys along all the chains with their respective speeds. At

time t1 = t0 + T, another stimulus S1 that indicates the termination

of the temporal interval activates the readout neurons. Around this

time, inputs from the chains also arrive. The learning rule (see Fig. 6)

increases the connections to those pools that were active slightly before

the stimulus S1. Middle: Mean synaptic weight 〈wM〉 of all connections

from C0.5 (black curve) and C1.5 (gray curve) to the readout neurons

M as a function of the number of trials. During the first 200 trials, the

weights are modified by STDP and homeostatic plasticity, while the

final 100 trials are used to calculate σ M
T . Ultimately, the connections

to the faster chain C0.5 are much stronger than those to the slower

chain C1.5. Bottom: Timing error σ M
T in the readout neurons M as a

function of α2 (cf. Fig. 6). The grey curve shows σ M
T for α1 = 0.5

and the black curve for α1 = α2. For the case of α1 = 0.5, the timing

error is dominated by the input from Cα1
and much lower compared to

α1 = α2 for α2 > 0.5

different speeds of the input chains, but reduces the weights

only according to their current strength [cf. Eq. (7)]. Thus,

the difference between the connections from Cα1
and Cα2

remains as the mean firing rate approaches agoal, resulting in

partial suppression of the input from the slower chain Cα2
.

In Fig. 8 (bottom panel), we show the timing error σ M
T

resulting from this synaptic competition as a function of

α2. For comparison, we conducted another simulation where

α1 = α2, instead of being fixed to 0.5 ms. In this case, the

timing error is fully determined by the input from Cα2
. One

sees that the error is much lower in the case of synaptic

competition for all α > 0.5. For α = 0.3, on the other hand,

the errors in both cases are comparable, as Cα2
is the faster

chain now and thus dominates σ M
T .

5.3 Unique representation in readout neurons

We now study the second case that is possible with the

connectivity depicted in Fig. 1, Cα1
having an different mean

firing time from Cα2
. In this case, the question is how to

prevent the readout neuron to respond to two different time

intervals. If the system is exposed to two training stimuli

S1 and S2 slightly after each of the chain firing means, both

intervals could be trained to the same neuron (see Fig. 9, top

panel). Thus, one could not tell which of the two times has

elapsed upon firing of this neuron.

Such a double training of the same neuron is also pre-

vented by synaptic competition. If the same neuron fires

two times responding to a single training stimulus, the

firing rate is higher than the target rate agoal. This leads

to a compensation that weakens the connections to both

chains, but finally leads to a suppression of the input from

the slower one, as its connection was weaker in the first

place (cf. Section 5.1). The readout neurons only respond to

the interval represented by the faster chain and the unique

representation is restored.
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As a test of this reasoning, we use the same simulation as

in Section 5.2, with the only difference that the connecting

pool of Cα2
is chosen to match a certain mean firing time

different from the one of Cα1
. This interval between the two

mean firing times is now varied instead of the α, which are

kept constant to α1 = 1.5 ms and α2 = 0.5 ms.

Figure 9 (bottom panel) shows the mean firing time of the

readout neurons TM as a function of the varied mean firing

time Tα2
in Cα2

. For a unique representation, TM should

either be identical to Tα2
(grey dotted diagonal) or to the
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Fig. 9 Top: Illustration of the activation pattern in the readout neurons

M. Same as in Fig. 8 (top panel), except for the different mean firing

times of Cα1
and Cα2

and two training stimuli occurring at t1 and t2,

which are slightly after the temporal means of the two chains. Bottom:

Mean firing time of the readout neurons TM as a function of the mean

firing time Tα2
in Cα2

. The firing time of Cα1
is kept constant to Tα1

=
140.2 ms. For Tα2

< Tα1
, the readout neurons fire at about the same

time as the neurons in chain Cα2

fixed firing time of Cα1
(black horizontal line). The figure

shows that such a unique representation is maintained for

all Tα2
< Tα1

. For Tα2
after the mean firing time of Cα1

,

the situation is less clearly described. While TM faithfully

follows Tα2
for 20 ms after Tα1

, it jumps between Tα1
and

values between Tα1
and Tα2

for higher Tα2
, indicating a

significant number of spikes at both of these times. This

can be explained if one considers that the timing error

increases with
√

T [Eq. (14)]. If Tα1
stays constant while

Tα2
increases, the difference in the timing errors decreases,

and thus, the synaptic weights from both chains will be more

similar. We conclude that a unique representation is possible

for all Tα2
< Tα1

. For α2 < α1, however, this will be the

most common situation, as the range of time intervals in

Cα2
is smaller than Cα1

(cf. Fig. 5, left) and thus, Tα2
> Tα1

rarely occurs.

