Skip to main content
Log in

Physical analysis of β-Ga2O3 gate-all-around nanowire junctionless transistors: short-channel effects and temperature dependence

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this study, we analyze a β-Ga2O3 gate-all-around nanowire junctionless transistor (β-GAA-JLT) in accumulation mode. The performances are investigated by considering quantum effects, and the results are compared with those of a silicon gate-all-around nanowire junctionless transistor (Si-GAA-JLT) device. We illustrate that the ultra-scaled β-Ga2O3 field effect transistors (FETs) perform better in terms of short-channel effects (SCEs) and temperature dependence than the silicon material in accumulation mode. Because of the lower natural length of Ga2O3 versus silicon and higher electrostatic integrity, SCEs are improved versus conventional junctionless silicon devices. We also present that the proposed structure has superior results including a higher depletion region, lower self-heating effect (SHE), and greater immunity against SCEs versus Si-GAA-JLT. The fabrication flow process of the β-GAA-JLT is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the authors upon reasonable request.

References

  1. Razavi, P., Fagas, G.: Electrical performance of III-V gate-all-around nanowire transistors. Appl. Phys. Lett. 103(6), 063506 (2013). https://doi.org/10.1063/1.4817997

    Article  Google Scholar 

  2. Madadi, D., Orouji, A.A., Abbasi, A.: Improvement of nanoscale SOI MOSFET heating effects by vertical gaussian drain-source doping region. SILICON (2020). https://doi.org/10.1007/s12633-020-00453-x

    Article  Google Scholar 

  3. Madadi, D., Orouji, A.A.: Investigation of tied double gate 4H–SiC junctionless FET in 7 nm channel length with a symmetrical dual p+ layer. Phys. E Low Dimens. Syst. Nanostruct. 126, 114450 (2021). https://doi.org/10.1016/j.physe.2020.114450

    Article  Google Scholar 

  4. Jazaeri, F., Barbut, L., Koukab, A., Sallese, J.-M.: Analytical model for ultra-thin body junctionless symmetric double gate MOSFETs in subthreshold regime. Solid State Electron. 82, 103–110 (2013). https://doi.org/10.1016/j.sse.2013.02.001

    Article  Google Scholar 

  5. Makris, N., Bucher, M., Jazaeri, F., Sallese, J.M.: CJM: a compact model for double-gate junction FETs. IEEE J. Electron Dev. Soc. 7(October), 1191–1199 (2019). https://doi.org/10.1109/JEDS.2019.2944817

    Article  Google Scholar 

  6. Makris, N., Jazaeri, F., Sallese, J.M., Bucher, M.: Charge-based modeling of long-channel symmetric double-gate junction FETs-part II: total charges and transcapacitances. IEEE Trans. Electron Dev. 65(7), 2751–2756 (2018). https://doi.org/10.1109/TED.2018.2838090

    Article  Google Scholar 

  7. Rassekh, A., Fathipour, M.: A single-gate SOI nanosheet junctionless transistor at 10-nm gate length: design guidelines and comparison with the conventional SOI FinFET. J. Comput. Electron. (2020). https://doi.org/10.1007/s10825-020-01475-9

    Article  Google Scholar 

  8. Mohammadi, S., Afzali-Kusha, A.: Modeling of drain current, capacitance and transconductance in thin film undoped symmetric DG MOSFETs including quantum effects. Microelectron. Reliab. 50(3), 338–345 (2010). https://doi.org/10.1016/j.microrel.2009.12.002

    Article  Google Scholar 

  9. Sallese, J.M., Chevillon, N., Lallement, C., Iñiguez, B., Prégaldiny, F.: Charge-based modeling of junctionless double-gate field-effect transistors. IEEE Trans. Electron Dev. 58(8), 2628–2637 (2011). https://doi.org/10.1109/TED.2011.2156413

    Article  Google Scholar 

  10. Karbalaei, M., Dideban, D.: A novel Silicon on Insulator MOSFET with an embedded heat pass path and source side channel doping. Superlattices Microstruct. 90, 53–67 (2016). https://doi.org/10.1016/j.spmi.2015.12.001

