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Abstract
The aim of this research is to achieve the highest efficiency for a dye-sensitized solar cell (DSSC) before the fabrication 
process. For DSSC efficiency improvement, six different optimization algorithms are used for the DSSC parameter extraction. 
The algorithms used are the genetic algorithm, grey wolf algorithm, dragonfly algorithm, moth flame algorithm, ant-lion 
algorithm, and whale algorithm, developed based on MATLAB coding. The physical parameters for the DSSC are the 
electron lifetime, electrode thickness, ideality factor, absorption coefficient, and diffusion coefficient. A comparative study is 
carried out among the six algorithms based on the highest efficiency and computational speed. Finally, a sensitivity analysis 
of environmental conditions (solar irradiance and temperature) and physical parameters is implemented and analyzed to 
simulate the DSSC performance for different values of these parameters. The DSSC parameters studied are short-circuit 
current density, open-circuit voltage, fill factor, and efficiency. The optimal electron lifetime is 100 ms, and the optimal 
thickness of the photoanode layer is 1 μm, reaching maximum efficiency equal to 11.79%.

Keywords DSSC · Mathematical modeling · Grey wolf · Moth flame · Whale · Genetic algorithm · Ant-lion · Dragonfly · 
Electrode thickness · Lifetime · Diffusion coefficient · J–V characteristics · Efficiency

1 Introduction

Continuous population growth, industrial revolutions, deple-
tion of fossil fuel reserves, and climate change have led to 
the increased demand for renewable energy globally. The 
principle of dye-sensitized solar cell (DSSC) operation 
depends on photoanodes bound to a wide-bandgap semicon-
ductor material, electrolyte, and counter electrode. DSSCs 
have many advantages, including low material cost, compat-
ibility with flexible substrates, cost-effectiveness, simplicity, 
and energy-efficient production methods. However, low effi-
ciency is a major challenge with DSSCs that must be solved 
to reach commercialization without affecting cell stability. 
The highest efficiency recorded for DSSCs is approximately 
14%, but it is not proven [1]. Improving DSSC parameters 
[open-circuit voltage (Voc), short-circuit current density (Jsc), 

efficiency (η), and cell fill factor (FF)] is a vital requirement 
for solving these challenges. The models most commonly 
used to represent the equivalent circuit of the DSSC are 
single- and double-diode models. Different mathematical 
models are used to simulate the nonlinear relationship of 
current–voltage characteristics.

Currently, meta-heuristic optimization algorithms are 
quite attractive due to their distinct advantages over con-
ventional algorithms. Meta-heuristics have the ability to 
solve multi-objective and nonlinear problems. Despite the 
random nature of these algorithms, they have the ability to 
obtain global maxima and avoid local maxima [2–4]. Accu-
rate estimation and optimization of DSSC parameters are 
very important in improving cell quality during fabrication, 
modeling, and simulation [5–10]. This study analyzed the 
influence of photoanode thickness (d), electron lifetime (τ), 
electron diffusion coefficient (D), light absorption coefficient 
(α), and diode ideality factor (m) on the main DSSC param-
eters. The performance of the proposed optimization algo-
rithms was analyzed by comparing the extracted electrical 
parameters of the solar cell. Moreover, sensitivity analysis 
of DSSC performance was carried out for different values 
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of light intensity (φ) and temperature to test the mathemati-
cal model used. The variations in physical parameters were 
also studied.

2  Mathematical modeling of the DSSC

DSSC operation is based on the relative charge kinetics rate. 
The charge transfer occurs from the dye to the photoanode, 
from the electrolyte to the dye, and finally from the photoan-
ode to the load. Therefore, it is necessary to understand the 
charge transfer processes as well as the electronic process 
at the photoanode. A schematic band diagram of the DSSC 
is given in Fig. 1 [11–15].

The equivalent electrical circuit of the DSSC based on 
the single-diode model (SDM) is illustrated in Fig. 2. This 
circuit contains a photocurrent source, an anti-parallel diode 
cell, and series and shunt resistance.