6 Discussion

At first glance, the
√

T dependency of the timing errors

in a synfire chain seems to be incompatible with the ex-

perimental results of a constant or even increasing Weber

fraction, which is a problem shared by many other models of

timing. However, we identified a mechanism that makes the

additional error plausible, namely the superlinear increase

of the timing error with the transmission delay. Thus, we

do not need to postulate any ad hoc assumptions about the

scalar property, but could explain both the linear and faster-

than-linear error increase from a constraint optimization

process. Moreover, we found a neuronal implementation

of this optimization by synaptic plasticity that also solved

the problem of combining output from the various synfire

chains to a unique representation of time.

A central assumption of our work is the limitation of the

number of pools in a synfire chain. One possible reason

why such a limit should apply is provided by a capacity

argument. Synfire chains have been proposed to model the

function of the cortical column (Herrmann et al. 1995;

Bienenstock 1995), a structure containing 10
4

to 10
5

neu-

rons. A pool size of the order of 10
2
, comparable to the

size of a minicolumn, has been shown to be necessary

for stable propagation of the chain (Herrmann et al. 1995;

Bienenstock 1995; Diesmann et al. 1999). Thus, the number

of pools in the chain is constrained to the order of 10
2

to 10
3
.

Of course, each of the neurons in a column could participate

in multiple chains, but the capacity of network for synfire

chains has been found to be limited (Herrmann et al. 1995;

Bienenstock 1995), and it has been proposed that this ca-

pacity only allows for representation of events of durations

up to 1s (Herrmann et al. 1995). However, all these studies

assume a transmission delay of about 1 ms, which is true

only for the fastest chains in our framework. Possible delays

up to 6 ms do not seem to enable computations much above

the range of one second, due to the increase in timing errors.

In order to compensate these errors, an increase of the width

of the chain were necessary which in turn reduces capacity.

The one second range has also been found in physiological

experiments with precise spiking patterns (Ikegaya et al.

2004), although the results of this study are disputed.

Another argument for a constrained pool number relates

to the formation of synfire-like structures with a distribu-

tion of transmission delays. It has been shown that such

structures might emerge from STDP learning in recurrent

networks (Izhikevich 2006). In this study, the number of

neurons in each of the “polychronous groups” was less than

20 in the mean, in a network of 1000 neurons. Much larger
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networks tended to become unstable. Although it seems to

be possible to stabilize such groups by external guidance

(Izhikevich 2006; Buonomano 2005), problems of unstable

connections are likely to put a further constraint on the

length of a chain.

Apart from the limited chain length and the general con-

nectivity of several synfire chains projecting onto readout

neurons, many of the assumptions used in this model can be

relaxed. First of all, the synfire chains are allowed to contain

a certain amount of recurrent connections, which introduce

an additional source of error, but do not destabilize the prop-

agation of activity (Herrmann et al. 1995). Second, it is not

necessary to prewire the connections to the readout neurons

in the way we have used here. Rather, this connectivity will

arise spontaneously from an initially random wiring because

of the synaptic competition. Consider each readout neuron

being initially connected randomly to a certain fraction

of the pools in a single chain. STDP will then only en-

hance the connections to those pools that are active slightly

before the stimulus. But at the same time, homeostasis

weakens all the connections, including those which were

not enhanced. As a result, connections which does not fit

into the scheme we have proposed for learning temporal

representations end up to be very weak, and mights also be

removed by means of synaptic turnover. Finally, the model

is also robust to changes in the properties of the noise.

Introducing a finite correlation length into the noise only

adds a constant to the timing error and does not change the

form of the error function. And even if the
√

T law in the

timing errors of the individual chains changed due to some

properties of the noise, one would expect that this affected

all of the synfire chains alike. So the selection of optimal

chains would still work in this case and the U-shaped form

of the Weber fraction would be preserved.

The combination of synfire chains and the readout net-

work with plastic connections opens the possibility to ex-

plain some further phenomena of temporal processing. For

instance, it has been shown that the subjective length of

an interval depends on attention: If a timing task has to

be performed in parallel with a second, non-temporal task,

the duration of the interval is systematically underestimated

(Grondin 2001). This can be explained by our model if

attention is modeled by the level of activation in the synfire

neurons. The mean membrane potential 〈V〉 is increased,

and thus, the difference 〈V〉 − Vthr is decreased. This de-

creases �t (cf. Section 3.3.2 and Wennekers and Palm

1996). Conversely, decreased attention due to a parallel task

decreases 〈V〉 and slows down the chain, resulting in an

underestimation of intervals.

