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Abstract
Over the last two decades a plethora of new thermoelectric materials, their alloys, and their nanostructures were synfthesized. 
The ZT figure of merit, which quantifies the thermoelectric efficiency of these materials increased from values of unity to 
values consistently beyond two across material families. At the same time, the ability to identify and optimize such materials, 
has stressed the need for advanced numerical tools for computing electronic transport in materials with arbitrary bandstructure 
complexity, multiple scattering mechanisms, and a large degree of nanostructuring. Many computational methods have been 
developed, the majority of which utilize the Boltzmann transport equation (BTE) formalism, spanning from fully ab initio 
to empirical treatment, with varying degree of computational expense and accuracy. In this paper we describe a suitable 
computational process that we have recently developed specifically for thermoelectric materials. The method consists of three 
independent software packages that we have developed and: (1) begins from ab initio calculation of the electron–phonon 
scattering rates, (2) to then be used within a Boltzmann transport simulator, and (3) calculated quantities from the BTE are 
then passed on to a Monte Carlo simulator to examine electronic transport in highly nanostructured material configurations. 
The method we describe is computationally significantly advantageous compared to current fully ab initio and existing 
Monte Carlo methods, but with a similar degree of accuracy, thus making it truly enabling in understanding and assessing 
thermoelectric transport in complex band, nanostructured materials.

Keywords  Thermoelectricity · Complex bandstructure materials · Ab initio scattering rates · Boltzmann transport · Monte 
Carlo · Computational methods · Nanostructures

1  Introduction

Thermoelectric generators (TEGs) are solid-state devices 
able to convert the heat flow arising from temperature gra-
dients directly into electricity. They have the potential to 
offer a sustainable path for power harvesting from a variety 
of industrial sectors at power levels from microwatts to tens/
hundreds kW, and even MW. Their impact could be wide-
spread across many applications including medical, wear-
able electronics, building monitoring, the internet of things, 
refrigeration, thermal management, space missions, trans-
portation, and various industrial sectors [1]. However, high 

prices, toxicity, scarcity, and low efficiencies of the promi-
nent thermoelectric (TE) materials are currently hampering 
their large-scale exploitation. On the other hand, progress 
on these materials has been rapidly expanding over the last 
two decades. Novel concepts and improved understanding 
of materials synthesis have provided new opportunities for 
the enhancement of the thermoelectric conversion efficiency 
across many materials [1]. The thermoelectric figure of 
merit ZT, which quantifies the ability of a material to con-
vert heat into electricity, has more than doubled compared 
to traditional values of ZT ~ 1, reaching values of ZT > 2 in 
several instances across materials and temperature ranges, 
and even approaching 3 in some cases [1–5].

The TE performance is quantified by the ZT figure of 
merit as ZT = σS2T/(κe + κl), where σ is the electrical con-
ductivity, S is the Seebeck coefficient, T is the absolute tem-
perature, and κe and κl are the electronic and lattice parts of 
the thermal conductivity, respectively. The product σS2 in the 
numerator of ZT is called the power factor (PF). The recent 
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improvements in ZT are mostly attributed to drastic reduc-
tions of the lattice thermal conductivity in nanostructured 
materials and nanocomposites, which has reached amor-
phous limit values at κl = 1–2 W/mK and below [1, 6–9]. 
One of the most successful strategies to reduce thermal con-
ductivity is to hierarchically nanostructure the materials, by 
introducing different types and sizes of nano-features, which 
would scatter more effectively different groups of phonon 
mean-free-paths.

Nanostructuring has brought tremendous success, but 
it is gradually running out of steam in providing further 
reductions to thermal conductivity. It is becoming increas-
ingly clear that any further benefits to ZT must now come 
from power factor improvements. Current research efforts in 
improving the power factor aim towards identifying materi-
als with favorable bandstructure features, such as resonant 
states and low-dimensional ‘like’ features within bulk mate-
rials [10, 11], or bandstructure engineering such as band-
convergence strategies [11–14]. Indeed, most promising TE 
materials have complex bandstructures, with multiple val-
leys and bands that extend in the entire Brillouin Zone (BZ).

Due to the vast material possibilities, the exploration for 
PF enhancing band features needs to be led by advanced 
computational studies, which elucidate their role in elec-
tronic and TE transport. The most common computational 
approach is to extract the electronic bandstructures using 
ab initio methods, and afterwards use the Boltzmann Trans-
port Equation (BTE) to extract the TE coefficients. For the 
scattering rates used within the BTE the most common 
approach is the constant relaxation time (CRT) or constant 
mean-free-path (CMFP) approximations, such as using 
BoltzTrap code [15], where a CRT around 10 fs, or a CMFP 
of around 5 nm, are routinely employed [15, 16]. These 
approximations have the advantage of being computationally 
efficient, but have the disadvantage of providing uncertain 
and rather arbitrary outcomes, both quantitatively and quali-
tatively, e.g. with respect to materials ranking, temperature 
trends, and optimal carrier density [17, 18]. However, we 
know that in these materials, the electronic scattering pro-
cesses have complex energy, momentum and band depend-
encies [18].

More elaborate computational methods for the treatment 
of electron–phonon (e-ph) scattering vary, depending on the 
required accuracy and computational complexities, i.e. by 
only considering the energy dependence of acoustic phonons 
analytically [19]; by considered elastic scattering by acoustic 
phonons in a full band approach using deformation potentials 
[20]; by extracting deformation potentials from band shifts 
after applying stress along specific directions and using those 
to form scattering rates [21]; by using a full band approach 
and a numerical scheme for electron–phonon scattering based 
on calculating the ab initio electron–phonon coupling matrix 
elements, but with constant optical phonon frequencies [22, 

23]; and by full ab initio EPW + Wannier e-ph scattering rate 
calculations using the EPW code [24]. Other than for 2D mate-
rials, it is computationally challenging to utilize the entire pho-
non and electron dispersions for full transport calculations, 
thus, it is common to employ reasonable approximations [23]. 
Overall, however, the majority of current TE simulation works 
(justifiably) tend to heavily sacrifice accuracy for computa-
tional speed.

The need for theory to lead experiment, the search for new 
materials, and detailed understanding of the transport physics 
that would lead to performance optimization, requires elec-
tronic transport tools that provide confidence in accuracy, as 
well as computational robustness. We have recently developed 
such tools, which fill the gap of higher accuracy, in the inevi-
table expense of moderate computational cost, but still much 
lower compared to fully ab initio simulations. Our method is 
based on ab initio calculations of a selected few electron–pho-
non matrix elements, out of which we form deformation poten-
tials and scattering rates based on the deformation potential 
theory. We then use those within our newly developed full-
band BTE code, ElecTra, which provides the electronic prop-
erties of the bare material. This information is then passed 
on to a third simulator, a Monte Carlo real space ray-tracing 
code, specifically designed to address challenges for simulat-
ing TE transport in nanostructures. These three main sections 
are presented separately in the detailed works in Refs. [25–27], 
but in this paper we provide an overview of the entire process.