The J–V characteristics model is governed by the 
physical parameters of the DSSC. The differential 
diffusion model can be used to describe the electron 
injection from dye to the photoanode and recombination 
within the electrolyte at the steady state as [16–18]: 

where n(x) is the concentration of the excess electrons at 
position x, no is the concentration of electrons under dark 
conditions [19, 20], τ describes the electron lifetime, φ is 
the flux intensity, α is the absorption coefficient of incident 
light, and D is the electron diffusion coefficient.

(1)D
�2n(x)

�x2
−

n(x) − no

�
+ ��e−�x = 0

(2)n(0) = no&&
dn

dx

||||x=d = 0

Fig. 1  The DSSC band diagram 
and electron transfer

Fig. 2  DSSC equivalent circuit 
based on SDM
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By neglecting electron trapping/detrapping in the steady-
state case, the electron lifetime is considered constant [21, 
22]. The solution equation using open-circuit and short-circuit 
boundary conditions is given by [11, 23]:

where JPV is the DSSC current density, Jg is the photocurrent 
density, Jo is the saturation current density, m describes the 
DSCC ideality factor, K is the Boltzmann constant, q is 
the electron charge, and T represents the cell temperature. 
Solving Eq. (3) with boundary conditions in Eq. (2), the 
short-circuit current density is calculated by:

where Jsc is the short-circuit current density, L is the 
length of electron diffusion, and d is the thickness of the 
photoanode layer.

Based on the analytical expression for Jsc, the current 
density under illumination can be obtained as a function of 
the bias voltage as [23]:

(3)JPV = Jg − Jo

[
exp

(
qV

mkT

)
− 1

]
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q�L�
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where Imax is the maximum current density, Pmax is the 
maximum power, Vmax is the maximum voltage, Rs is 
series resistance, and FF is the fill factor. Table 1 gives the 
mathematical modeling parameters definition used for the 
DSSC.

3  Problem formulation

Equations (5–7) are nonlinear transcendental equations that 
represent the DSSC output current and that have no clear 
analytical solutions. The problem of parameter identification 
for the DSSC is to determine the optimal physical parameter 
values to achieve the highest cell efficiency. The objective 
function maximizes the DSSC efficiency subject to the 
minimum and maximum bounds of the required parameters. 
These parameters are electrode thickness, diffusion 
coefficient, absorption coefficient, lifetime, and ideality 
factor. The objective function is as follows:

To achieve highly efficient DSSCs, the constraints of 
the proposed optimization variables are limited within the 
minimum and maximum bounds, as follows:

The optimal parameter values are analyzed based on the 
results of the electric current density–voltage (J–V) char-
acteristics. The photoanode thickness is in the range of 
1–100 μm, electron lifetime is 1–100 ms, ideality factor is 
2–4.5, absorption coefficient is 1000–50,000  cm−1, and the 
diffusion coefficient is in range of (1–8) ×  10–4  cm2/s. Fig-
ure 3 shows the input and output parameters that affected 
DSSC performance. The input parameters are electrode 

(12)FF =
Pmax

VocIsc

(13)f (x) = max(�)

(14)
xmin

j
≤ xj ≤ xmax

j
j = 1, 2, 3, 4, 5

x = d,D, �, �,m

Table 1  Definitions of mathematical modeling symbols for the DSSC

Parameters Description Values

φ Incident solar intensity cm2  s−1

d Photoanode thickness cm
D Electron diffusion coefficient cm−1  s−1

� Electron lifetime Sec
α Absorption coefficient cm−1

no Equilibrium electron density cm−3

m DSSC ideality factor –
T Absolute temperature K
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thickness, diffusion coefficient, absorption coefficient, life-
time, and ideality factor, whereas the output parameters are 
short-circuit current density, open-circuit voltage, fill fac-
tor, cell efficiency, and maximum power. These parameters 
are taken into consideration during the optimization process 
[24].