Moreover, temporal representations are subject to selec-

tive learning: If a participant is trained with stimuli of a

certain duration, discrimination of that duration is improved

after training, but this effect does not generalize to different

intervals (Buonomano and Karmarkar 2002). This is also

readily explained in the framework of our model: Training

of a specific duration strengthens the connections of the

responsible readout neurons with the pools that are active

at this time, and suppresses the random connections to

other pools by means of synaptic competitions. The learning

experiment described in Section 5 can also be related to

the paradigm of classical conditioning, where the initiat-

ing stimulus S0 corresponds to the conditioned stimulus

(e.g., the ring of a bell or a flash of light) which can be

learned to predict the unconditioned stimulus (e.g., food or

an airpuff), corresponding to the training stimulus S1 in our

case. This may also solve the problem that learning seems

to occur on time scales that are much longer than those

of the STDP learning rule (Shors and Matzel 1997). Note

that there is no need to assume that S0 only activated the

synfire chains and S1 only the readout network. If there is

no such distinction, S1 would both mark the end of a first

interval and the beginning of another, starting off a new

volley of synfire activity. In this way, the apparent “reset”

of the timing system could be explained (Buonomano and

Karmarkar 2002).

Based on our results and earlier descriptions of neuronal

structures and connections that might be relevant for tem-

poral processing (Buhusi and Meck 2005), we sketch a

hypothetical architecture of our model in the brain: Synfire

chains are present in all areas of the neocortex, performing

computational tasks like pattern storage (Herrmann et al.

1995; Bienenstock 1995) or compositional binding (Hayon

et al. 2005). They have different transmission delays that

might have been shaped during their formation by the time

scale of the task they perform. As a by-product of their

usual computation, the chains encode the temporal infor-

mation of a real or imagined event. These distributed time

representations are then projected onto a central readout

network that is located in the striatum (Buhusi and Meck

2005). Distortions in the level of dopamine, as induced by

certain drugs or Parkinson’s disease will strongly affect the

function of the readout neurons and thus, also the timing

performance (Buhusi and Meck 2005; Rammsayer 1999).

The connections from the chains to the readout neurons are

initially randomly distributed and are shaped by synaptic

plasticity to implement an optimal, unique representation of

time. Nevertheless, input from suboptimal chains will not

be entirely suppressed, so the random connectivity remains

an additional source of errors that can be further reduced

by training.

Note that within this framework, it is improbable that

there is a separate chain for each conceivable time interval,

as we have assumed in Section 4. More likely, there will

we a finite set of chains that represents an entire range of
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durations by using more than just their final pool. Of course,

this violates the optimality condition Eq. (18) to some

extent, introducing another error source. More specifically,

the timing errors will not increase as smoothly as Eq. (19)

implies, but there will be jumps in the error whenever a

certain chain has reached its final pool and longer intervals

must resort to the next chain. Interestingly, such jumps have

indeed been observed in psychophysical experiments after

excessive training (Kristofferson 1980). It seems that those

jumps are normally masked by noise that is reduced by

training. One possible source of this noise might be the

random connectivity to the readout neurons, which can be

refined by plasticity (see above). Furthermore, it is conceiv-

able that the transmission delay of the chains can be fine-

tuned by slightly changing the activity level (Wennekers and

Palm 1996). This might explain short-term adaptation ef-

fects which occur at the presentation of sequences (Blaschke

et al., submitted for publication). Mechanisms that are not

contained in the current form of the model include memory

and decision.

A quantitative view on the Weber fraction calculated

from our simulation data (cf. Fig. 5, left) reveals that its

value of 0.5 to 4% of the represented interval is too low

compared to the psychological experiments, which report

values between 2 and 20% (Gibbon et al. 1997; Drake and

Botte 1993; Getty 1976). This is due to a relatively low level

of synaptic noise (σV = 1.4 mV in our study compared to

e.g. 2.85 mV in Diesmann et al. 1999). We conducted tests

of whether this level can be increased while maintaining

stable propagation of chains. Preliminary results show that

this is possible by compensation of the increased noise

with increasing both synaptic weights wS and the firing

threshold Vthr. Using these measures, the Weber fraction is

increased to values between 3 and 9%. A full exploration

of the synfire parameter space is beyond the scope of this

research, but it seems that at least the lower range of the

Weber fractions experimentally observed can be obtained

within the biologically realistic range of parameters. Some

additional error sources have been mentioned in this section.

Finally, we note that our framework is not necessarily

limited to synfire chains. Any timing system with a limited

dynamic range will show a similar effect, given that this

range can be extended at the cost of a superlinear increase

in the timing error. The optimization scheme and readout

network will be the same in this case. It seems worthwhile to

check this properties for neurocomputational models of tim-

ing such as state-dependent networks (Buonomano 2000,

2005), ramping activity (Durstewitz 2006) or the striatal

beat model (Matell and Meck 2004). The convergence of

evidence from psychology and neuroscience is likely to

decide which classes of models are able to explain how our

brain tells time.
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