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Abstract
The calculation of the electron–phonon coupling from first principles is computationally very challenging and remains 
mostly out of reach for systems with a large number of atoms. Semi-empirical methods, like density functional tight bind-
ing (DFTB), provide a framework for obtaining quantitative results at moderate computational costs. Herein, we present a 
new method based on the DFTB approach for computing electron–phonon couplings and relaxation times. It interfaces with 
phonopy for vibrational modes and dftb+ to calculate transport properties. We derive the electron–phonon coupling within 
a non-orthogonal tight-binding framework and apply them to graphene as a test case.

Keywords Electron–phonon couplings · Relaxation times · Boltzmann transport · DFTB

1 Introduction

The phonon-limited mobility is often a critical performance 
parameter for the application of novel materials in electronic 
devices. Its computational modeling can be quite challeng-
ing since it requires the knowledge of the electronic struc-
ture, the phonon modes, and the coupling strength of elec-
trons and phonons [1]. Therefore, modeling of the mobility 
is often based on approximations, such as the effective mass 
or the deformation potential [2]. On the other hand, over 
the past decade, the ab initio treatment of electron–phonon 
couplings became much more feasible due to continuous 
developments of computational methods (e.g., in ABINIT 

[3], ATK [4], Quantum ESPRESSO [5, 6], EPW [7], PER-
TURBO [8]) and steadily increasing hardware resources.

For systems with a large number of atoms in the unit 
cell, such as covalent organic frameworks (COFs) [9], using 
ab initio approaches is still challenging. Especially in situa-
tions where high-throughput screening of many such mate-
rials is required, alternative methods are needed. Density 
functional tight binding (DFTB) [10] is such an approach 
as it effectively reduces the complexity of density functional 
theory (DFT), casting the Kohn–Sham equations into a tight-
binding form. The method is now rich in extensions [11] and 
has been successfully applied to study the electronic and 
structural properties of a vast range of materials. A non-
exhaustive list includes organic polymers, COFs [12] and 
bio-molecular systems [13], transition metal oxides (TiO2 
[14], ZnO[15]), MoS2 films and nanostructures [16], gra-
phene defects [17] and carbon allotropes. It has been applied 
particularly to study the structural and electronics of nano-
particles and nanorods of several inorganic materials (Si, 
SiC, Ag, Au, Fe, Mg) with unfeasible sizes for DFT calcula-
tions. Green’s function extensions of DFTB have been used 
to study electron and phonon transport in different nano-
structures in the ballistic regime [18].

In this contribution, we focus on the Boltzmann trans-
port theory in the relaxation-time approximation. For this, 
we first derive an expression for electron–phonon couplings 
starting from a general non-orthogonal tight-binding Ham-
iltonian. As such, our result is applicable to DFTB and other 
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tight-binding approaches such as xTB [19]. We discuss some 
subtleties arising in the derivation. The calculation of the 
electron–phonon couplings as well as the computation of 
relaxation times and transport properties has been imple-
mented in a Python package dftbephy driving DFTB 
calculations. As an exemplary demonstration, we consider 
graphene which has been widely studied in past decades [1, 
20, 21].

1.1  The DFTB approach

In DFTB the total energy is expanded in a Taylor series 
around a suitable reference density [22], �0 , 

where the individual contributions are given by

 here Eion−ion and EH denote the electrostatic interaction of 
ions and electrons (Hartree), respectively. The exchange-
correlation energy and potential are indicated by the index 
xc and the effective Kohn–Sham single-particle Hamiltonian 
is expressed as,

Starting from this expansion, several DFTB flavors are 
available. The starting ground is the so-called non-self-
consistent approximation (DFTB1) where only the first two 
terms in Eq. (1a) are retained. The single-particle wave func-
tion, Ψi(r⃗) , is expanded in terms of atomic orbitals which 
are computed as solutions of isolated atoms with a com-
pressed potential. The resulting Hamiltonian matrix ele-
ments in Eq. (1c), which are multiplied by the occupation 
factor fi , neglect three center integrals, crystal field, and 
pseudo-potential contributions, leaving the evaluation of two 
center integrals of atomic dimers that can be pre-tabulated. 
The argument for neglecting three center and crystal field 
terms is the partial cancelation with the pseudo-potential 