    Article  Google Scholar 

  11. Karbalaei, M., Dideban, D., Heidari, H.: Improvement in electrical characteristics of Silicon on Insulator (SOI) transistor using graphene material. Results Phys. 15, 102806 (2019). https://doi.org/10.1016/j.rinp.2019.102806

    Article  Google Scholar 

  12. Sreenivasulu, V.B., Narendar, V.: Design insights into RF/analog and linearity/distortion of spacer engineered multi-fin SOI FET for terahertz applications. Int. J. RF Microw. Comput. Eng. (2021). https://doi.org/10.1002/mmce.22875

    Article  Google Scholar 

  13. Sreenivasulu, V.B., Narendar, V.: Characterization and optimization of junctionless gate-all-around vertically stacked nanowire FETs for sub-5 nm technology nodes. Microelectron. J. 116, 105214 (2021). https://doi.org/10.1016/j.mejo.2021.105214

    Article  Google Scholar 

  14. Bae, J., Kim, H.W., Kang, I.H., Kim, J.: Field-plate engineering for high breakdown voltage β-Ga2O3 nanolayer field-effect transistors. RSC Adv. 9(17), 9678–9683 (2019). https://doi.org/10.1039/c9ra01163c

    Article  Google Scholar 

  15. Ma, J., Cho, H.J., Heo, J., Kim, S., Yoo, G.: Asymmetric double-gate β-Ga2O3 nanomembrane field-effect transistor for energy-efficient power devices. Adv. Electron. Mater. 5(6), 1–7 (2019). https://doi.org/10.1002/aelm.201800938

    Article  Google Scholar 

  16. Mun, J.K., Cho, K., Chang, W., Jung, H.W., Do, J.: 2.32 kV breakdown voltage lateral β-Ga2O3 MOSFETs with source-connected field plate. ECS J. Solid State Sci. Technol. 8(7), Q3079–Q3082 (2019). https://doi.org/10.1149/2.0151907jss

    Article  Google Scholar 

  17. Yadava, N., Chauhan, R.K.: RF performance investigation of β-Ga2O3/graphene and β-Ga2O3/Black phosphorus heterostructure MOSFETs. ECS J. Solid State Sci. Technol. 8(7), Q3058–Q3063 (2019). https://doi.org/10.1149/2.0131907jss

    Article  Google Scholar 

  18. Lv, Y., et al.: Lateral source field-plated β-Ga2O3 MOSFET with recorded breakdown voltage of 2360 v and low specific on-resistance of 560 mΩ cm2. Semicond. Sci. Technol. 34(11), 2–6 (2019). https://doi.org/10.1088/1361-6641/ab4214

    Article  Google Scholar 

  19. Blevins, J.D., Stevens, K., Lindsey, A., Foundos, G., Sande, L.: Development of large diameter semi-insulating gallium oxide (Ga2O3) substrates. IEEE Trans. Semicond. Manuf. 32(4), 466–472 (2019). https://doi.org/10.1109/TSM.2019.2944526

    Article  Google Scholar 

  20. Xia, Z., et al.: β-Ga2O3 delta-doped field-effect transistors with current gain cutoff frequency of 27 GHz. IEEE Electron Device Lett. 40(7), 1052–1055 (2019). https://doi.org/10.1109/LED.2019.2920366

    Article  Google Scholar 

  21. Madadi, D., Orouji, A.A.: New high-voltage and high-speed β-Ga2O3 MESFET with amended electric field distribution by an insulator layer. Eur. Phys. J. Plus 135(7), 578 (2020). https://doi.org/10.1140/epjp/s13360-020-00523-4

    Article  Google Scholar 

  22. Madadi, D., Orouji, A.A.: Investigation of short channel effects in SOI MOSFET with 20 nm channel length by a β-Ga2 O3 layer. ECS J. Solid State Sci. Technol. 9(4), 045002 (2020). https://doi.org/10.1149/2162-8777/ab878b