The paper is organized as follows. In Sect. 2 we describe 
the BTE code. In Sect. 3 we describe the extraction of the 
deformation potentials from ab initio calculations. In Sect. 4 
we present how we use the BTE and ab initio information 
in the MC code and present an example for transport simu-
lations in a nanostructured material. Finally, in Sect. 5 we 
conclude.

2 � Boltzmann transport using the ElecTra 
code

To evaluate the transport properties of the base material, we 
use our newly developed simulator, ElecTra, that considers 
all appropriate scattering mechanisms (acoustic phonon, 
optical phonon, ionized impurity scattering), and the full 
energy, momentum, and band dependence of the relaxation 
times. Here we provide a few details on the process flow of 
the code, whereas more details can be found in the dedicated 
ElecTra paper and the user’s manual [26, 28].

2.1 � Linearized Boltzmann Transport Equation (BTE) 
formalism

The TE transport coefficients are extracted within the Lin-
earized Boltzmann Transport Equation (LBTE) formalism 
under the relaxation time approximation as [29, 30]:
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where Ξij(E) is the Transport Distribution Function (TDF) 
defined below in Eq. (4), EF, T, q0, kB, and f0, are the Fermi 
level, absolute temperature, electronic charge, Boltzmann 
constant, and equilibrium Fermi distribution, respectively.

The TDF is expressed as a surface integral over the con-
stant energy surfaces, �n

E
 , for each band, and then summed 

over the bands, as [29–31]:

where k�n
E
 is γ �n

E
 and dAk�n

E

 is its corresponding surface area 
element, computed as explained below. vi(k,n) is the i-compo-
nent of the band velocity of the transport state, �i(k,n) is its 

momentum relaxation time, 
dAk

�
n
E

|⃗v(k,n)|
 is its density-of-states 

(DOS), and s is the spin degeneracy.
The relaxation times for each individual scattering mech-

anism are combined following using Matthiessen’s rule for 
each (k,�n

E
 ) state, to compute the comprehensive TE coef-

ficients. Also, the overall energy-dependent relaxation time 
τ and mean-free-path (mfp) λ are returned, both per band, 
per scattering mechanism, and overall for all mechanisms. 
These are computed as:

These are meaningful full-band transport quantities, to 
be further exploited in subsequent simulations (such as 
Monte-Carlo).

2.2 � Electronic structure quantities

The first step in the simulation approach is to obtain the 
electronic structure using Density Functional Theory 
(DFT). ElecTra’s interface can take as input a ‘.bxsf’ 
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format file [32, 33] enabling to interface with any DFT 
code that provides the electronic structure data in this for-
mat. This is the format used by ‘XCrysDen’ [33], which 
is compatible with a number of DFT codes. For example, 
QE, CASTEP and VASP among others, have the fs, c2x, 
and vasp2x_fs routines, respectively, to save the computed 
DFT bandstructure in this format.

Then ElecTra builds the constant energy surfaces to 
grasp the 3D details of the bandstructure. For this, we map 
the function E(k) into a function k(E). The 3D mesh in 
the k-space is scanned, the mesh elements crossed by the 
constant energy surfaces are identified, and the coordinates 
of the points on these surfaces are computed. For every 
element of the k(E) mesh, the E(k) is linearly interpolated 
from the original mesh, and the three components of the 
band velocity vi(k,n,E) are computed with the contragradient 
method [34]. ElecTra offers two schemes to perform this 
step: (i) a local triangulation on the k-space mesh elements 
which are crossed by the surface of the constant energy of 
interest. Here the elemental surface area, dA(k,n,E) , which 
will define the DOS of that specific state, is computed 
using Heron’s formula. (ii) An easier approximate method 
which samples the nearest-neighbour points on the k-mesh 
(NN-scan). Here the code scans all the k-points on the 
energy surface, checks for their nearest neighbours, then 
uses the distances between these k-points to approximate 
the dAk surface element areas. In the latter, ElecTra does 
not resolve constant energy surface elements, but acquires 
a collection of points on the energy surface of interest. 
Although this is an approximation, as it detects only the 
points along the edges of the k-mesh elements, it is around 
15 to 30 times faster, but without noticeable penalty in the 
results compared to triangulation, either for isotropic or 
anisotropic bands. For further details about these methods 
we refer the interested reader to the original ElecTra paper 
and the user’s manual [26, 28].

The k-state-dependent DOS is then defined as dA(k,n,E)

|⃗v(k,n,E)|
 , 

and used later in the scattering rate calculations as well as 
the energy integrations. For each band in the electronic 
structure, the energy-dependent DOS is then calculated as:

where s is the spin degeneracy taken as 1 or 2, and �⃗v(k,n,E) 
is the band velocity. The comprehensive DOS(E) is the 
sum of the DOS of all individual bands and the compre-
hensive velocity v(E) is the average of the state velocity 
v(E, n) = ⟨��⃗v(k,n,E)�⟩k . Note that we have used energy surface 
elements that are extracted after we construct the constant 
energy surfaces, which is an alternative way compared to 
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codes such as BoltzTrap which uses volume integral and 
delta-functions represented by smeared Gaussians [15].

The method has been systematically validated with details 
reported in the manual [28] for various example cases: (i) com-
parisons with parabolic and non-parabolic bands for which 
the DOS, velocity and TDF solutions for isotropic scattering 
mechanisms are analytical, (ii) comparisons for the mobility 
of materials cases for which the mobility is experimentally 
well-known, i.e. Si, Ge, SiGe, and GaAs, and iii) comparisons 
with quantities (i.e. DOS) extracted from existing codes. The 
latter is depicted in Fig. 1 for TiCoSb and Mg3Sb2.

2.3 � Scattering rates and transport

For each transport state (k,n,E) and each scattering mechanism 
ms, the corresponding momentum relaxation time � (ms)

i(k,n,E)
 is 

defined from Fermi’s golden rule as:

where the sum runs over all the allowed final states k’ of the 
same carrier spin [30, 31]. |Sk,k’| is the transition rate 
between the initial k and final k’ states, computed as detailed 
by Eq.  (6) below for the different mechanisms. The (
1 −

v
i(k′)

vi(k,n,E)