(1a)
EDFTB[𝜌0(r⃗) + 𝛿𝜌(r⃗)] = E0[𝜌0] + E1[𝜌0, 𝛿𝜌]

+ E2[𝜌0, 𝛿𝜌
2] +… ,

(1b)
E0[𝜌0] = Eion−ion − EH[𝜌0] + Exc[𝜌0]

− ∫ dr vxc[𝜌0]𝜌0(r⃗) ,

(1c)E1[�0, ��] =
�

i

fi⟨Ψi�H[�0]�Ψi⟩ ,

(1d)
E2[𝜌0, 𝛿𝜌

2] =
1

2 ∬ dr dr�
�

1

‖r⃗ − r⃗�‖

+
𝛿2Exc

𝛿𝜌(r⃗)𝛿𝜌(r⃗�)
[𝜌0]

�
𝛿𝜌(r⃗)𝛿𝜌(r⃗�) .

(2)H(r⃗) = −
1

2
∇2 + Vel−ion(r⃗;{R⃗}) + vH(r⃗) + vxc(r⃗) .

term ensuring orthogonality of the valence orbitals to all 
core states, a contribution that vanishes in the two-center 
approximation [23]. The term E0[�0] accounts for intera-
tomic repulsion and is usually obtained from reference DFT 
calculations rather than an explicit evaluation of Eq. (1b). 
The so-called self-consistent charge approach (SCC-DFTB 
or DFTB2) includes the second-order term, Eq. (1d), tradi-
tionally expanding 𝛿𝜌(r⃗) in terms of spherical atomic charge 
densities and Mulliken charges.

Coulomb contributions enter both as local terms due to per-
turbations of the self-consistent Hamiltonian as well as long-
range scattering due to macroscopic electric fields, typical of 
polar crystals. The former is included when performing SCC-
DFTB calculations of the electron and phonon band struc-
tures and when computing the electron–phonon couplings. The 
long-range Coulomb scattering is typically added by means of 
a Fröhlich Hamiltonian, but this is not included in this work.

1.2  Electron–phonon couplings

In this section, we give a brief summary of the derivation of 
the electron–phonon coupling in general non-orthogonal tight-
binding Hamiltonians. Several derivations can be found in the 
literature [20, 24–26], but since not all agree with each other in 
the final result, we think it is useful to discuss our derivation.

We start with explicit reference to a local basis set, ��
�
⟩ , and 

the dual (biorthogonal) basis, ��
�
⟩ , such that ⟨�

�
��

�
⟩ = �

��
 

[27]. The corresponding creation and annihilation operators 
follow as a†

�
�0⟩ = ��

�
⟩ and b†

�
�0⟩ = ��

�
⟩ = ∑

�
��

�
⟩S−1

��
 , 

where S
��

 is the overlap matrix. For brevity, the index � refers 
to a multi-index, identifying the atomic position and orbital, 
e.g., � = (R⃗l, R⃗s,𝜇) corresponds to lattice l, sublattice s and 
atomic orbital � . Using the local basis set, we construct field 
operators,

where the atomic orbitals, 𝜙𝜇(r⃗ − R⃗ls) , are located at the 
equilibrium positions of the molecule or lattice. We build 
the usual Hamiltonian operator in second quantization,

The transformation to the Bloch eigenstates, labeled 
by k⃗-vectors and band indices m, employs the usual 
transformation,

where Nc  denotes the number of  cel ls .  The 
eigenstates U(k⃗) satisfy the secular equations, 

(3)Ψ̂†(r⃗) =
∑

𝜇,s,l

𝜙∗
𝜇
(r⃗ − R⃗ls)b̂

†
s𝜇
(l) ,

(4)Ĥ =
∑

l,s,l�,s�

∑

𝛼,𝛽

Hs𝛼,s�𝛽(l, l
�)b̂†

s𝛼
(l)b̂s�𝛽(l

�) .