4  Meta‑heuristic optimization methods

Meta-heuristic optimization techniques have become popu-
lar for numerous engineering applications due to their sim-
plicity, ease of implementation, and ability to avoid local 
optima. In nature-inspired algorithms, imitating natural and 
biological physics phenomena is used to solve the objec-
tive functions. They are divided into three main groups: 
evolutionary, physical, and swarm. Evolutionary methods 
are controlled by the concepts of natural evolution, the 
most familiar of which is the genetic algorithm (GA) [25], 
whereas swarm techniques simulate the group behavior of 
animals. Using meta-heuristic algorithms to search for an 
optimal solution through J–V data for the DSSC, the cell 
parameters can be obtained with high accuracy and con-
vergence rate. The meta-heuristic parameters used are the 
population size and the maximum number of iterations [26, 
27]. Figure 4 presents a flowchart of the proposed optimiza-
tion algorithms.

4.1  GA optimization

The GA is an algorithm inspired by the evolutionary process 
[28], and consists of three main steps: selection process, 
crossover process, and mutation process [29, 30]. The main 
concept is to generate a population, and for each individual 
of the population, calculate the fitness function, then the next 
generation by applying selection, recombination, and muta-
tion. The process is repeated until the required stop criteria 

are reached [31]. The pseudo-code of GA optimization is 
shown in Fig. 5.

4.2  GWO algorithm

The grey wolf optimization (GWO) algorithm was first used 
by Mirjalili [32] and is inspired by the hunting behavior 
of the grey wolf. To mathematically model the GWO, the 
hunting and social hierarchies are used. The grey wolf 
leader is called the alpha ( � ), which is considered the fittest 
solution in the algorithm. The second best solution is called 
beta ( � ), and the third is called delta ( � ), whereas all the 
other possible solutions are called omegas ( � ). The three 
leading grey wolves (�, �, and�) will lead all � during 
the optimization process of searching and hunting. When 
the prey is found, the iterations start, and the (�, �, and�) 
wolves will lead, monitor, and finally surround the target. 
The surrounding behavior is as follows [32]:

where �⃗X(t) is the grey wolf position vector at the current 
iteration (t), while ���⃗XP(t) is the prey position vector.

The vectors ��⃗A and ��⃗C coefficient can be modeled as:

where �⃗a decreases linearly from 2 to 0 throughout iterations, 
and ��⃗r1  , ��⃗r2  are random vectors in the range [0, 1]. The 
mathematical modeling of (�, �, and, �) grey wolf hunting 
processes are given by:

(15)��⃗D =
|||��⃗C. ���⃗XP(t) −

�⃗X(t)
|||

(16)�⃗X(t + 1) = ���⃗XP(t) +
�⃗A.
(
��⃗D
)

(17)�⃗A = 2 �⃗a.��⃗r1 − �⃗a

(18)��⃗C = 2.��⃗r2

Fig. 3  The input and output 
parameters used for DSSC 
optimization
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Fig. 4  Flowchart of proposed optimization algorithms

Fig. 5  The pseudo-code of GA 
optimization
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where ���⃗X1,
���⃗X2 and ���⃗X3 are the α, β, and δ position vectors.

After gaining the three best solutions (α, β, and δ), then 
the other agents ( � ) will be obliged to update their posi-
tions based on the best solutions and compute the fitness 
function value up to the determined stopping criteria. The 
pseudocode of GWO is given by Fig. 6.

4.3  MFO algorithm

The MF is another type of nature-inspired algorithm that was 
first presented by Mirjalili [33]. MFO is simple, flexible, and 
robust, has a fast searching speed, and is easy to use with 
the other algorithms at the same time [34]. Moths are a type 
of insect that has peregrination behavior called transverse 
orientation based on moonlight navigation. The flying 
technique of a moth maintains a fixed angle with respect to 
the moon, which is considered a very effective method for 
traveling long distances in an upward line. MFO steps can 
be outlined as follows. Firstly, moths are randomly generated 
in the search space, and then their position is calculated, 
adopting the best position using a flame. Finally, to achieve 

(19)

����⃗D𝛼 =
||| ���⃗C1.