)
 term is an approximation for the momentum 

relaxation time, which is used to solve the BTE in the closed 
form, as commonly done in the literature when computing 
the transport coefficients [35]. ElecTra computes the scat-
tering rates for the different scattering mechanisms as [30, 
31]:
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Above, ADP refers to ‘Acoustic Deformation Potential’ 
and is the scattering between charge carriers and acoustic 
phonons. ODP stands for ‘Optical Deformation Potential’ 
and describes the charge carrier inelastic scattering with 
non-polar optical phonons. Both can be chosen to be intra- 
and/or inter-band. IVS stands for ‘Inter-Valley Scattering’ 
and it is specific for the inelastic inter-valley scattering. POP 
stands for ‘Polar Optical Phonon’ and describes the inelastic/
anisotropic scattering of charge carriers with polar phonons, 
which here is treated as both intra- and inter-band [30]. Elec-
Tra allows different phonon frequencies for all these inelastic 
processes separately, for example, for each non-polar and 
polar phonon branches, different frequencies can be used. 
IIS stands for ‘Ionized Impurity Scattering’ and describes 
the elastic scattering rate due to ionized dopants, for which 
the user can choose both intra- and/or inter-band transi-
tions. “Alloy” represents the alloy scattering due to intrinsic 
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Fig. 1   a Comparison of the DOS of the valence band of TiCoSb 
using Quantum Espresso and ElecTra, the latter using both  the 
two methods implemented (nn-sampling and triangulation). The 
inset shows constant energy surfaces of one of the valence bands at 
E = − 0.12 eV below the valence band edge. b DOS for the conduc-

tion band of Mg3Sb2, and comparison between the results obtained 
from BoltzTraP [15] and ElecTra [26]. The inset depicts the constant 
energy surface for the Mg3Sb2 conduction band at E = 0.1 eV above 
the band edge
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disorder in alloys or solid solutions and is considered both 
intra- and inter-band [35]. k and k′ are the wave vectors of 
the initial and final states. “−” and “+” in Eqs. (10–12) indi-
cate the phonon absorption and emission processes. These 
type of transition processes are illustrated in Fig. 2a. We 
allow for the directional dependence of the momentum scat-
tering rates, because in an anisotropic band and/or under the 
influence of anisotropic scattering mechanisms, the rate at 
which the carrier’s momentum relaxes, will depend on the 
carrier’s initial momentum and the distribution of momenta 
of the final states.

The variables that appear in Eq. (6) are as follows: DADP, 
DODP, DIVS are the deformation potentials for the ADP, ODP, 
and IVS mechanisms. ρ is the mass density, vs the sound 
velocity, ω the dominant frequency of optical phonons, con-
sidered as constant over the whole reciprocal unit cell, which 
has been validated to be a satisfactory approximation, [22] 

and Nω is the phonon Bose–Einstein statistical distribution; 
ε0 the vacuum dielectric constant, ks and k∞ the static and 
high frequency relative permittivities, Z the electric charge 
of the ionized impurity considered, and Nimp is the density 

of the ionized impurities. g
k
′ =

dA
(k
′
,n,E)

|⃗v
(k
′
,n,E)

|
 is the single-spin 

DOS of the final scattering state. LD =

√
ks�0

e

(
�\

�EF

)−1

 is the 

generalized screening length with EF being the Fermi level 
and \ the carrier density [29, 30]. Ωc is the volume of the 
primitive cell, x the fraction of one of the alloy elements, and 
ΔEG the difference between the energy gap of the two con-
stituent materials that form the alloy. The G function is the 
form factor of a hard sphere [35].

The scattering rates and the transport coefficients are 
computed along the orthogonal Cartesian space directions 

Fig. 2   a Schematic of two bands with the four types of allowed tran-
sitions: (1) elastic intra-band; (2) inelastic intra-band, (3) elastic inter-
band, (4) inelastic inter-band. ℏ𝜔 is the energy of the absorbed or 
emitted phonon. b Slice view of three constant energy surfaces from 
a valence band of ZrNiPb in the reciprocal unit cell, each separated 
by the phonon energy (with the blue coloured surface in the middle). 
Each depicted point is an actual transport state detected and used by 
ElecTra. An inelastic scattering involving absorption/emission transi-
tions from the blue surface will result in a final state on the green/red 
surfaces. c Illustration of a 2D schematic of reciprocal unit cell with 

bold edges, and its equivalent cells around it. The initial k-point is in 
blue and the final k-point in dark grey. The equivalent final k-points 
in an extended zone scheme are shown in fainted grey, obtained by 
translating the blue point by one reciprocal lattice vector in all possi-
ble directions. In the anisotropic POP and IIS scattering mechanisms, 
all the equivalent k-points are explored, and the actual final k-point 
considered is the one closest to the initial k-point. Thus, the exchange 
vector considered by ElecTra in the depicted example is the green one 
and not the red one (Color figure online)
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x, y, z. Consequently, the constant energy surfaces are 
expressed in Cartesian coordinates on orthogonal axes 
instead of unit cell axes, and the reciprocal unit cell is used 
instead of the Brillouin Zone, as depicted in Fig. 2b.

A further important point is that the POP and IIS scatter-
ing strengths depend on the momentum scattering vector, 
i.e. the distance in the k-space between the initial and final 
states ||

|
k − k

′ |
|
|

2

 . To compute this exchange vector, ElecTra 
considers every final state’s k-point position in all neigh-
bouring reciprocal unit cells, and then uses the minimum 
distance from the initial point in the exchange vector. A 2D 
schematic of this process is depicted in Fig. 2c. The final 
point in the reciprocal unit cell (dark grey bullet), is shifted 
by the reciprocal lattice vectors in all possible directions, 
creating the fainted grey bullet points. The central cell in 
Fig. 2c with bold edges represents the cell used in the simu-
lations and the other cells are the equivalent ones. Then the 
code considers the closest distant to the initial blue bullet 
point. This is necessary, because for example two k-points 
that are located at opposite edges of the reciprocal unit cell 
are actually very near if the equivalent point in the nearest 

neighbour cell is considered. Thus, in Fig. 2c the physical 
scattering vector is the green one, and not the red one.

Illustrative examples for realistic materials—the case 
of ZrNiPb We now show the cases of relaxation times and 
mean-free-paths for the half-Heusler ZrNiPb in Fig. 3, for 
three different temperatures, with the scattering parameters 
used taken from Ref. [36]. We start with ADP and ODP. In 
Fig. 3a-b we show the relaxation time τ and in Fig. 3c-d the 
mean free path λ. For both cases we have the rise of τ and λ 
at the band edge and reduction further into the bands. Note 
that these quantities are created based on deformation poten-
tial theory, but as of this point we have not performed a full 
validation comparison to full EPW + Wannier interpolated 
e-ph calculations for this material. We have performed such 
comparison for Si, for both n-type and p-type, using a full set 
of deformation potentials that we have extracted, with very 
good agreement—see Fig. 5 below [25].

In Fig. 3e, f, we show the relaxation time and mean-free-
path when we consider IIS as well as ADP and ODP, for a 
donor doping density n = of 1.1 × 1020 cm−3. Note that in this 
case we consider the effect of this IIS donor scattering on 
both the majority electrons and minority holes [29].