(5)b̂s𝛼(l) =
1√
Nc

�

k⃗,m

Us𝛼,m(k⃗)ĉm(k⃗)e
ik⃗⋅R⃗l ,
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Hs𝜇,s�𝜈(k⃗)Us�𝜈,m(k⃗) = Ss𝜇,s�𝜈(k⃗)Us�𝜈,m(k⃗)𝜀m(k⃗) . Translational 
invariance of the Hamiltonian and the overlap matri-
ces, e.g., H(l, l�) = H(l� − l) , is used to Fourier transform 
and subsequently diagonalize the Hamiltonian, such that, 
Ĥ =

∑
k,m 𝜀m(k⃗)ĉ

†
m
(k⃗)ĉm(k⃗).

To proceed with the derivation of the electron–phonon cou-
plings we consider the perturbation of the Hamiltonian due to 
a deformation of the lattice. The corresponding Hamiltonian 
variation can be written as,

where 𝛿H(r⃗) is the perturbation of the single-particle Hamil-
tonian (2). Note that the field operators are defined in terms 
of the equilibrium positions and are thus not changing with 
atomic displacements. Therefore, the explicit form of the 
variation due to phonon displacements reads,

where

is the displacement operator in terms of the phonon states, 
labeled by the q⃗-vector and the polarization, � . The mass of 
atom s is denoted by ms . The phase factors associated with 
the sublattice positions, R⃗s , are sometimes included in the 
polarization states, ẽ𝜆

s
(q⃗) = e

𝜆
s
(q⃗)eiq⃗⋅R⃗s , depending on the defi-

nition of the dynamical matrix [28]. In phonopy [29], the 
phases are consistent with Eq. (8).

The last steps of our derivation involve writing the matrix 
elements in Eq. (7) in terms of variations of the usual TB 
matrix elements. This is accomplished by the identity,

(6)𝛿Ĥ = ∫ drΨ̂†(r⃗)𝛿H(r⃗)Ψ̂(r⃗) ,

(7)

Ĥel−ph =
∑

l��,s��

∑

l, s,𝜇

l�, s�, 𝜈

b̂†
s𝜇
(l)b̂s�𝜈(l

�)ûl��s��

× ∫ dr𝜙∗
ls𝜇
(r⃗)

𝜕H(r⃗)

𝜕R⃗l��s��

𝜙l�s�𝜈(r⃗) ,

(8)
ûls =

1√
Nc

�

q⃗,𝜆

�
�

2𝜔𝜆(q⃗)

e
𝜆
s
(q⃗)

√
ms

eiq⃗⋅(R⃗l+R⃗s)

×
�
d̂𝜆(q⃗) + d̂

†

𝜆
(−q⃗)

�

(9)

�

s��

�
𝜙
s
� 𝜕H
𝜕R⃗

s��

�𝜙
s�

�
û
s��

=
𝜕

𝜕R⃗
s

⟨𝜙
s
�H�𝜙

s�
⟩(û

s
− û

s�
)

−

�
𝜕𝜙

s

𝜕R⃗
s

�����
H�𝜙

s�
⟩û

s
− ⟨𝜙

s
�H

�����

𝜕𝜙
s�

𝜕R⃗
s�

�
û
s�
,

which only shows sublattice indices in order to simplify the 
notation. In Eq. (9), we have explicitly used the two-center 
approximation of the DFTB matrix elements, allowing to 
remove the summation over s′′ , and the relationship 
𝜕
R⃗s�
Hss� = −𝜕

R⃗s
Hss� . A consequence of this approximation is 

that the on-site ( s = s� ) electron–phonon coupling matrix-
elements are zero. Further simplifications are possible by 
inserting the identity, 

∑
ss� �𝜙s⟩S−1ss� ⟨𝜙s� � = Î  , and using 

⟨𝜕
R⃗s
𝜙s�𝜙s�⟩ = 𝜕

R⃗s
Sss� , such that,

Finally, it is convenient to rotate to the Bloch eigenstates 
(5) of the unperturbed Hamiltonian. Equation (10) contains 
four terms: the first and the third term lead to expressions 
containing,

which, after the change of variables, ��� = �
� − � , can be 

transformed to

In the second and the fourth term of Eq. (10), S−1 can be 
removed using the secular equation in favor of 𝜀n(k⃗) and 
𝜀m(k⃗

�) . Collecting everything it is easy to obtain the equation 
of motion in the Heisenberg picture,

where the electron–phonon couplings can be expressed as,

(10)

