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Abstract
The recent emergence of lead-halide perovskites as active layer materials for thin film semiconductor devices including solar
cells, light emitting diodes, and memristors has motivated the development of several new drift-diffusion models that include
the effects of both electronic andmobile ionic charge carriers. In this work we introduceDriftfusion, a versatile simulation tool
built formodelling one-dimensional ordered semiconductor deviceswithmixed ionic-electronic conducting layers.Driftfusion
enables users to model devices with multiple, distinct, material layers using up to four charge carrier species: electrons and
holes plus up to two ionic species. The time-dependent carrier continuity equations are coupled to Poisson’s equation enabling
transient optoelectronic device measurement protocols to be simulated. In addition to material and device-wide properties,
users have direct access to adapt the physical models for carrier transport, generation and recombination. Furthermore, a
discrete interlayer interface approach circumvents the requirement for boundary conditions at material interfaces and enables
interface-specific properties to be introduced.

Keywords Semiconductor device simulation · Numerical modelling · Drift-diffusion · Solar cells · Perovskites · Ionic-
electronic conductors · Device physics

1 Introduction

Accurate models of semiconductor devices are essential to
further our understanding of the key physical processes gov-
erning these systems and hence rationally optimise them.
One approach to modelling devices on the mesoscopic scale
is to use continuum mechanics, whereby charge carriers are
treated as continuous media as opposed to discrete parti-
cles. Typically, electronic carriers are modelled at discrete
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energy levels with a transport model describing the dynam-
ics of carriers in response to an electric field (drift) and carrier
density gradients (diffusion). This drift-diffusion (Poisson–
Nernst–Planck) treatment leads to a systemof coupled partial
differential equations (the van Roosbroeck system [1]): a set
of continuity equations, defining how the density of each
charge carrier changes with time at each spatial location, are
coupledwith Poisson’s equation (Gauss’ Law), which relates
the space-charge density to the electrostatic potential. For
many architectures of thin-film semiconductor device (with
the notable exception of transistors), provided that the mate-
rials are homogeneous and isotropic, it is sufficient to model
devices with properties that vary in a single spatial dimen-
sion. In all but the most elementary of cases the resulting
system of equations must be solved numerically.

1.1 Recent progress in mixed electronic-ionic
conductor device models

The recent emergence of lead-halide perovskites (referred to
herein as perovskites) as active layer materials for thin film
semiconductor devices including solar cells, light emitting
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diodes (LEDs), and memristors has motivated the devel-
opment of several new drift-diffusion models that include
mobile ionic species in addition to electronic carriers [2–10].
Ab initio calculations and experimental evidence have shown
that, under many standard operating conditions, the charge
density distribution, and consequently the electric field, in
perovskite materials is dominated by high densities of rela-
tively slow-moving mobile ionic defects [11–14]. This has a
profound impact on the optoelectronic response of devices
with perovskite active layers, leading to strong hysteresis
effects in experimental measurements on timescales from
microseconds to hundreds-of-seconds [15,16].

To date, both experimental and theoretical research into
perovskites has primarily focussed on their application as a
photovoltaic absorber material for solar cells and we now
review the recent advances in device-level modelling in this
field of application. Van Reenen, Kemerink and Snaith were
the first to publish perovskite solar cell (PSC) simulations
using a coupled model that included continuity equations for
three charge carriers: electrons, holes and a single mobile
ionic species [3]. They found that current–voltage (J -V )
hysteresis in PSCs could only be reproduced by including
a density of trap states close to one of the interfaces acting
as a recombination centre [3]. Later calculations of a 1.5
nm Debye length1 [4] suggested, however, that the choice of
a 4 nm mesh spacing in the simulations was too coarse to
properly resolve the ionic charge profiles at the perovskite
active layer-transport layer interfaces (described herein sim-
ply as interfaces). Richardson and co-workers overcame the
numerical challenge of high ionic carrier and potential gradi-
ents at the interfaces by using an asymptotic analytical model
to calculate the potential drop in the Debye layers of a sin-
gle mixed electronic-ionic conducting material layer [2,4].
While this approach enabled the reproduction of hysteresis
effects using high rates of bulk recombination, the inabil-
ity to accurately model interfacial recombination limited the
degree to which the simulation could represent real-world
devices [4]. In a later publication by the same group mod-
elling dark current transients, interfacial recombination was
implemented, but only at the inner boundary of the Debye
layer [17]. Furthermore, since these models were limited to a
single layer, unrealistically large ionic charge densities were
calculated at the interfaces as compared to three-layer mod-
els with discrete electron and hole transport layers (ETL and
HTL, respectively).