Fig. 3   a, b Scattering times 
and c, d mean-free-paths for 
ZrNiPb. Quantities for ADP are 
in (a, c). Quantities for ODP 
are in (b, d). e and f show the 
relaxation times and mean free 
paths, respectively when IIS is 
considered on top of ADP and 
ODP
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TDF illustrative examples We now show examples of 
transport distribution functions (TDF) Ξ(E) , which contain 
all the information relevant to charge transport within the 
BTE. We first show examples of these functions for differ-
ent scattering mechanisms in the case of parabolic bands in 
Fig. 4a. ADP results in a linear Ξ(E) function in this case, 
while for ODP the onset of the phonon emission at the char-
acteristic phonon energy is clearly observed (here we used 
50 meV). The comparison with the results from ElecTra 
validate the approach. In Figs. 4b-c we show the correspond-
ing TDFs for ZrNiPb for ADP and ODP and three differ-
ent temperatures, to indicate how a full-band treatment of 
complex bandstructures impacts the transport distribution 
functions. Ξ(E) is no longer linear for ADP, and the abrupt 
jump at the phonon emission onset in the ODP case (Fig. 4c) 
is mitigated, while the fine features are smeared out as well. 
Note that the assumed optical phonon frequency is 24 meV. 
In Fig. 4d we consider the IIS on top of ADP and ODP 
using a donor impurity density of 1.1 × 1020 cm−3. The Ξ(E) 
decrease at higher energies, especially after 0.5 eV inside the 
valence band, is driven by a DOS increase (black-solid line 
in Fig. 4d), which leads to an increase in scattering rate and 
a decrease in band velocity (black dashed line).

3 � Ab initio extraction of deformation 
potentials for scattering

The main scattering parameters required by ElecTra as 
described above, are the deformation potentials for elec-
tron–phonon scattering. Electron–phonon (e-ph) scatter-
ing is a vital part of simulations for materials properties. 
Deformation potentials are based on a theory developed by 
Bardeen and Shockley [37], and provide a convenient way to 
treat e-ph scattering using the analytical expressions in the 
previous section [30, 38]. The deformation potential essen-
tially describes the shift in the bands upon a change in the 
lattice caused by a perturbation from specific phonon modes, 
the ones that dominate the overall process.

Deformation potential theory is instrumental for the cal-
culation of low-field mobility [35, 39]. Traditionally, e-ph 
scattering is employed within transport methods such as the 
Boltzmann transport equation (BTE) [40, 41], Monte Carlo 
[42, 43], Landauer-Buttiker [44], etc. It is also routinely used 
in semiconductor device transport simulators and high-field 
calculations in such devices, still with adequate accuracy 
[45–47]. The analytical scattering rates that result, are con-
venient when the e-ph scattering needs to be combined with 
other scattering mechanisms, such as for nanostructured 
materials [48], or highly doped materials and alloys for 
which ionized impurity scattering [18] and alloy scattering 
are important (such as transistor devices and thermoelec-
tric materials [29]). The use of deformation potentials can 

Fig. 4   a The xx component 
of the TDF for an isotropic 
parabolic band (m* = 0.1) for 
two different scattering mecha-
nisms, comparing the analytical 
solution in dashed lines, and 
the ones computed numerically 
with ElecTra in solid lines. b, c 
and d show the xx component of 
the TDF for ZrNiPb, for ADP, 
ODP and ADP plus ODP plus 
IIS altogether, respectively. In 
(d), the DOS and band velocity 
v are shown in black solid and 
dash-dot lines, respectively, 
where an ad-hoc scaling has 
been performed for illustration 
purpose
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allow for the flexibility and computational robustness that 
this process requires.

However, deformation potential values are only known 
for common semiconductor materials, and those are mostly 
extracted from experiment. For the arbitrary complex 
bandstructure materials, these are not known and need to 
be derived from first principles. In general, ab initio calcu-
lations are becoming a critical component in enabling the 
investigation of e-ph scattering processes. Although these 
works started in the 1980s [49–51], they are only recently 
expanded to complex materials as a result of the advance-
ments in computational resources and software development. 
Recent advancements in ab initio methods and density-func-
tional perturbation theory (DFPT) [52–54] theoretical meth-
ods and available software can now compute the electronic 
interactions from the entire phonon spectrum for materials 
beyond common semiconductors and solve the BTE using 
accurate scattering rates extracted from the calculation of 
all matrix elements [22, 24, 55]. They enable more accurate 
calculations without the use of empirical parameters and are 
used to predict and analyze new materials’ transport proper-
ties, explore reaction mechanisms, and provide understand-
ing in experimental synthesis and characterization.

Such approaches, however, are computationally extremely 
expensive, starting from their DFPT part. This can be typi-
cally performed on coarse meshes, but it is then interpo-
lated using Wannier methods, because a dense electronic and 
phononic mesh discretization is required [56]. This leads to 
a large number of possible combinations of electronic and 
phononic states in the calculation of the e-ph interaction. 
For example, the use of interpolated 50 × 50 × 50 k-mesh and 
25 × 25 × 25 q-mesh (typically half the size of the k-mesh), 
results in billions of possible matrix elements (the total 
number is given by the product of the two meshes). In fact, 
even larger meshes can be needed for mobility convergent 
calculations as shown in Ref. [58]. Typically, the symme-
try of the unit cell is considered, which would reduce this 
number down to several million depending on the material 
specifics. Although these matrix elements are not calculated, 
but interpolated from the original coarse mesh onto the fine 
e-ph Wannier mesh [57], where they are subsequently used 
in transport calculations, this step is still computationally 
expensive. It can be even more expensive than the original 

DFPT/DFT on the coarse mesh (see Table 1 and discussions 
later on for a comparison example).

Here we describe a first-principles framework to extract 
deformation potentials in complex band materials based on 
density-functional theory (DFT) and density-functional per-
turbation theory (DFPT). We show that with the calculation 
of a reduced set of matrix elements and the formation of 
deformation potential scattering rate expressions rather than 
by using the full ab initio e-ph calculation, we can reduce 
the computational cost significantly, while not jeopardiz-
ing the accuracy [25]. We first compute the electronic band 
structures, phonon dispersion relations, and electron–pho-
non matrix elements to extract deformation potentials for 
acoustic and optical phonons for all possible processes. The 
matrix elements clearly show the separation between intra- 
and inter-valley scattering and quantify the strength of the 
scattering events. The deformation potentials are extracted 
and then be used within the BTE as described in the previ-
ous section.