Ĥel−ph =
∑

s𝜇,s�𝜈

b̂†
s𝜇
b̂s�𝜈

×

{[
𝜕Hs𝜇,s�𝜈

𝜕R⃗s

−
∑

s̄𝜎,r̄𝜏

𝜕Ss𝜇,s̄𝜎

𝜕R⃗s

S−1
s̄𝜎,r̄𝜏

Hr̄𝜏,s�𝜈

]
ûs

−

[
𝜕Hs𝜇,s�𝜈

𝜕R⃗s

−
∑

s̄𝜎,r̄𝜏

Hs𝜇,s̄𝜎S
−1
s̄𝜎,r̄𝜏

𝜕Sr̄𝜏,s�𝜈

𝜕R⃗r̄

]
ûs�

}
.

(11)
1

Nc

∑

𝓁,𝓁�

U∗
n,s𝜇

(k⃗)
𝜕Hs𝜇,s�𝜈(𝓁,𝓁

�)

𝜕R⃗
𝓁s

Us�𝜈,m(k⃗
�)

× ei(k⃗
�+q⃗−k⃗)⋅R⃗

𝓁eik⃗
�
⋅(R⃗

𝓁� −R⃗𝓁
) ,

(12)
U∗

n,s𝜇
(k⃗)

𝜕Hs𝜇,s�𝜈

𝜕R⃗s

(k⃗ − q⃗)Us�𝜈,m

(
k⃗ − q⃗

)

× ĉ†
n
(k⃗)ĉm(k⃗ − q⃗) .

(13)

𝚤�𝜕t ĉn(k⃗) = 𝜀n(k⃗)ĉn(k⃗)

+
1√
Nc

�

q⃗,𝜆

�

m

g𝜆
nm
(k⃗ − q⃗, q⃗)ĉm(k⃗ − q⃗)

×
�
d̂
†

𝜆
(−q⃗) + d̂𝜆(q⃗)

�
,
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The difference of terms in k⃗ and k⃗ + q⃗ within the curly braces 
is a consequence of the fact that the coupling depends on the 
relative displacement u⃗

��s� − u⃗
�s . On the other hand, the 

matrices U(k⃗) and U(k⃗ + q⃗) map local orbitals to eigenvec-
tors, where the incoming electron with momentum k⃗ is scat-
tered into k⃗ + q⃗ . In fact, Umklapp processes come naturally 
into play in Eq. (14), since the lattice summation is always 
satisfied up to a reciprocal lattice vector, 𝛿

k⃗�,k⃗+q⃗+G
 . Conse-

quently, momentum vectors are always to be understood as 
crystal quasi-momentum vectors. Equation (14) is in agree-
ment with the result of [24], equation (2.31). We observe 
once more that the perturbation in Eqs. (6) and (7) is evalu-
ated using the unperturbed basis set. Different expressions 
are obtained if the basis set is displaced together with the 
atomic oscillations. This, for instance, comes out automati-
cally when considering some form of perturbations to 
Eq. (4) leading to variations of the Hamiltonian and overlap 
matrix elements, rather than matrix elements of the per-
turbed Hamiltonian, as pointed out in [24]. Interestingly, if 
one starts from the Hamiltonian (4), expresses the equation 
of motion for b̂s𝜇 and then considers perturbations to the 
matrix elements H + �H and S + �S , after some lengthy 
algebra arrives at a final equation for the couplings which is 
identical to Eq. (14) except that 𝜀n(k⃗ + q⃗) → 𝜀m(k⃗) in the last 

(14)

g𝜆
nm
(k⃗, q⃗) =

�
�

2𝜔𝜆(q⃗)

�

s,𝜇,s�,𝜈

U∗
n,s𝜇

(k⃗ + q⃗)

×

��
𝜕Hs𝜇,s�𝜈

𝜕R⃗s

(k⃗) − 𝜀m(k⃗)
𝜕Ss𝜇,s�𝜈

𝜕R⃗s

(k⃗)

�
ẽ
𝜆
s
(q⃗)

√
ms

−

�
𝜕Hs𝜇,s�𝜈

𝜕R⃗s

(k⃗ + q⃗) − 𝜀n(k⃗ + q⃗)
𝜕Ss𝜇,s�𝜈

𝜕R⃗s

(k⃗ + q⃗)

�

×
ẽ
𝜆
s�
(q⃗)

√
ms�

�
Us�𝜈,m(k⃗) .

term. See Supporting Information for a more detailed 
discussion.