Our own work simulating PSCs began with a three-layer
p-i-n dual homojunction model in which the p- and n-type
regions simulated the HTL and ETL, and where interfacial
recombination was approximated by including high rates
of recombination throughout these layers. Our results sup-
ported van Reenen et al.’s conclusion that both mobile ions

1 Based on an ion density of 1.6 × 1019 cm−3.

and high rates of interfacial recombination are required to
reproduce J -V hysteresis effects and other comparatively
slow transient optoelectronic phenomena in p-i-n solar cells
[18]. Shortly after, Neukom et al. published a modelling
study with similar conclusions [5]. They used the commer-
cial package SETFOS [19] to solve for electronic carriers
in combination with a separate MATLAB code that solved
for the ionic carrier distributions. More recently, Courtier
et al. published results from IonMonger, a freely available,
fully coupled, three-layer device model that included a sin-
gle ionic charge carrying species and boundary conditions
at the interfaces such that surface recombination of elec-
tronic carriers between the different layers could be explicitly
included [8,20]. There remained some limitations with the
model however; only the majority carriers were calculated
in the ETL and HTL, excluding the possibility of simulating
single carrier devices, and intrinsic or low-doped transport
layers such as organic semiconductors; ions were confined
to the perovskite layer and; users only had the possibility
to simulate three-layer devices. Jacobs et al. also published
results from a three-layer coupled electronic-ionic carrier
simulation implemented using COMSOLMultiphyics®[21]
and MATLAB Livelink™[22,23]. Most recently, Tessler and
Vaynzof published impressive results from a similar three-
layer PSC device model that included the option to use either
Boltzmann or Fermi-Dirac statistics [24]. Notwithstanding,
the methodological details from both Jacobs et al. [23] and
Tessler and Vaynzof [24] are sparse and at the time of writing
neither code is publicly available.

1.2 Driftfusion

Here, we present a comprehensive guide to Driftfusion, our
open source simulation tool designed for simulating semi-
conductor devices with mixed ionic-electronic conducting
layers in one dimension. The software (based in MATLAB)
enables users to simulate devices with any number of distinct
material layers and up to four charge carrying species: elec-
trons and holes by default plus up to twomobile ionic species.
The time-dependent continuity equations are fully coupled
to Poisson’s equation enabling transient optoelectronic mea-
surements to be accurately simulated. In addition to common
material parameters, users have direct access to adapt the
carrier transport, recombination and generation models as
well as the system’s initial and boundary conditions [25].
Driftfusion uses a discrete interlayer interface approach for
junctions betweenmaterial layers (heterojunctions) such that
energetic and carrier density properties are graded between
adjacent layers using a range of grading options. Thismethod
has the added benefits that it circumvents the requirement
for boundary conditions at heterojunctions, and enables
interface-specific properties to be definedwithin the interface
regions. While the example architectures and outputs given
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in this work use PSCs as a model system, Driftfusion can,
in principle, be used to model any ordered one-dimensional
mixed ionic-electronic semiconductor or redox system for
which the drift-diffusion approach is valid.