The process is as follows: using ab initio self-consistent 
field DFT calculations we extract the electronic structures 
of the material of interest [58, 59]. We employ density-func-
tional perturbation theory (DFPT) [49, 50] calculations, 
which are based on the perturbative expansion of the 
Kohn–Sham energy functional, allowing calculations of 
vibrational properties within the DFT framework. Many 
electronic structure simulation packages implement and use 
DFPT, such as Quantum Espresso [53], ABINIT [54], VASP 
[60], etc. The use of DFT and DFPT calculations provides 
electronic structures, phonon dispersions, electron–phonon 
(e-ph) matrix elements, as well as k∞ and kS , entirely from 
first principles. The key item is the determination of the el-
ph coupling matrix elements, g�

mn
, which measure the cou-

pling strength of the el-ph interaction, resulting in a transi-
tion process where an electron with wavefunction �n�(r) at 
a state with band index n and wavevector k scatters into a 
state �m�+�(r) with band index m and wavevector k + q. It is 
facilitated by an atomic displacement perturbation due to a 
phonon with mode index � and crystal momentum q, and 
given by M�

mn
(�, �) = ⟨�m�+�(r)���qV(r)��n�(r)⟩ , where 

��qV(r) is the derivative of the self-consistent potential from 
DFPT. Codes which consider the variation formulation of 
DFPT provide the matrix elements, g�

mn
(�, �) , which are the 

Table 1   Comparison between 
the proposed deformation 
potential (DP) method and full 
ab initio DFT + Wannier with 
the EPW code [24]

Step Parameter Time (CPU·hours)

DFPT (common step) q-mesh = 6 × 6 × 6 700
DP extraction (def.pot.) 43 (electrons and holes)
ElecTra (transport) 384 (using Delaunay triangulation), or 17 

(electrons) and 40 (holes) using nn-scan
EPW (el-ph + transport) k-mesh = 64 × 64 × 64

q-mesh = 32 × 32 × 32
5120
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output of DFPT as g𝜈
mn
(�, �) =

√
ℏ∕

(
2m0𝜔𝜈q

)
M𝜈

mn
(�, �) [61, 

62], from which M�
mn

 can be extracted. Here m0 is the sum 
of the masses of all atoms in the unit cell and ωνq is the 
phonon frequency. Based on M�

mn
 for an individual transi-

tion, the deformation potential for acoustic and optical pho-
nons can be derived as DADP = M�

mn
(�, �)∕|q| and 

DODP = M�
mn
(�, �) . DADP is the slope of M�

mn
 and will require 

a few elements to be formed, whereas DODP is directly the 
coupling matrix element. Deformation potentials in different 
directions can be extracted and then merged for simplicity. 
A larger number of matrix elements can be provided by 
Wannier interpolation (i.e. EPW code [24]) in a computa-
tionally efficient way, based on the initial direct DFPT 
calculations.

The DADP (for LA and TA modes) computed in this way is 
comparable to the deformation potentials derived from band 
shifts after applying stress along specific directions, which 
is a good indication for an effective deformation potential, 
Deff, as described recently in Ref. [21]. That method extracts 
the corresponding scattering rates based on Deff, which is 
then used as a ‘holistic’ electron–phonon scattering process 
for all states and valleys in the bandstructure. This is indeed 
a very efficient way to extract first order transport proper-
ties at a very low computational cost, making it very effec-
tive form materials screening studies. However, it does not 
capture the details of the underlying physical mechanisms 

correctly, which can render it incomplete for TEs in certain 
cases. For example, it does not capture optical phonon scat-
tering (important for nanostructuring), or inter-valley pro-
cesses, crucial for band-alignment optimization, which is 
the main strategy for power factor improvements in complex 
materials. Our method provides a step forward in terms of 
accuracy and physical relevance. We distinguish between 
all acoustic and optical phonon scattering processes, and all 
intra- and inter-valley processes, accounting for all selection 
rules automatically as well. The price we pay is the need 
for the initial coarse mesh expensive DFPT calculations, 
but overall our method is less expensive compared to full 
EPW + Wannier due to the reduced number of matrix ele-
ments required in the calculation of the transport properties.

After identifying the dominant phonon modes, a number 
of targeted calculations are performed to extract the defor-
mation potentials for a given material. Figures 5a-c show 
an example of this process for Si. Only a small electronic 
energy region near the valence band minimum (VBM) and 
the conduction band maximum (CBM) contribute to trans-
port (red regions in Fig. 5a). For intra-valley scattering, 
energy/momentum conservation dictates that only a small 
part of the phonon spectrum takes part as well (red regions 
in Fig. 5b). Figure 5c shows the coupling matrix elements 
for the LA (blue line) and LO (red line) phonons around the 
VBM. For the former, the slope provides a DADP value and 
for the latter the value near Γ is a DODP value, which after 
necessary post-processing (for example by averaging around 
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Fig. 5   a, b Si electronic and phononic structures. The red regions 
indicate the relevant regions from which we extract matrix elements 
to compute deformation potentials. c Some relevant coupling matrix 
elements for the CB and VB. d The scattering rates for electrons (e) 
and holes (h) from our method (solid lines) and prior EPW results 
(dashed lines) from Ref. [63]. e, f The Si electron and hole mobilities 

computed with our deformation potential method and the BTE code 
ElecTra, compared to experimental data. Data are from Ref. [64–67] 
for electrons, and Ref. [38, 66, 67] for holes. Blue dots are the simu-
lation results and black triangles the experimental data (Color figure 
online)
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high symmetry lines, singular value decomposition for 
degeneracies [25, 68], etc.), provided D values and mobility 
that agree very well with measured data, as presented in Ref. 
[25]. This method inevitably provides information about the 
strength of each process (optical/acoustic branches), as well 
as a clear indication of the intra/inter-valley transitions. For 
example, the green line in Fig. 5c shows the M�

mn
 for LO pho-

non scattering around the CBM. Clearly, intra-valley scat-
tering is suppressed (around Γ-point), whereas inter-valley 
scattering is strong (around g-point, i.e. the Si g-process of 
scattering in the next Brillouin zone valley). For this tran-
sition, only the phonon modes around the second red dot 
in Fig. 5b participate. This information allows for deeper 
understanding of transport. In a similar manner, to capture 
this for the rest of the scattering processes, the form factors, 
Fk,k’, can also be computed, similarly to the deformation 
potentials, only for a few points along high symmetry lines 
and between valleys. The entire analysis for Si, as well as the 
result for the mobility calculations which match experiment 
very well, are all described in detail in Ref. [25], and here 
we have only provided a summary of that study.

3.1 � Simulation steps in our method

The overall simulation steps for the electron–phonon interac-
tions are as follows:

1.	 Structure relaxation to find the lattice parameter using 
general DFT codes, such as pw.x in Quantum Espresso, 
VASP, ABINIT, CASTEP [69]. Quantum Espresso is 
the favourite first choice we use.

2.	 Calculation of the wavefunctions using general DFT 
methods.

3.	 Calculation of the bandstructures using general DFT 
codes.

4.	 Calculation of the phonon spectrum using general DFPT 
codes such as ph.x in Quantum Espresso; the use of Pho-
nopy [52] with VASP, ABINIT, CASTEP can provide 
initial guidance and understanding.

5.	 Find the potential energy change, ��qV(r) , in DFPT, such 
as ph.x in Quantum Espresso, ABINIT.

6.	 Wannier function generation using codes such as epw.x 
in Quantum Espresso, or Wannier90 [70]. Compare 
Wannier and DFT bandstructures to validate the gen-
erated Wannier functions (Steps 5/6 only if later the 
EPW code is used to compute matrix elements).