2  Implementation and results

In order to demonstrate our approach, we consider graphene 
as an example material for which we calculated the elec-
tron–phonon couplings, relaxation times, and transport prop-
erties. Our implementation, which uses phonopy [29] and 
dftb+ [11], is available under https:// github. com/ CoMeT 
4MatS ci/ dftbe phy. For all DFTB calculations discussed in 
this section, we used the matsci-0-3 parametrization [30] 
without self-consistent charges. We also tested other para-
metrizations and the influence of self-consistent charges, but 
we found no significant differences (see Supporting Informa-
tion). A 7 × 7 supercell was constructed from an optimized 
unit cell ( 10−5 a.u. maximum force tolerance and 48 × 48 
k-points). From the latter, we obtained the lattice constant 
a = 2.467 Å.

2.1  Electronic structure and phonons

For the supercell, the Hamiltonian and the overlap matrices, 
H�,�(�s,�

�s�) and S�,�(�s,��s�) , were obtained from dftb+ 
in real space. Those are Fourier transformed with respect 
to the cell indices to get H𝜇s,𝜈s� (k⃗) and S𝜇s,𝜈s� (k⃗) . Solving a 
generalized eigenvalue problem for each k-point yields the 
electronic band structure 𝜀n(k⃗) and the respective eigenstates 
U𝜈s�m(k⃗) as explained in Sect. 1.2.

The resulting band structure is shown in Fig. 1b. One 
can see the characteristic Dirac cone, 𝜀(k⃗) = ±�vFk , in the 
vicinity of the K-point. We find the Fermi velocity vF to be 
approximately 0.8 × 106 m/s in close agreement with previ-
ously reported values [4, 31].

To obtain the phonon dispersion and polarization vectors, 
i.e., frequencies 𝜔𝜆(q⃗) and polarizations ẽ𝜆

s
(q⃗) , we used pho-

nopy with the same supercell. Due to the P6/mmm symmetry 

Fig. 1  a Optimized geometry of graphene as a 7 × 7 supercell. Blue rhombus denotes the central unit cell. b The electronic band structure calcu-
lated with DFTB. Fermi level EF is shown with dashed line. c The phonon dispersion along Γ-M-K-Γ

https://github.com/CoMeT4MatSci/dftbephy
https://github.com/CoMeT4MatSci/dftbephy
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of graphene, only one displacement ( d = 0.005 Bohr mag-
nitude) has to be considered. The dispersion is shown in 
Fig. 1c. Three of the six branches are acoustic modes with 
𝜔𝜆(q⃗) → 0 for q⃗ → Γ . Since graphene is a 2D material, one 
of those modes is a bending mode (or ZA mode) with a 
quadratic dispersion [32]. The other two acoustic modes are 
linear in k and correspond to the longitudinal (LA) and trans-
versal (TA) acoustic modes. The respective sound velocities 
are found as cLA = 23.6 × 103 m/s and cTA = 13.6 × 103 m/s, 
which are close to the values reported before [4, 31].

2.2  Electron–phonon coupling

In the next step, each atom in the supercell was displaced in 
each direction by � = 0.001 Å and the real-space gradients 
of the Hamiltonian and overlap matrices were found from 
a finite-difference scheme. The gradients are also Fourier 
transformed yielding 𝜕H𝜇s,𝜈s� (k⃗)∕𝜕R⃗s and 𝜕S𝜇s,𝜈s� (k⃗)∕𝜕R⃗s . 
Together with the previously obtained output of phonopy 
the electron–phonon couplings g𝜆

nm
(k⃗, q⃗) were computed via 

Eq. (14).
In the long wavelength limit and close to the K-points, the 

electron–phonon couplings for the TA and LA modes have 
a characteristic dependence on q⃗ [4, 31]. In Fig. 2a, we show 
g𝜆
nn
(k⃗, q⃗)∕�𝜆

q⃗
 as a function of q⃗ for the conduction-band, pho-

non modes � = TA, LA and k⃗ close to one of the K-points. 
The  cha rac t e r i s t i c  l eng t h  �

𝜆

q⃗
 i s  g iven  by 

�
𝜆

q⃗
=
√
�∕(2mC𝜔𝜆(q⃗)) where mC is the mass of a carbon 

atom. We obtain the expected symmetry, but compared to 
previously reported results in Refs. [4, 31] our couplings 
seem to be smaller, although it should be noted that a 

quantitative comparison is not straight forward. One poten-
tial issue is that due to the different Fermi velocities the 
k-point k⃗ for which the couplings are evaluated is different 
in different studies. The couplings for the ZA and ZO modes 
vanish.