Thiswork is divided into fourmain sections;webeginwith
a general overview of the simulation tool in Sect. 2; in Sect.
3 the default physical models for charge carrier transport,
generation, and recombination are outlined; Sect. 4 provides
a detailed description of the system architecture and a step-
by-step guide of the important commands and functions that
will enable readers to get started with Driftfusion; we con-
clude in Sect. 5 by comparing calculations from Driftfusion
to two analytical and two numerical models to validate the
simulation solutions and the discrete interface approach.

2 General overview of Driftfusion

2.1 Workflow

A flow diagram summarising Driftfusion’s general work-
flow is given in Fig. 1. The system is designed such that the
user performs a linear series of steps to obtain a solution;
(1) the process begins with the creation of a semiconductor
device object for which both device-wide properties, such as
the system temperature, and layer-specific properties, such as
the carrier mobilities are defined. A user-definable physical
model comprisedof one-dimensional generation, recombina-
tion, and transportmodels determines the continuity equation
for each charge carrier (see Sect. 3 for the default expres-
sions); (2) the continuity equations are solved simultaneously
with Poisson’s equation (Eq. 17) to obtain a solution for
the electron density, hole density, cation density (optional),
anion density (optional), and electrostatic potential distribu-
tions at equilibrium; (3) an experimental protocol such as a
current–voltage scan is defined using an appropriate set of
input parameters e.g. scan rate and voltage limits. The pro-
tocol generates time-dependent voltage and light conditions
that are subsequently applied to the device, typically using
the equilibrium solution as the initial conditions. In more
sophisticated protocols the solution is broken into a series
of steps whereby intermediate solutions are fed back into
the solver. Likewise, protocols can be cascaded such that the
solution from one protocol supplies the initial conditions for
the next; (4) the desired solution is output as a MATLAB data
structure (see Solution structures highlighted box); (5) the
solution structure can be analysed to obtain calculated out-
puts such as the charge carrier currents, quasi-Fermi levels,
etc.; (6) a multitude of plotting tools are available to visualise
the simulation outputs. Instructions on how to run each step
programmatically and further details of the system architec-
ture, protocols, solutions, and analysis functions are given in
Sect. 4.

2.2 Licensing information

The front end code of Driftfusion has been made open-
source under the GNU Affero General Public License v3.0
in order to accelerate the rate of development and expand our
collective knowledge of mixed ionic-electronic conducting
devices [26]. It is important to note, however, that Driftfu-
sion currently uses MATLAB’s Partial Differential Equation
solver for Parabolic andElliptic equations (pdepe), licensed
under the MathWorks, Inc. Software License Agreement,
which strictly prohibits modification and distribution. If you
use Driftfusion please consider giving back to the project
by providing feedback and/or contributing to its continued
development and dissemination.

We now proceed to describe the default physical models
underlying this release of Driftfusion [26]. Herein relevant
Driftfusion functions and commands are highlighted using
boxes and referred to using command line typeface.

Solution structuresFollowing completionof the steps
in Fig. 1, Driftfusion outputs a MATLAB structure
sol (known herein as a solution structure) contain-
ing the following elements:

– The solution matrix u: a three-dimensional
matrix for which the dimensions are [time,
space, variable]. The order of the vari-
ables are as follows:

1. Electrostatic potential, V
2. Electron density, n
3. Hole density, p
4. Cation density, c (where 1 or 2 mobile ionic

carriers are stipulated)
5. Anion density, a (where 2 mobile ionic car-

riers are stipulated)

– The spatial mesh x.
– The time mesh t.
– The parameters object par.

As illustrated in Sect. 2.2, sol can be used as
the input argument for analysis functions contained
within dfana or plotting functions within dfplot.
See Sect. 4 for further details.