���⃗X𝛼 −
�⃗X
|||

����⃗D𝛽 =
||| ���⃗C2.

���⃗X𝛽 −
�⃗X
|||

�����⃗D𝛿 =
||| ���⃗C3.

���⃗X𝛿 −
�⃗X
|||

(20)

���⃗X1 =
���⃗X𝛼 +

���⃗A1.

(
����⃗D𝛼

)

���⃗X2 =
���⃗X𝛽 +

���⃗A2.

(
����⃗D𝛽

)

���⃗X3 =
���⃗X𝛿 +

���⃗A3.

(
����⃗D𝛿

)

(21)�⃗X(t + 1) =
���⃗X1 +

���⃗X2 +
���⃗X3

3

the best positions, the positions of moths are updated by a 
spiral movement as [33]:

where Mi,Fj are the ith moth and the jth flame, b is the 
variability of the model of the logarithmic maturation 
pattern, y is a random number in the range of [−1, 1], and 
XDi is the distance between the ith moth and the jth flame.

The number of flames is updated by:

where N is the maximum number of flames, t is the current 
iteration, and itermax is the maximum iterations. Finally, the 
new best positions of moths are updated and the previous 
steps are repeated until the termination criteria are reached. 
Figure 7 gives the pseudocode of the MFO algorithm.

4.4  ALO algorithm

Ant-lion optimization (ALO) is another type of nature-
inspired algorithm introduced by Mirjalili [35] that simulates 
the hunting behavior of ant-lions in catching their prey. AL 
have five steps in their hunting process, which include random 
walk, trap construction, ant (prey) entrapment, prey capture, 
and finally, trap reconstruction. ALO steps are summarized 
as follows. Firstly, an initial population of ants given by 
XAnt = (x1, x2, …, xN) and ant-lions given by XAntlion = (x1, x2, 
…, xN) are generated in the search space of the parameters. 

(22)Mi = S
(
Mi,Fj

)

(23)S
(
Mi,Fj

)
= XDie

bycos(2�y) + Fj

(24)XDi =
|||Fj −Mi

|||

(25)f lame_No = round

(
N − t ×

N − t

itermax

)

Fig. 6  The pseudocode of GWO
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For each ant, using a roulette wheel, an AL is selected based 
on the best fitness to construct a trap for the ants, and then the 
ants' random walk is mathematically presented as [35, 36]:

where cumsum is the cumulative sum, itermax is the 
maximum number of iterations, iter is the random walk 
steps, and r(iter) is a stochastic function defined as:

where rand is a number generated randomly in [0, 1]. The 
normalized random walk formula is used to keep the ants’ 
position in the search space as:

where mi and mx are the minimum and maximum of a 
random walk, and L and U are the lower and upper bounds of 
the variable, respectively. Trapping of ants is expressed as:

(26)

X(iter) =

[
0, cumsum

(
2r
(
iter1

)
− 1

)
, cumsum

(
2r
(
iter2

)
− 1

)
,…

cumsum
(
2r
(
itermax

)
− 1

)
]

(27)r(iter) =

{
1 if r and > 0.5

0 if r and ≤ 0.5

(28)xiter =

(
xiter − miiter

)
+ (U − L)(

mxiter − miiter
) + L

(29)Liter
i

= Antlioniter
j

+ Liter

where i is the selected ant index, and j is the selected ant-lion 
index. This sliding mechanism is expressed as:

where ω is a constant defined as:

The fitness of the ants’ new position is expressed by:

where xAi is the ant-lion position. Elitism is the process that 
keeps the best ant-lion position by using:

(30)Uiter
i

= Antlioniter
j

+ Uiter

(31)Liter =
Liter

I

(32)Uiter =
Uiter

I

(33)I = 10
� iter

iter_max

(34)𝜔 =

⎧
⎪⎪⎨⎪⎪⎩

2 when iter > 0.10 itermax

3 when iter > 0.50 itermax

4 when iter > 0.70 itermax

5 when iter > 0.90 itermax

6 when iter > 0.95 itermax

(35)xiter
ALj

= xiter
Ai

if f
(
xiter
Ai

)
> f

(
xiter
ALj

)

Fig. 7  The pseudocode of the MFO algorithm
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where xiter
A

 is the position of the ant, RA is the ant random 
walk for an ant-lion selected using a roulette wheel, and RE 
is an elite ant-lion. The elite is updated, and if termination 
criteria are reached, the process is stopped or the next itera-
tion is begun. Figure 8 explains the pseudocode of the ALO 
algorithm.

4.5  DA optimization

The dragonfly algorithm (DA) was proposed by Mirjalili 
in 2015 [37]. The inspiration for DA is based on dragonfly 
swarming behaviors. There are two important behaviors of 
dragonflies in nature, which are static and dynamic. In the 
static case, dragonflies create a very small group to fly a 
small distance and hunt small insects. On the other hand, 
in the dynamic case, dragonflies create a large group and 
travel in one specific direction for long distances, which 
agree with the two optimization phases of exploration 
and exploitation. The main goals of dragonfly swarms 
are attraction to food sources and distracting enemies. 
According to these two behaviors, there are five factors 
for position updating of individuals, namely separation, 
alignment, cohesion, attraction to food sources, and 
distracting enemies [37]. The mathematical model of the 
separation is calculated as [37]:

(36)xiter
A

=
Riter
A

+ Riter
E

2

(37)Si = −

N∑
j=1

X − Xj

where X indicates the current position,  Xj shows the jth 
neighboring individual position, and N is the number of 
neighboring individuals. Alignment (A) is represented as:

where  Xj is the jth neighboring individual velocity. The 
cohesion (C) is calculated as:

The attraction towards a food source (F) is determined by:

Distracting an enemy (E) outwards is determined by:

where  X+ is the food source position and  X− is the enemy 
position.

Updating the dragonfly's position in a search space and 
analyzing their movements takes into account step vectors 
(ΔX) and position (X) vectors. The step vector of the DA is 
similar to particle swarm optimization (PSO), so the DA step 
vector shows the direction of movement as given by:

where s is the weight of separation, a is the weight of 
alignment, A is the alignment of the ith individual, c is the 
weight of cohesion, f is the food factor, e is the enemy factor, 
w is the weight of inertia, and t is the iteration count. The 
position vectors are computed as:

(38)Ai =

∑N

j=1
Xj

N

(39)Ci =

∑N

j=1
Xj

N
− X

(40)Fi = X+ − X

(41)Ei = X− + X

(42)ΔXt+1 =
(
sSi + aAi + cCi + fFi + eEi

)
+ wΔXt

Fig. 8  The pseudocode of the 
ALO algorithm
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To improve the randomness, Lévy flight random walk is 
used for dragonflies to fly when there are no neighboring 
solutions. Thus, the dragonfly's position is updated by:

(43)Xt+1 = Xt + ΔXt+1

(44)Xt+1 = Xt + Levy(d) × Xt

(45)Levy(x) = 0.01 ×
�r1

||r2||
1

�

(46)� =

⎛⎜⎜⎜⎝

Γ(1 + �) × sin
�

��

2

�

Γ
�

1+�

2

�
× � × 2

�
�−1

2

�

⎞⎟⎟⎟⎠

1∕�

(47)Γ(x) = (x − 1)

where d indicates the dimension of position vectors, r1 and 
r2 are random numbers in [0, 1], and β is a constant (= 1.5) 
[38, 39]. Figure 9 gives the pseudocode for the DA.