2.3  Relaxation times

There are different approximations of the relaxation times 
which in general are calculated from the electron–phonon 
couplings. Specifically, we used the self-energy relaxation-
time approximation (SERTA) of the scattering rate [1]:

here ΩBZ is the area of the Brillouin zone. f 0(�,�,T) and 
nB(�, T) denote the Fermi function and the Bose–Einstein 
distribution, respectively, which characterize the occupation 
of electronic states and the phonons in equilibrium. They 
depend on temperature T and chemical potential � . In our 
case, the partial decay rates are computed using a Gaussian 
smearing function with constant width ( � = 3 meV) instead 
of the �-functions. The integral over the Brillouin zone in 
Eq. (15) is replaced by a sum over q-points. We use a q-mesh 

(15)

𝜏−1
n
(k⃗) =

∑

m
∫

d
2q

ΩBZ

2𝜋

�

∑

𝜆

|g𝜆
mn
(k⃗, q⃗)|2

[(
nB(𝜔𝜆(q⃗)) + 1 − f 0(�m(k⃗ + q⃗))

)

𝛿(�m(k⃗ + q⃗) − �n(k⃗) + �𝜔𝜆(q⃗))(
nB(𝜔𝜆(q⃗)) + f 0(�m(k⃗ + q⃗))

)

+ 𝛿(�m(k⃗ + q⃗) − �n(k⃗) − �𝜔𝜆(q⃗))
]
.

Fig. 2  Contour plots of electron–phonon couplings |g𝜆(k⃗, q⃗)|∕�𝜆

q⃗
 in 

eV/Å for a transversal acoustic (TA) and b longitudinal acoustic (LA) 
modes as a function of phonon q⃗ vector. For electronic states, k⃗ was 

chosen as a k-point shifted from K toward Γ such that the correspond-
ing energy is approximately 300 meV above the Dirac point
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with 200 × 200 Monkhorst-Pack points which are sampled 
around the Γ-point up to qmax ≈ 0.0665 × 2�∕a . This implies 
that we consider only intravalley scattering. Intervalley scat-
tering has to be treated separately using a shifted q-mesh [4]. 
Figure 3 shows the scattering rates (i.e., inverse lifetimes) 
of the LA and TA modes as a function of electronic energy 
in the conduction-band for T = 300 K and � = 100 meV. As 
expected for the high-temperature regime and for chemi-
cal potentials close to the Dirac point, the scattering rates 
of the acoustic modes are linear in the electronic energy 
[31, 33]. The optical modes become relevant for energies 
larger than ℏ�LO,TO(Γ) . When the energy level relative to the 
conduction-band ( 𝜖

k⃗
− EC ) is 0.4 eV, the magnitudes of the 

scattering times are larger by about 50% compared to earlier 
calculations reported in [4]. This observation does not take 
into account that the Fermi velocity obtained in the DFTB 
calculations is smaller by ≈ 12%.

2.4  Transport properties

Having the relaxation times, the conductivity and mobility of 
electrons and holes can be calculated by solving the Boltz-
mann transport equation [e.g. [1]]. The conductivity tensor 
is given by

(16)
𝜎𝛼𝛽 =

e2

Auc

∑

n
∫

d
2k

ΩBZ

[
−
𝜕f 0(𝜀n(k⃗);𝜇, T)

𝜕𝜀

]

× vn𝛼(k⃗)vn𝛽(k⃗)𝜏n(k⃗) .