3 Implementation of established
semiconductor theoretical principles in
Driftfusion

The device physics implemented in Driftfusion is principally
based on established semi-classical semiconductor transport
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Fig. 1 The general workflow of
Driftfusion. 1. The user defines
a device in the properties
definition step; 2. The device
equilibrium state is solved for
using the given recombination
and transport models; 3. An
experimental protocol, which
defines time-dependent voltage
and optical generation
conditions, is applied to the
equilibrium solution; 4. A
solution is obtained that may be
fed back into the protocol until
the desired solution is reached;
5. The solution is analysed to
obtain calculated outputs; 6. The
outputs are visualised using
plotting tools

1. Define layer and device-wide properties 
e.g. semiconductor band energies, layer 

thickness etc. 

2. Solve drift diffusion equations to obtain 
equilibrium (dark) state  

electron, hole, cation, anion and 
electrostatic potential profiles 

3. Apply experimental protocol defining 
light and voltage conditions to device  

e.g. current voltage sweep. 
See Table 2 for further examples   

4. Solve drift diffusion equations  
to obtain electron, hole, cation, anion and 
electrostatic potential profiles as a function 

of time for the conditions defined in (3) 

5. Analyse the solution to obtain  
calculated quantities  

e.g. charge carrier currents, quasi Fermi 
levels etc. 

6. Plot the outputs  
e.g. energy level diagrams, current-voltage 

curves etc. 

Feedback 
intermediate 
solutions 

Generation model 

Transport model 

Recombination 
model 

Properties 
definition 

Solving 

Analysis 

Physical model 

and continuity principles, which are well described in Sze
and Kwok [27] and Nelson [28]. Elements of this section
are adapted from Ref. [29] and are provided here as a direct
reference for the reader. The equations described herein are
written in terms of a single spatial dimension and can only
be applied to devices with one-dimensional architectures and
for which the material layers are homogeneous.

Driftfusion evolved from a diffusion-only code written
to simulate transient processes in dye sensitised solar cells
[30] and uses MATLAB’s [22] built-in pdepe solver [31].
The code solves the continuity equations and Poisson’s equa-
tion for electron density n, hole density p, cation density c
(optional), anion density a (optional), and the electrostatic
potential V as a function of position x , and time t .

The full details of the numerical methods employed by
the pdepe solver for discretising the equations are given in
Skeel and Berlizns 1990 [32].

3.1 Semiconductor energy levels

Figure 2a shows the energy levels associated with an ide-
alised intrinsic semiconductor. The electron affinityΦEA and
ionisation potential ΦIP are the energies required to add an

electron to the conduction band (CB) from the vacuum level
Evac and to remove an electron from the valence band (VB)
to Evac respectively. Note that in contrast to the established
convention and the description given here, inDriftfusionΦEA

and ΦIP are input and stored as negative values for consis-
tency with other energetic properties referenced using the
electron energy scale. The electronic band gap Eg of the
material can be defined as

Eg = ΦIP − ΦEA. (1)

3.1.1 The vacuum energy

The vacuum energy Evac is defined as the energy at which an
electron is free of all forces from a solid [28]. Spatial changes
in the electrostatic potential V are therefore reflected in Evac

such that, at any point in space,

Evac(x, t) = −qV (x, t), (2)

where q is the elementary charge.
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a b c d

Fig. 2 Semiconductor energy levels. a An intrinsic semiconductor
material showing the vacuum level Evac, electron affinity ΦEA, ion-
isation potential ΦIP, conduction and valence band energies ECB and
EVB, band gap Eg, equilibrium Fermi energy EF0 and electron and hole

quasi-Fermi levels EFn and EFp. bA p-type material: EF0 lies closer to
the VB due to acceptor impurities adding holes to the VB. c An n-type
material: EF0 lies closer to the CB as donor impurities increase the CB
electron density. d An intrinsic layer under external bias

3.1.2 Conduction and valence band energies

The conduction and valence band energies ECB and EVB are
defined as the difference between the vacuum energy and
ΦEA and ΦIP, respectively, such that

ECB(x, t) = Evac(x, t) − ΦEA(x), (3)

EVB(x, t) = Evac(x, t) − ΦIP(x). (4)

The band energies, then, include both the energy associated
with the molecular orbitals of the solid and the electrostatic
potential arising from the existence of charge bothwithin and
external to the material.