4.6  WO algorithm

The whale optimization algorithm (WOA) is a new 
optimization algorithm based on meta-heuristics that simulates 
the hunting behavior of the humpback whale [40–42]. 
Humpback whales use random search strategies for finding 
prey through the transfer of data with the others. Figure 10 
gives the pseudo-code of the WOA. The mathematical model 
of encirclement of prey, net of the bubble method for hunting, 
and the prey behavior are as follows [43]:

(48)��⃗D =
|||��⃗C. ���⃗X

∗(t) − �⃗X(t)
|||

Fig. 9  The pseudo-code of the 
DA Population and step vector Initialization

while iter <itermax
Calculate the objective function 
Update the F, E, s, a, c, f, w, and e
Calculate S, A, C, F, and E Eqs. (37) to (41)
Update neighboring radius
if DF has one neighboring DF

Update velocity Eq. (42)
Update position Eq. (43)

Else
Update position Eq. (44)

end if
end while

Fig. 10  The pseudo-code of the 
WOA

50
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where D represents the distance between the whale and the 
prey, t is the iteration, A and C are vector coefficients, X* is 
the best solution position vector gained, and X is the position 
vector. Vectors �⃗A and ��⃗C are presented by:

where �⃗a decreases linearly from 2 to 0 for iterations, and r⃗ is 
a random vector in [0, 1]. To update the positions of whale 
and prey, the spiral equation is used to simulate the spiral-
shaped movement of humpback whales as:

where b is a constant for the shape definition, and l is a ran-
dom number in [−1, 1].

The humpback whales swim around the prey in 
a shrinking circle and a spiral simultaneously. The 
mathematical model of this behavior has a 50% probability 
(p) of choosing between them during the optimization 
process, expressed as:

(49)�⃗X(t + 1) = ���⃗X∗(t) − �⃗A.��⃗D

(50)�⃗A =
(
2 �⃗a.r⃗

)
− �⃗a

(51)��⃗C = 2r⃗

(52)�⃗X(t + 1) =
���⃗
D

�

.ebicos(2𝜋l) + ���⃗X∗(t)

(53)���⃗
D

�

(t) =
||| ���⃗X

∗(t) − �⃗X(t)
|||

(54)�⃗X(t + 1) =

{
���⃗X∗(t) − �⃗A.��⃗D if p < 0.5

���⃗D
�

.ebicos(2𝜋l) + ���⃗X∗(t) if p ≥ 0.5

According to the random searching of humpback whales, 
�⃗A is used with the random values [−1, 1] based on the 
exploration and exploitation for updating the position of 
the search agent. This mechanism and | �⃗A | > 1 emphasize 
exploration and allow the WOA to perform a global search. 
The mathematical model representing this mechanism is as 
follows:

where �������⃗Xrand  is a random position vector chosen from the 
current population [43].

5  Results and discussion

Convergence curves for the best run of the six proposed 
algorithms are shown in Fig. 11. It is evident that all the 
optimization algorithms have the ability to reach an opti-
mal objective function value in less than 20 iterations. 
Comparisons of the extracted optimal DSSC parameters 
using different optimization techniques are presented in 
Table 2. Figure 12 shows the J–V characteristic curve of 
the DSSC based on optimal parameter values obtained.   

5.1  Sensitivity analysis

As presented, the increase in temperature causes an 
increase in the photocurrent density and the voltage and, 

(55)��⃗D =
|||��⃗C. �������⃗Xrand(t) −

�⃗X(t)
|||

(56)�⃗X(t + 1) = �������⃗Xrand(t) −
�⃗A.��⃗D

Fig. 11  Convergence curves of the proposed optimization algorithms
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Table 2  Optimal DSSC 
parameters obtained for 
different optimization 
algorithms