here Auc is the area of the unit cell and vn𝛼(k⃗) and vn𝛽(k⃗) are 
the charge carrier group velocities in the directions � and 
� ; for instance, vn𝛼(k⃗) = 𝜕𝜀n(k⃗)∕�𝜕k𝛼 . The excess charge-
carrier densities nel and nh at a given temperature T and a 
chemical potential � can be defined as ( c = el, h)

Finally, the mobility is given by the ratio of conductivity 
and density,

In our calculations, the integrals over k⃗ are replaced 
by sums over k⃗-points. We used the same q-mesh for the 
calculation of the relaxation times described above and 
a k-mesh with 400 × 400 Monkhorst-Pack points. For the 
latter, only irreducible k-points were considered. The 
electron–phonon couplings were calculated for energies 
|𝜀n(k⃗) − EC| < 1 eV. Consequently, the transport proper-
ties presented here do not include intervalley scattering.

Figure 4a shows the carrier concentration as a function 
of the chemical potential at T = 300 K. Since the consid-
ered chemical potentials are still close to the Dirac point, 
the results can to a large extent be described using Dirac 
electrons. To illustrate this, the behavior resulting from 
the linear dispersion of the electronic bands around the 
K-point and of the acoustic phonon modes is included in 
Fig. 4 [31, 33]. This also applies to the conductivity, which 
is shown in Fig. 4b. Using the constant relaxation-time 
approximation (CRTA) the conductivity is seen to monoto-
nously increase with the chemical potential, while it satu-
rates within the SERTA. This stark difference is plausi-
ble when considering the linear dependence on energy of 
the scattering rate as discussed before. For the analytic 
SERTA behavior, we obtained �−1(�) from Fig. 3. Combin-
ing the carrier density and the conductivity, one obtains 
the mobility as shown in Fig. 4c. In the SERTA at 300 
K, the mobility decreases approximately as 1/n [33]. At 
n = 1012 cm−2 we obtain for the mobility ≈ 1.3 × 105 cm2∕

(Vs) which is similar to previously reported values [4]. 
It should be noted that the inclusion of intervalley scat-
tering leads to a mobility which is reduced by a factor of 
two compared to the pure intravalley case for a reason-
able carrier density [4]. For completeness, Fig. 4d shows 
the mobility as a function of temperature at fixed density 
n ≈ 4 × 1012 cm−2.

(17)
nc =

1

Auc

∑

n
∫

d
2k

ΩBZ

[
f 0(�n;�, T)

−f 0(�n;�F, 0)
]
.

(18)���(�, T) =
���(�, T)

e|nc(�,T)|
.

Fig. 3  Inverse lifetimes at 300 K as a function of energy �k relative to 
the conduction-band minimum EC . Fermi level � is 100 meV above 
EC
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3  Conclusions

In summary, we presented a derivation of electron–phonon 
couplings within the general non-orthogonal tight-binding 
Hamiltonian. The final expression, Eq. (14), is in agreement 
with previously found results. However, depending on the 
choice of the basis set, i.e., centered at equilibrium posi-
tions or co-moving with the displaced atoms, one obtains 
slightly different expressions. The impact of this choice will 
be investigated elsewhere. The derivation is also discussed 
in the context of DFTB which allows for addressing large 
systems with reasonable accuracy.

We implemented the calculations of electron–phonon 
couplings in a Python package, dftbephy, which also 
provides the functionality to obtain relaxation times and 
transport properties within the Boltzmann transport frame-
work. As an example, we show results for graphene. We 
find an overall good agreement with previously reported 
results. Using different parametrizations and self-consist-
ent charges only has a minor influence on band-structures, 
phonon dispersions and relaxation times. For more com-
plex materials the impact of SCC might be more pro-
nounced, in particular if different elements are present.

Fig. 4  Numerical results (symbols) and analytic behavior (lines): 
a Carrier concentration as a function of the chemical potential for 
graphene. b Conductivity � = �xx + �yy as a function of the chemi-

cal potential. c Mobility as a function of carrier density and (d) as a 
function of temperature. a–c were calculated at a fixed temperature 
T = 300 K and d was computed for fixed density n ≈ 4 × 1012 cm−2
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Overall, for materials with a large number of atoms in 
the unit cell, using DFTB to calculate electron–phonon cou-
plings and transport-related properties provides an efficient 
approach to evaluate the performance of those materials for 
applications in electronic devices.
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