Up to here, these are the same steps that fully ab ini-
tio methods (such as EPW [24]) perform (from here on, 
those calculations compute  millions of matrix elements, 
usually using meshes of 100k k-points and 10k q-points). 
We continue with the process of extracting deformation 

potentials using DFPT, which provides the matrix elements, 
one q-point at a time:

1.	 Find the coordinates of the valleys in the BZ (for CB/
VB) and select the extrema points. These will form the 
initial/final k-points for the matrix elements.

2.	 Find the vectors from each valley to all other valleys, 
which coincides with the phonon q-vectors that will be 
used.

3.	 Assign the coordinates of the phonon q-points for scat-
tering: (i) near the Γ-point for intra-valley scattering, 
and (ii) the q-vectors for inter-valley scattering (as in 
step 8).

4.	 Use DFPT/Wannier interpolation to compute the matrix 
elements, g�

mn
(�, �) , for each phonon process and each 

valley/band. Using Wannier functions instead of DFT 
electronic structures, the (interpolated) matrix element 
calculations are much faster, especially when the VBM/
CBM is not located at a high-symmetry point. (In that 
case in DFT calculations we need a very dense k-mesh 
to cover the VBM/CBM).

5.	 Derivation of the deformation potentials, D, for intra-
valley and inter-valley scattering, for acoustic and opti-
cal phonons, from g�

mn
.

6.	 Incorporation of the D’s within a specially designed 
database to be read by BTE (previous section) for trans-
port calculations.

The fact that we compute a small amount of matrix ele-
ments, makes this method much more computationally 
affordable compared to fully ab initio Wannier methods, still 
with accuracy close to those methods (see Ref. [25] for Si). 
On the other hand, it is more expensive compared to other, 
simpler, deformation potential methods such as the one in 
Ref. [21], which is designed for reduced computational cost. 
Thus, our method is a step closer to full ab initio accuracy, 
with some associated increase in computational cost. Cur-
rently it requires some hands-on time to identify the k-vec-
tors and q-vectors for which the deformation potentials are 
computed, but we are in the process of automating this step.

In Table 1 below we show a computational cost compari-
son for Si between our deformation potential method (indi-
cated as DP) and DFT + Wannier using the EPW code [24]. 
The full calculation is presented in our previous work [25]. 
The calculation starts with the DFPT step, which is com-
mon to both methods, typically on a 6 × 6 × 6 q-mesh (1st 
row). Our DP method then computes some matrix elements 
and then performs Boltzmann transport (2nd and 3rd rows). 
The corresponding EPW calculation that we have performed 
(4th row) require significantly more CPU hours. Note that 
the 64 × 64 × 64 interpolated mesh used is typical for EPW 
calculations [56], and it can even be an underestimation 
as the mobility might not be converged for that mesh size. 
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Thus, we save consistently on the generation of the matrix 
elements and their subsequent use within BTE, which is a 
cost comparable typically even larger than the coarse-mesh 
DFPT calculation cost itself. The transport part requires less 
than 10% and the full calculation less than 20% CPU hours, 
compared to the fully ab initio method.

It is worth noting that the unit cell of many promising TEs 
is large and their crystal symmetry low, for full ab initio cal-
culations with practical computation expense. For example, 
Mg3Sb2 has five atoms in its unit cell and crystallizes in the 
trigonal space group, with lower symmetry than cubic. To 
accurately compute mobility using DFPT is extremely diffi-
cult for 3D materials (for 2D is also challenging but feasible 
[23]). General DFT calculations for Mg3Sb2 will need ~ 20 
times more CPU hours than for Si. The bandstructure is 
more complex and many more phonon modes participate 
(see Fig. 6a-b). Si would need 5k CPU hours for standard 
64 × 64 × 64 k- and q-meshes as shown in Table 1 above. 
First principle e-ph Wannier calculations would need ~ 100 k 
CPU hours for Mg3Sb2 (much more time due to the lower 
symmetry and larger unit cell). Rather than computing 
matrix elements throughout the Brillouin zone, the extrac-
tion of deformation potentials only needs a limited number 
of computations (for Mg3Sb2 ~ 50), and will require only a 
few thousand CPU hours. An example of deformation poten-
tial extraction is shown in Fig. 6c. The CBM consists of six 
equivalent valleys, which results to three different transition 
types from a certain valley to the other 5 (inset of Fig. 6c). 
This inter-valley transitions are caused by all phonon modes. 
In Fig. 6c we compute the deformation potentials caused by 
each phonon mode individually and for each of the three 
transition types. Their strength can be quantified, and the 
dominant ones in each type identified (green box in Fig. 6c). 
All, or only the dominant ones, can make it to the BTE code 
for the computation of the transport properties.

Finally, for the rest of the scattering mechanisms, param-
eters such as ΔEG can be computed by calculating the differ-
ence between the energy gap of the two constituent materials 
that form the alloy; k∞ and ks are standard outputs of general 
DFPT codes; and parameters like � and vs can be calculated 

or found in many databases. Fk,k’ can also be computed for 
a few cases within and from valley to valley.

4 � Transport in nanostructured materials 
using Monte Carlo

The Monte Carlo (MC) computational formalism we use is 
described in detail in Ref. [27]. It focuses on the effect of 
nanostructuring, and for this reason it uses many ‘shortcut’ 
deviations from usual MC algorithms to facilitate the chal-
lenges that simulating nanostructured geometries present. 
Specifically, we focus on geometries with the so-called ‘hier-
archical’ nanostructuring, where multiple defects of different 
nature are introduced in the lattice. Figure 7a-c show typi-
cal examples of the geometries: a nanocrystalline geometry 
with grain boundaries, a nanoporous geometry, and geom-
etry with both grain boundaries and nanopores. Hierarchi-
cal nanostructuring is a typical TE material geometry, with 
the purpose to scatter phonons of different mean-free-paths. 
However, how these geometries affect electronic transport 
is much less considered. It gradually becomes important to 
do so, since large power factors can be achieved when these 
structures are designed in a specific way [71].

For computational simplicity and speed reasons, we fol-
low two directions in using the real material properties and 
ab initio information extracted in the previous sections: (1) 
We consider parabolic bands and map the complexity of the 
real material bandstructure onto parabolic bands. For this 
we extract a conductivity and DOS effective masses (mC and 
mDOS, respectively) for the real bandstructure. We also use as 
input the deformation potentials to form the scattering rate 
equations. (2) In the second method, we extract the DOS(E), 
band velocity, v(E), mean-free-path λ(E), and scattering 
times, τ(E), for the material of interest using the ElecTra 
BTE code (which already uses the deformation potentials).