Parameters GA WOA GWO ALO DA MFO

Jsc (mA/cm2) 15.4 15.9 15.9 15.9 15.9 15.9
Jo (nA/cm2) 1.073 1.606 1.603 1.599 1.599 1.599
Pmax (W) 1.18 1.15 1.15 1.15 1.15 1.15
Jmax (mA/cm2) 14.2 14.2 14.2 14.2 14.2 14.2
Vmax (V) 0.809 0.809 0.809 0.809 0.809 0.809
Rs (Ω) 0.1294 0.1294 0.1294 0.1294 0.1294 0.1294
Voc (V) 1.1147 1.0671 1.0714 1.0717 1.0717 1.0717
FF 0.6851 0.6772 0.6773 0.6774 0.6774 0.6774
η (%) 11.79 11.4829 11.5327 11.5363 11.5363 11.5363

Fig. 12  J–V characteristic curve of DSSC based on optimal parameter values

Fig. 13  J–V characteristic curve of DSSC with temperature variation
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therefore, the conversion efficiency. According to the 
results achieved with this simulation, with increasing tem-
perature, the open-circuit voltage, the power, and the con-
version efficiency of the DSSC increase. Two contrastingly 

changing factors affect the open-circuit voltage. The first 
is that as the charge diffusion and mobility increase with 
increasing temperature, the open-circuit voltage increases. 
The other factor is the decrease in open-circuit voltage 

Fig. 14  J–V characteristic curve of DSSC with the variation in solar radiation

Fig. 15  J–V characteristic curve of DSSC with variation in electron lifetime
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due to the increase in the charge recombination with tem-
perature that results in a directly proportional relationship 
between temperature and open-circuit voltage, as shown 
in Fig. 13.

Voc increases due to the increase in chemical potential 
caused by the increased charge generation with increas-
ing solar radiation. On the other hand, the charge lifetime 
decreases with increasing solar radiation intensity, resulting 
in a reduction in chemical potential, which leads to lowering 
of the Voc. However, the dominant process is the increase 
in charge generation and hence the increase in open-circuit 
voltage as given by Fig. 14. Also, short-circuit current den-
sity increases significantly with the increase in solar radia-
tion. As shown in Fig. 15, the lifetime affected mainly the 
open-circuit voltage; as τ increases, Voc increases due to the 
decrease in the recombination rate, hence resulting in higher 

electron density in the photoanode. The photocurrent density 
is not affected by the lifetime variation.  

Figure 16 presents the variation in the DSSC Jsc, Voc and 
Pmax with the variation in electron lifetime. Lifetime Voc 
and Pmax increase while Jsc is approximately constant. The 
variation in fill factor and efficiency with electron lifetime 
is given by Fig. 17.

The variation in the J–V characteristics with vari-
ous absorption coefficients is presented in Fig. 18. It is 
observed that both the current density and potential dif-
ference increase with the increase in the absorption coef-
ficient. This behavior can be interpreted as follows: with 
the increase in the absorption coefficient, more photons are 
absorbed by the dye molecules on the surface of the pho-
toanode, resulting in the generation of more electrons and 
consequently enhancing the conversion efficiency. Both 

Fig. 16  DSSC parameter variation (Jsc, Voc, and Pmax) with electron lifetime variation

Fig. 17  DSSC efficiency and fill factor variation with electron lifetime variation
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Jsc and Voc increase with increasing absorption coefficient 
values, as more photons can be absorbed to enhance the 
photoelectric conversion. Figure 19 displays the variation 
in the output parameters of the DSSC (Jsc, Voc, and Pmax) 
with the variation in the absorption coefficient. The vari-
ation in the efficiency and fill factor with the absorption 
coefficient is presented in Fig. 20. Both the efficiency and 
fill factor increase with an increase in the absorption coef-
ficient due to the increase in photon absorption by the 
DSSC and hence the collection of more electrons.

The thickness of photoanode film is an important tech-
nological parameter for the design and optimization of the 

dye cell. The effect of the variation in photoanode thick-
ness on the J–V curves can be clearly seen in Fig. 21. The 
range of variation taken into consideration is between 0.1 
and 30 μm.

Figure 22 presents the effect of the variation in thickness 
on Jsc. The current increases up to a certain value, and after 
the optimal point, the current starts to decrease.