    Article  Google Scholar 

  23. Madadi, D., Orouji, A.A.: A β-Ga2O3 MESFET to amend the carrier distribution by using a tunnel diode. IEEE Trans. Device Mater. Reliab. 21(1), 26–32 (2021). https://doi.org/10.1109/TDMR.2020.3046530

    Article  Google Scholar 

  24. Sahay, S., Kumar, M.J.: Physical insights into the nature of gate-induced drain leakage in ultrashort channel nanowire FETs. IEEE Trans. Electron Dev. 64(6), 2604–2610 (2017). https://doi.org/10.1109/TED.2017.2688134

    Article  Google Scholar 

  25. Jazaeri, F., Sallese, J.-M.: Modeling Nanowire and Double-Gate Junctionless Field-Effect Transistors. Cambridge University Press, Cambridge (2018)

    Book  Google Scholar 

  26. Martinez, A., Aldegunde, M., Brown, A.R., Roy, S., Asenov, A.: NEGF simulations of a junctionless Si gate-all-around nanowire transistor with discrete dopants. Solid. State. Electron. 71(May), 101–105 (2012). https://doi.org/10.1016/j.sse.2011.10.028

    Article  Google Scholar 

  27. Choi, S.J., Il Moon, D., Kim, S., Duarte, J.P., Choi, Y.K.: Sensitivity of threshold voltage to nanowire width variation in junctionless transistors. IEEE Electron Dev. Lett. 32(2), 125–127 (2011). https://doi.org/10.1109/LED.2010.2093506

    Article  Google Scholar 

  28. Rahimian, M., Fathipour, M.: Improvement of electrical performance in junctionless nanowire TFET using hetero-gate-dielectric. Mater. Sci. Semicond. Process. 63, 142–152 (2017). https://doi.org/10.1016/j.mssp.2016.12.011

    Article  Google Scholar 

  29. Singh, J., Kumar, M.J.: A planar junctionless FET using SiC with reduced impact of interface traps: proposal and analysis. IEEE Trans. Electron Dev. 64(11), 4430–4434 (2017). https://doi.org/10.1109/TED.2017.2752227

    Article  Google Scholar 

  30. Ansari, L., Feldman, B., Fagas, G., Colinge, J.P., Greer, J.C.: Subthreshold behavior of junctionless silicon nanowire transistors from atomic scale simulations. Solid. State. Electron. 71, 58–62 (2012). https://doi.org/10.1016/j.sse.2011.10.021

    Article  Google Scholar 

  31. Singh, J., Jain, A.K., Kumar, M.J.: Realizing a planar 4H-SiC junctionless FET for sub-10-nm regime using P+ pocket. IEEE Trans. Electron Dev. 66(7), 3209–3214 (2019). https://doi.org/10.1109/TED.2019.2914633

    Article  Google Scholar 

  32. Jazaeri, F., Barbut, L., Sallese, J.: Modeling and design space of junctionless symmetric DG MOSFETs with long channel. IEEE Trans. Electron Dev. 60(7), 2120–2127 (2013). https://doi.org/10.1109/TED.2013.2261073

    Article  Google Scholar 

  33. P. Razavi, G. Fagas, I. Ferain, N. D. Akhavan, R. Yu, and J. P. Colinge, "Performance investigation of short-channel junctionless multigate transistors," 2011 12th Int. Conf. Ultim. Integr. Silicon, ULIS 2011, pp. 122–125, 2011. https://doi.org/10.1109/ULIS.2011.5758005.