We begin below by describing the approach we follow 
to extract the effective masses to be used in MC, which 
is presented also earlier in [29, 72]. We then we describe 
the MC algorithm we employ, with specific modifications 
and peculiarities compared to current algorithms, designed 

Fig. 6   a, b Mg3Sb2 electronic and phononic structures. c Three types 
of inter-valley transitions can be identified for each of the six CBM 
energy pockets around M* (inset). The deformation potentials caused 

by each phonon mode for each transition type are shown. Dominant 
values are in the green box. Inset: The three type of transistions
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specifically for the numerical complexities introduced by 
nanostructuring.

4.1 � Effective mass extraction

We compute the mDOS as the effective mass of an isotropic 
parabolic band that gives the same carrier density as the 
actual band structure. We evaluate mC as the effective mass 
of an isotropic parabolic band which maps the average 
velocity of the band states weighted by their contribution to 
transport. For this, we employ a simple ballistic field effect 
transistor model, extract the average injection velocity in the 
sub-threshold regime, and map that velocity to a parabolic 
band which provides the same injection velocity. The pro-
cess is as follows (using the conduction band as an example): 
We consider the non-degenerate regime, in which the carrier 
density n  can be expressed as:

where E0 is the energy of the band edge, EF is the Fermi 
level, kB is the Boltzmann constant, T is the temperature, and 
NC is the effective density of states calculated as:

For a generic numerical band structure, the carrier density 
n  can be calculated as:

(15)n = NC ⋅ exp

(
E0 − Ef

kBT

)

(16)NC = 2

(
mDOSkBT

2�ℏ2

)3∕2

(17)n =
2

(2�)3

∑

k,n

fE(k,n)
dVk

where the sum is over all k-points and bands in the first 
Brillouin zone, fE(k,n)

 is the Fermi–Dirac distribution, and dVk 
is the volume element in k space, which usually depends 
only on the mesh. Then the mDOS can be obtained by com-
bining Eqs. (15–17).

The conductivity effective mass in a specific direction, 
mC,i, is calculated from the injection velocity vinj of the car-
riers in the sub-threshold regime of a field effect transistor 
(FET):

where the injection velocity is extracted as the FET current 
divided by the injected charge at the source contact:

where EF,S is the source Fermi level, and IFET is the FET cur-
rent density, which is computed from the difference between 
the source and drain currents. We assume that the drain cur-
rent is negligible under high drain voltage, thus IFET can be 
given by:

The vinj is identified and the conductivity effective mass is 
extracted from Eq. (18) along the three Cartesian directions. 
Thus, three conductivity effective masses are extracted, and 
the final conductivity effective mass is calculated by averag-
ing as:

(18)mC,i =
2kBT

�v2
inj

(19)vinj =
IFET

q0

2�3

∑
k,n f

�
Ek,n − EF,S

�
dVk

(20)IFET =
q0

2�3

∑

k,n

f(Ek,n−EF,S)
||vk,n||dVk

Fig. 7   A schematic of nano-
structured 2D domains popu-
lated with a grains, b pores, 
and c combination of both 
features to create a hierarchical 
nanostructure. d Ray-tracing of 
electrons in a pristine domain. 
An electron moves from the left 
all the way to the right (red) 
after traversing several mean 
free paths (mfp) and con-
secutive scattering events. The 
ray-tracing depicted in yellow, 
shows backscattering to the left 
side of the domain that does not 
contribute to the flux calculation 
(Color figure online)
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4.2 � Monte Carlo method for nanostructures

Monte Carlo simulations involve the ray-tracing of particle 
trajectories rather than the direct solution of partial differ-
ential equations. These particles are allowed to move in the 
domain in both left/right directions under the influence of 
a driving force, and the net flux is computed in a statistical 
manner. Although this method served well simulations in 
bulk materials with success over many years, for nanostruc-
tured materials large difficulties are encountered, which make 
simulations computationally extremely expensive and logis-
tically cumbersome. The main difficulty that arises for MC 
methods for nanostructures, is that the presence of nanostruc-
turing features such as grain boundaries, pores, nanoinclu-
sions, potential barriers, etc. to name a few, reduce the flux 
in the domain at such a degree, which makes it very difficult 
to gather enough statistics for converged flux results. This 
is particularly difficult under linear response (either under 
a small voltage or temperature difference), where the two 
opposite going fluxes vary only slightly. Typical simulations 
in the literature require from 10s of thousands to even mil-
lions of trajectories for adequate results [73–76].

Another numerical peculiarity that is encountered in MC 
simulations for low energy electrons even in pristine materi-
als, makes the computational difficulty even larger. Notice-
ably, the low energy carriers near the band edge have small 
velocities. Thus, there exists a population of slow moving 
electrons which ends up dominating the computation time 
(even so in certain cases where the Fermi level is placed 
higher into the bands). To make things worse, in the pres-
ence of potential barriers, the contribution of those low-
energy electrons to transport is insignificant, but requires 
unnecessarily large computational resources.

In order to address the difficulties described above and 
enable efficient and accurate MC simulations tailored to 
nanostructures, we have developed a hybrid MC algorithm 
which: (i) merges information from analytical BTE solutions 
with the numerically extracted flux, (ii) considers a single 
flux initialized from the left only and injected into the chan-
nel where it is ray-traced to either of the contacts, (iii) does 
not require the application of a driving force. The method 
we present provides the same accuracy as common methods, 
but with a significantly reduced computational cost. It has 
many differences and peculiarities compared to standard MC 
methods, to tackle the issue of computational complexity. 
Details are provided in [27], and in this paper we provide the 
essentials and focus on the coupling and use of the various 
ab initio parameters within MC.

(21)mC =
3

1

mC,x

+
1

mC,y

+
1

mC,z

We use the incident flux (single-particle) approach, where 
the electrons are initialized at the domain boundaries one-by-
one and propagate until they exit at either boundary (propa-
gated to the other side or back-scattered as shown in Fig. 7d). 
Here we consider a two dimensional domain for numerical 
simplicity. Regarding the large computation time associated 
with the ray-tracing of low energy electrons, we consider a 
mean-free-path (mfp) approach, rather than the picking of 
random free-flight time and the self-scattering approach as 
is common practice [30, 77]. We compute the total scattering 
rate of the particle using the deformation potential expres-
sions described earlier, and using its bandstructure velocity 
we calculate its mean-free-path, λ(E). The particle propagates 
one mean-free-path at a time (as in Fig. 7d), and then under-
goes (enforced) scattering. In the case of acoustic phonon 
scattering for 3D parabolic bands, for example, the mean-
free-path is constant in energy. Thus, electrons at all energies 
are treated in the same way, with only different free-flight 
durations. However, a tabulated λ(E) can also be employed 
directly as computed above by ElecTra.

The simulation procedure is as follows: Following the 
incident-flux method, we initialize and inject electrons in 
the channel domain, but only from the left side, and neglect 
the injection of flux from the right of the channel. Thus, 
we refer to this as the `single-flux' method. We initialize 
those electrons uniformly in energy, rather than according 
to their density of states (DOS), as in typical MC methods. 
Then one-by-one the electrons are ray-traced, by alternating 
between free-flight events of a mfp distance and interme-
diate scattering events. The upper/lower closed boundaries 
simply specularly reflect back the electrons in the domain.