3.2 Electronic carrier densities and quasi-Fermi
levels

3.2.1 The occupation probability distribution function and
electronic equilibrium carrier densities

At equilibrium the net exchange of mass and energy into and
out of, as well as between different locations within a system
is zero. Under these conditions the average probability f
that an electron will occupy a particular state of energy E at
equilibrium in a semiconductor at temperature T is given by
the Fermi-Dirac (F-D) distribution function,

f (E, EF0, T ) =
(
e

E−EF0
kBT + 1

)−1

, (5)

where kB is Boltzmann’s constant. The equilibrium Fermi
energy EF0 defines the energy at which a hypothetical
electronic state has a 50% probability of occupation. At equi-
librium, and for V = 0, the Fermi energy is identical to the
chemical potential of the material. For an intrinsic semicon-
ductor, EF0 lies close to the middle of the gap. Where the
semiconductor is p-type, dopant atoms accept electrons from

the bands, shifting EF0 towards the valence band (Fig. 2b).
Similarly, where the semiconductor is n-type, dopants donate
electrons to the bands, shifting EF0 towards the conduction
band (Fig. 2c). Note that herein the subscript ‘0’ denotes the
value or expression of properties at equilibrium e.g. ECB,0

is the conduction band energy at equilibrium.2

To obtain the density of free electrons in the conduction
band n, the product of the probability distribution function
and the conduction band density of states (DOS) function
gCB is integrated across energies above the conduction band
edge ECB :

n0 =
∫ ∞

ECB,0

gCB(E) f (E, EF0, T )dE . (6)

Similarly, to obtain the density of free holes in the valence
band p, the product of the average probability that an electron
is not at energy E (i.e. (1 − f )) with the valence band DOS
function gVB is integrated across all energies up to the valence
band edge EVB:

p0 =
∫ EVB,0

−∞
gVB(E)(1 − f (E, EF0, T ))dE . (7)

For semiconductormaterials, gCB and gVB are typicallymod-
elled as parabolic functions with respect to electron energy
at energies close to the band edges. Specifically, gCB =
4π(2m∗

e/h
2)3/2(E−ECB) and gVB = 4π(2m∗

h/h
2)3/2(EVB−

E), where m∗
e and m∗

h are the effective electron and hole
masses and h is Planck’s constant. Unfortunately, closed-
form solutions cannot be found to Eqs. 6 and 7 using the
parabolic band approximation and the F-D distribution func-
tion (Eq. 5). Hence, we use Blakemore’s approximation [33]
to the above integrals to obtain closed-form expressions for
the equilibrium carrier densities:

2 It follows that ECB,0 is only dependent on position, while ECB is also
time-dependent.
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n0(x) = NCB(x)

(
e

ECB,0(x)−EF0(x)
kBT + γ

)−1

, (8)

p0(x) = NVB(x)

(
e

EF0(x)−EVB,0(x)
kBT + γ

)−1

, (9)

where NCB and NVB are the temperature-dependent3 effec-
tive density of states (eDOS)4 of the conduction and valence
bands, respectively. γ is a constant defining how close the
approximation is to the Boltzmann regime (note that Eqs. 8
and 9 reduce to the Boltzmann approximation for γ = 0).
Following Farrell et al., we set γ = 0.27 by default for
ordered materials [34]. This results in a close agreement to
F-D statistics for EVB − 1.3kBT < EF0 < ECB + 1.3kBT ,
such that degenerate semiconductor states are permissible
within the scope of the model.

3.2.2 Equilibrium Fermi levels in dopedmaterials

In charge-neutral n-type materials the equilibrium electron
density is approximately equal to the density of donor dopant
atoms such that n0 ≈ ND. Similarly in p-type materials,
p0 ≈ NA, where NA is the density of acceptor dopants.
In Driftfusion users input values for EF0 for each material
layer and the corresponding equilibrium carrier and doping
densities, n0, p0, ND, and NA are calculated during creation
of the device parameters object (see Sect. 4.2) according to
Eqs. 8 and 9.