  34. Colinge, J.-P., et al.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010). https://doi.org/10.1038/nnano.2010.15

    Article  Google Scholar 

  35. Doria, R.T., et al.: Junctionless multiple-gate transistors for analog applications. IEEE Trans. Electron Dev. 58(8), 2511–2519 (2011). https://doi.org/10.1109/TED.2011.2157826

    Article  Google Scholar 

  36. Colinge, J.-P., et al.: Reduced electric field in junctionless transistors. Appl. Phys. Lett. 96(7), 073510 (2010). https://doi.org/10.1063/1.3299014

    Article  Google Scholar 

  37. Madadi, D., Orouji, A.A.: Scattering mechanisms in β-Ga2O3 junctionless SOI MOSFET: investigation of electron mobility and short channel effects. Mater. Today Commun. 26, 102044 (2021). https://doi.org/10.1016/j.mtcomm.2021.102044

    Article  Google Scholar 

  38. Madadi, D., Orouji, A.A.: Investigation of 4H-SiC gate-all-around cylindrical nanowire junctionless MOSFET including negative capacitance and quantum confinements. Eur. Phys. J. Plus 136(7), 785 (2021). https://doi.org/10.1140/epjp/s13360-021-01787-0

    Article  Google Scholar 

  39. Madadi, D., Orouji, A.A.: β-Ga2O3 double gate junctionless FET with an efficient volume depletion region. Phys. Lett. A (2021). https://doi.org/10.1016/j.physleta.2021.127575

    Article  Google Scholar 

  40. Device Simulator ATLAS.:Silvaco International. Santa Clara. www.silvaco.com (2015)

  41. Simon, D.K., Jordan, P.M., Mikolajick, T., Dirnstorfer, I.: On the control of the fixed charge densities in Al2O3-based silicon surface passivation schemes. ACS Appl. Mater. Interfaces 7(51), 28215–28222 (2015). https://doi.org/10.1021/acsami.5b06606

    Article  Google Scholar 

  42. Shahin, D.I., et al.: Electrical characterization of ALD HfO 2 high-k dielectrics on (2¯01) β-Ga2O3. Appl. Phys. Lett. 112(4), 042107 (2018). https://doi.org/10.1063/1.5006276

    Article  Google Scholar 

  43. J.-P. Colinge, "From Gate-all-Around to Nanowire MOSFETs," in 2007 International Semiconductor Conference, Oct. 2007, pp. 11–17. https://doi.org/10.1109/SMICND.2007.4519637.

  44. Pearton, S.J., et al.: A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 5(1), 011301 (2018). https://doi.org/10.1063/1.5006941

    Article  Google Scholar 

  45. Colinge, J.-P.: Multiple-gate SOI MOSFETs. Solid State Electron. 48(6), 897–905 (2004). https://doi.org/10.1016/j.sse.2003.12.020

    Article  Google Scholar 

  46. Belkhiria, M., Echouchene, F., Jaba, N., Bajahzar, A., Belmabrouk, H.: Impact of High-k gate dielectric on self-heating effects in PiFETs structure. IEEE Trans. Electron Dev. 67(9), 3522–3529 (2020). https://doi.org/10.1109/TED.2020.3012418

    Article  Google Scholar 

  47. A. Rjoub, N. R. Al-Taradeh, and M. F. Al-Mistarihi, "Accurate subthreshold leakage model for nanoscale MOSFET transistor," in 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), Dec. 2013, pp. 711–714. https://doi.org/10.1109/ICECS.2013.6815513.

  48. Kushwaha, P., et al.: Thermal resistance modeling in FDSOI transistors with industry standard model BSIM-IMG. Microelectron. J. 56, 171–176 (2016). https://doi.org/10.1016/j.mejo.2016.07.014

    Article  Google Scholar 

  49. Ye, S., Yamabe, K., Endoh, T.: Ultimate vertical gate-all-around metal–oxide–semiconductor field-effect transistor and its three-dimensional integrated circuits. Mater. Sci. Semicond. Process. 134, 106046 (2021). https://doi.org/10.1016/j.mssp.2021.106046

    Article  Google Scholar 

Download references

Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali A. Orouji.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Research involving human participants and/or animals

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motamedi, A., Orouji, A.A. & Madadi, D. Physical analysis of β-Ga2O3 gate-all-around nanowire junctionless transistors: short-channel effects and temperature dependence. J Comput Electron 21, 197–205 (2022). https://doi.org/10.1007/s10825-021-01837-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-021-01837-x

Keywords

Navigation