To gather the flux statistics, we record the time spent in 
the domain by those electrons which propagate all the way 
from the left to the right end of the domain and exit from 
there, referred to as its time-of-flight (ToF). All electrons 
that are back-scattered to the left do not contribute to the 
flux and are not considered. The average ToF per particle is 
then computed as:

where, tr(E) is the ToF for a single electron, and Nr(E) is 
the number of electrons that make it to the right end. We 
chose to keep the energy dependence since we only deal 
with elastic transport conditions for the example we present 
here. Then the averaged < ToF(E) > is used to calculate the 
flux per simulated electron at each energy as:

Using the flux per electron at a given energy, we can form 
the overall flux in energy by multiplying by the density of 

(22)⟨ToF(E)⟩ =
Σtr(E)

Nr(E)

(23)F(E) =
1

⟨ToF(E)⟩
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states (DOS), g(E), either in its parabolic form, or its tabu-
lated form from ElecTra for a real complex band material, 
which essentially is proportional to the transport distribution 
function (TDF) of the analytical BTE as:

This is simply because the product of flux with DOS pro-
vides essentially the flow of charge, which is directly related 
to conductivity in the same way the TDF determines the 
conductivity. The proportionality constant C in the equation 
of the TDF accounts for the super-electron charge that is 
typically used in MC (the fact that we only simulate a finite 
number of electrons), and geometrical factors related to the 
simulation in a finite 2D domain rather than an infinite 3D 
domain (and connects the conductance to conductivity). We 
use C to map the MC simulated TDF to the TDF that can 
be derived and extracted from the analytical solution of the 
BTE (or the one extracted from ElecTra), for the case of 
the pristine material alone. To extract C, we calculate the 
electrical conductivity as a function of the Fermi energy 
both in the linearized BTE and with MC by integrating the 
TDF times the Fermi derivative in energy. We then find 
the mapping factor CEF for the conductivity at each Fermi 
energy. This comes to be almost constant for all EF, so we 
take the average of those values as the overall final C. After 
this, it also turns out that the TDFs from analytical BTE and 
MC are almost identical (see Fig. 8a).

After obtaining the transport distribution function numer-
ically from MC, and by calibrating to the linearized BTE one 
to obtain ΞMC(E) , the overall MC TDF, we can substitute 
ΞMC(E) in the place of the analytical Ξ(E) , which is given by 
�(E)v2(E)g(E) in the usual BTE formulas below. The elec-
tron conductivity is then calculated as:

and the Seebeck coefficient as:

(16)Ξ(E) = C F(E)g(E)

(24)� = q2
0 ∫
E

ΞMC(E)

(

−
�f

�E

)

dE

Further, the TE power factor and the electronic thermal 
conductivity are evaluated, respectively, as:

The above transport coefficients are computed using 
MC initially for the pristine material configuration, where 
the calibration of the constant C takes place. The elec-
tronic conductivities from the analytical BTE and the 
simulated MC in this way, are again very similar, almost 
identical (see Fig. 8c). The idea is that once this is cali-
brated, we can perform MC simulations for complex nano-
structured domains without further calibration and benefit 
from the robustness of the single-flux injection method.

Thus, by using the MC extracted ΞMC(E) , and by multi-
plying it by the derivative of the Fermi distribution function 
with respect to energy (i.e., �Ef =

�f

�E
 ) for the electrical con-

ductivity (see Fig. 8b), and with respect to temperature (i.e., 
�T f =

E−Ef

kBT
×

�f

�E
 ) for the Seebeck coefficient calculations, 

we essentially account for linear response. In this way we 
effectively eliminate: (i) the need for two counter propagat-
ing simulation fluxes (now this is captured by the deriva-
tives), and (ii) the need for an application of a driving force, 
either a voltage difference or a temperature difference. Thus, 
we avoid the peculiar situation where a small enough poten-
tial difference window does not provide enough statistics, 
while a large enough could make the simulation deviate 
from linear response or from the range of voltages that TE 
materials utilize. Note also that the acquisition of adequate 
statistics is even more difficult in the case of a temperature 
gradient for the Seebeck coefficient in common bi-direc-
tional flux methods. We do not only need to differentiate 

(25)S =
q0kB

� ∫
E

ΞMC(E)

(

−
�f

�E

)(
E − Ef

kBT

)

dE

(26)PF = �S2

(27)kel =
1

T ∫
E

ΞMC(E)

(

−
�f

�E

)
(
E − Ef

)2
dE − �S2T

Fig. 8   a Transport quantities for a pristine domain calculated using 
the analytical BTE (blue) and MC formalism (red). a The transport 
distribution functions versus energy. b The product of the transport 

distribution function product with �f∕�E versus energy. c Electrical 
conductivity vs the Fermi energy. The calculations consider only 
acoustic phonon scattering (Color figure online)
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between the right and left going fluxes, but also the ones 
which flow above and below the Fermi level.

We now consider the effect of nanostructuring. We 
simulate the geometries shown in Fig. 7 above and com-
pute the electrical conductivity and power factor, shown 
in Fig. 9a and Fig. 9b, respectively. We show the conduc-
tivity as a function of the Fermi level, EF, for the cases 
of the pristine channel (blue line), the channel with grain 
boundaries of approximately 100 nm size (yellow line), 
the porous geometry with p = 20% porosity (purple line), 
and the geometry with the combination of grain bounda-
ries and pores (red line). By the red-dashed line we show 
the conductivity computed using Matthiessens’s rule (by 
combining the result for the grain boundaries and the pores 
analytically), which matches the MC line well, indicating 
that our simulation method provides the expected results.

5 � Conclusions

In this paper, we provided a review of a computational 
methodology which allows the extraction of the electronic 
and thermoelectric coefficients of complex nanostructured 
materials. The method merges three distinctive parts: (i) a 
Boltzmann Transport Equation solver that we have recently 
developed, named ElecTra, which takes as input a com-
plex bandstructure and scattering parameters, and provides 
transport coefficients and relevant quantities; (ii) an ab initio 
methodology to extract the scattering parameters required by 
ElecTra, and in particular deformation potentials; and finally 
iii) a Monte Carlo simulator which can utilize transport 
quantities from the ab initio calculations and the BTE trans-
port above, with many features that deviate from common 
methods, specifically designed to provide robust computa-
tion for nanostructured simulation domains. In fact, each of 
the three methods we describe utilize unconventional routes 

that allow for faster and more robust calculations, without 
compromising accuracy at a significant degree. We believe 
this multi-physics framework, but also each of the simu-
lators individually, are truly enabling, and can contribute 
significantly in exploring the electronic and thermoelectric 
properties of pristine and nanostructured materials in an 
efficient manner.
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