The equilibrium carrier densities n0 and p0 and
Fermi levels EF0 for individual material layers are
calculated and stored as a function of position in the
device structures dev and dev_sub of the device
parameters object par. See Sect. 4.2.5 for further
details.Note thatwhen thematerial layerswith differ-
ent equilibriumFermi levels are brought into contact,
n0, p0, and EF0 become position-dependent owing to
the creation of a space charge regions and associated
electric fields.

3.2.3 Quasi-Fermi levels

A key approximation in semiconductor physics is the
assumption that, under the application of an external opti-
cal or electrical bias, the electron and hole populations at any
particular location can be treated separately, with individ-
ual distribution functions and associated quasi-Fermi levels

3 For simplicity, the temperature-dependence of NCB and NVB has been
omitted from the equations herein and it should further be noted that
this temperature dependence is not explicitly dealt with in this release
of Driftfusion.
4 NCB = 2(2πm∗

e kBT /h2)3/2 and NVB = 2(2πm∗
hkBT /h2)3/2

(QFLs), EFn and EFp (Fig. 2d). This is permitted because
the thermal relaxation of carriers to the band edges is typi-
cally significantly faster than interband relaxation, resulting
in quasi-equilibrium states for each carrier population [28].
Under these circumstances a similar approach to that taken
for the true equilibrium state can be used to derive expres-
sions for the QFLs,

EFn(x, t) = ECB(x, t) + kBT ln

(
n(x, t)

NCB(x)
− γ

)
, (10)

EFp(x, t) = EVB(x, t) − kBT ln

(
p(x, t)

NVB(x)
− γ

)
. (11)

It can be helpful to conceptualise the QFLs as the sum of
the electrostatic (−V ) and average chemical potential energy
(kBT ln(n/NCB−γ )−ΦEA for electrons,−kBT ln(p/NVB−
γ ) − ΦIP for holes) components of the carriers at each loca-
tion. It follows that the gradient of the QFLs provides a
convenient way to determine the direction of the current
since, from the perspective of the electron energy scale, elec-
trons move ‘downhill’, and holes move ‘uphill’ in response
to electrochemical potential gradients. Moreover, the elec-
tron and hole currents, Jn and Jp, can be expressed in terms
of the product of the electron and hole QFL gradients with
their corresponding carrier conductivities, σn and σp, such
that

Jn(x, t) = σn

q

dEFn(x, t)

dx
, (12)

Jp(x, t) = σp

q

dEFp(x, t)

dx
. (13)

Here, the conductivities are the product of the electronic
carrier mobilities, μn and μp, with their corresponding con-
centrations and the elementary charge:

σn(x, t) = qn(x, t)μn(x), (14)

σp(x, t) = qp(x, t)μp(x). (15)
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The band energies, Ecb and Evb and electron and
hole QFLs, Efn and Efp can be calculated from
a Driftfusion solution structure, sol by using the
function:

[Ecb ,Evb ,Efn ,Efp] =...
dfana.calcEnergies(sol)

The energies are output as two dimensional matrices
for which the dimensions are [time, space].
Please refer to Table S.3 for a complete list
of Driftfusion variable names and their corre-
sponding symbols. For further details on the
dfana.my_calculation syntax used in this
section see Sect. 4.7.

3.2.4 Open circuit voltage

The open circuit voltage VOC is themaximum energy per unit
charge that can be extracted froman electrochemical cell for a
given charge state at open circuit. The VOC can be calculated
using the difference in the electron QFL at the location of
the cathode (xcathode) and the hole QFL at the location of the
anode (xanode) with the cell at open circuit,

qVOC(t) = EFn(xcathode, t) − EFp(xanode, t). (16)

The open circuit voltage can be output using the com-
mand:

Voc = dfana.calcDeltaQFL(sol_OC)

Here, sol_OC is an open circuit solution obtained
either by applying Vapp = VOC or approximated by
setting the external series resistance RS to a high
value (e.g. 1 M� cm2) using the lightonRs pro-
tocol (see Section 4.4 for further information on
protocols).