This effect can lead to an increase in the area of the 
internal surface and the absorption of more photons by the 
photoanode, but if the thickness is greater than the light 
penetration depth, the number of photons will reach the limit, 
and Jsc will start to decrease because more recombination 

Fig. 18  J–V characteristic curve of the DSSC with absorption coefficient variation

Fig. 19  DSSC parameter variation (Jsc, Voc, and Pmax) with absorption coefficient variation
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occurs, causing electron loss. This behavior can be explained 
as follows: the increase in the thickness of the photoanode 
increases the dye absorbance in the photoanode porous voids, 
thus enhancing its light absorbance and further increasing 
the density of photogenerated carriers. Hence, photocurrent 
density increases, but at the same time, the series resistance 
of the electrode also tends to increase, affecting the cell 
performance. In addition, Voc decreases with the increase in 
thickness due to the high series resistance.

Figure 23 presents the effect of the variation in thickness 
on the fill factor and efficiency. Increasing thickness leads to 
an increase in the internal resistance of the cell.

The results indicate that finding the optimal value of 
thickness leads to high efficiency, and the maximum values 
of the DSSC electrical parameters can be obtained.

The effect of the variation in the diffusion coefficient 
on DSSC performance is indicated in Fig. 24. There is a 
directly proportional relationship between the diffusion 
coefficient and the current density, but the converse is seen 
with its voltage. This is because increasing the value of 
the diffusion coefficient leads to an increase in electron 
diffusion length. This means that a greater diffusion coef-
ficient causes a decrease in the recombination rate, and 
thus more electrons can be collected. This increases the 
current density. However, the greater electron extraction 
results in a smaller value of electron density. The small 

Fig. 20  DSSC efficiency and fill factor variation with absorption coefficient variation

Fig. 21  J–V characteristic curve variation of DSSC with photoanode film thickness
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electron density decreases the potential difference. Fig-
ure 25 displays the effect of D on the J–V characteristics. 
With increasing D, Jsc increases but Voc decreases. The 
variations can be understood by the fact that an increase 
in D increases the diffusion length, and subsequently more 
electrons are taken out to the external circuit, resulting in 
higher electrical current. Consequently, the electron den-
sity is reduced, causing a lower Voc.

The variations in DSSC parameters Jsc, Voc, FF, and η 
with the electron diffusion coefficient is demonstrated in 

Figs. 25 and 26. A clear tendency can be detected, where 
both Voc and FF decrease while Jsc increases with the 
increase in the electron diffusion coefficient.

6  Conclusion

DSSCs have received extensive attention from many 
scientists over the past three decades. Fast theoretical and 
practical studies have been undertaken to enhance the 

Fig. 22  DSSC parameter variation (Jsc, Voc, and Pmax) with electrode thickness variation

Fig. 23  DSSC efficiency and fill factor variation with electrode thickness variation
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performance of DSSCs. To identify the DSSC intrinsic 
parameters, we need to tune each component and determine 
the appropriate conditions in optimizing the performance 
of complete cells. Meta-heuristic optimization techniques 
are applied to extract the DSSC parameters using 
semiconductor thin-film electron diffusion modeling. 
MATLAB software is used to investigate the influence of 
various physical and environmental parameters on DSSC 
characteristics and to perform sensitivity analysis. The 

electrode thickness, electron lifetime, diffusion coefficient, 
absorption coefficient, radiation, and air temperature are 
the parameters under consideration. Jsc, Voc, Pmax, FF, 
and efficiency are the DSSC performance indicators. The 
suggested optimization algorithms have been verified as 
offering superior characteristics, including good solutions, 
stable and fast convergence to the best solution, and high 
computational performance.

Fig. 24  Variation in DSSC J–V characteristic curve with different electron diffusion coefficients

Fig. 25  DSSC parameter variation (Jsc, Voc, and Pmax) with diffusion coefficient variation
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