3.3 Poisson’s equation

Poisson’s equation (deriving from Gauss’s Law) relates the
electrostatic potential to the space charge density ρ and the
relative dielectric constant of the medium εr via the Diver-
gence Theorem. The space charge density is the sum of the
mobile and static charge densities at each spatial location.
Doping is simulated via the inclusion of fixed charge den-
sity terms for ionising donor and acceptor atoms. In this
release of Driftfusion mobile ionic carriers are modelled as

Schottky defects [35] for which every ion has an oppositely
charged counterpart, maintaining overall ionic defect charge
neutrality within the device.5 The mobile cation density c
is initially balanced by a uniform static counter-ion density
Ncat and the mobile anion density a is similarly balanced
by a static density Nani. For the one-dimensional system
described, Poisson’s equation can be explicitly stated as

∂2V (x, t)

∂x2
= − ρ(x, t)

ε0εr (x)

= − q

ε0εr (x)
(p(x, t) − n(x, t) + ND(x) − NA(x) + ...

zcc(x, t) + zaa(x, t) − zcNcat(x) − zaNani(x)), (17)

where ε0 is the permittivity of free space. We emphasise that
p, n, c, and a represent mobile species, while NA, ND, Ncat

and Nani are static ion densities. zc and za are the integer
charge states for the ionic species (by default zc = 1, and
za = −1).

Terms can easily be added or removed fromPoisson’s
equation by editing the S_V term in the Equation
Editor in dfpde subfunction of the core df code.
See Sect. 4.5 and Listing 1 for further details.

The space charge density rho can be output from
a Driftfusion solution structure sol using the com-
mand:

rho = dfana.calcrho(sol , mesh_option)

rho is output as a two dimensional matrix
for which the dimensions are [time, space].
mesh_option determines whether the space
charge density is requested on the whole interval
(‘whole’) or subinterval (‘sub’) spatial mesh
(see Subsect. 4.2.3).

3.4 Charge transport: Drift and diffusion

As the name suggests, the drift-diffusion (Poisson–Nernst–
Planck) model assumes that charge transport within semi-
conductors is driven by two processes:

1. Drift arising from the Lorentz force on charges due to an
electric field F , where F = −dV /dx .

5 For clarity only charge neutrality of the Schottky defect terms is guar-
anteed, this does not include the contribution from dopant atoms, which
may not be compensated by electronic carriers in regions where an elec-
tric field is present.
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2. Diffusion arising from the entropic drive for carriers to
move from regions of high to low concentration.

3.4.1 Bulk transport

Within the bulk of material layers the expressions for the
flux density of electrons jn , holes jp, anions ja , and cations
jc with mobility μy and diffusion coefficient Dy (where y
denotes a generic charge carrier) are given by

jn(x, t) = −μn(x)n(x, t)F(x, t) − Dn(n, x)
∂n(x, t)

∂x
,

(18)

jp(x, t) = μp(x)p(x, t)F(x, t) − Dp(p, x)
∂ p(x, t)

∂x
,

(19)

jc(x, t) = μc(x)zcc(x, t)F(x, t) − Dc(c, x)
∂c(x, t)

∂x
,

(20)

ja(x, t) = μa(x)zaa(x, t)F(x, t) − Da(a, x)
∂a(x, t)

∂x
.

(21)

Figure S.1 illustrates how the directions of electron and hole
flux densities are determined from gradients in the electric
potential and charge carrier densities. An analogous diagram
can be drawn for mobile ionic species by substituting cations
for holes and anions for electrons. The carrier (particle) cur-
rents are calculated as the product of the flux densities with
the specific carrier charge qzy such that Jy = qzy jy .

The electric field calculated from the gradient of the
potential (FV) and by integrating the space-charge
densitya (Frho) can be obtained from a Driftfusion
solution structure sol using the syntax:

[FV, Frho] = dfana.calcF(sol , mesh_option)

FV and Frho are output as a two dimensional
matrices for which the dimensions are [time,
space]. mesh_option determines whether the
electric field is requested on the whole interval
(‘whole’) or subinterval (‘sub’) spatial mesh
(see Subsect. 4.2.3).

a − dV /dx is used to obtain the boundary values

3.4.2 Diffusion enhancement

The implementation of electronic carrier statistics beyond
the Boltzmann approximation (Sect. 3.2.1) necessitates the
inclusion of a generalised Einstein relation to define the rela-

tionship between the carrier mobilities and diffusion coeffi-
cients as a function of band state occupancy [34]. The result
is a nonlinear diffusion enhancement as the QFLs approach
andmove into the bands. Under Blakemore’s approximation,
[33] the diffusion coefficient-mobility relationships for elec-
trons and holes can be expressed using the closed-forms

Dn(n, x) = kBT

q
μn(x)

(
NCB(x)

NCB(x) − γ n(x, t)

)
, (22)

Dp(p, x) = kBT

q
μp(x)

(
NVB(x)

NVB(x) − γ p(x, t)

)
. (23)

We use similar expressions to those above for the ionic car-
riers from a model proposed by Kilic et al. [36] to account
for steric effects at high ion densities:

Dc(c, x) = kBT

q
μc(x)

(
cmax (x)

cmax (x) − c(x, t)

)
, (24)

Da(a, x) = kBT

q
μa(x)

(
amax (x)

amax (x) − a(x, t)

)
. (25)

Here, amax and cmax denote the limiting anion and cation
densities. In the first instance these are set to the lattice cite
density for the corresponding ions.

3.4.3 Transport across heterojunctions

At the interface between two different semiconductor mate-
rials there is a change in the band energies and electronic
density of states. In Driftfusionwe choose to model the mix-
ing of states at the interface using a smooth transition in
material properties over a discrete interlayer region, in con-
trast to the commonly employed abrupt interfacemodel6 (see
Fig. 4 for a schematic illustrating the difference between the
two models). To accommodate this approach, Eqs. 18 and
19 are modified to include additional gradient terms for spa-
tial changes in ΦEA, ΦIP, NCB, and NVB. This leads to an
adapted set of flux equations for electrons and holes within
the interfaces [37]:

jn(x, t) = μn(x, t)n

(
−F(x, t) − ∂ΦEA(x)

∂x

)

−Dn(n, x)

(
∂n(x, t)

∂x
− n(x, t)

NCB(x)

∂NCB(x)

∂x

)
,

(26)

jp(x, t) = μp(x, t)p

(
F(x, t) + ∂ΦIP(x)

∂x

)

−Dp(p, x)

(
∂ p(x, t)

∂x
− p(x, t)

NVB(x)

∂NVB(x)

∂x

)
.

(27)

6 We note that while either model may be closer in one or more aspects
to the real situation, both lack a comprehensive quantum mechanical
treatment.
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Values of between1 and2nmhavebeen extensively tested for
the interfacial region thickness and are used in the example
parameter files accompanying Driftfusion. By default, ΦEA

and ΦIP are graded linearly, while NCB and NVB are graded
exponentially within the interfacial regions.

The transport equations of Driftfusion can be edited
using the carrier flux termsF_n,F_p,F_c, and F_a
of the Equation Editor in the dfpde subfunction of
the core df code. See Sect. 4.5 for further details.

3.4.4 Displacement current

The displacement current Jdisp, as established in the
Maxwell-Ampere law, is the rate of change of the electric
displacement field, ∂D/∂t . In terms of the electric field the
displacement current can be expressed as

Jdisp(x, t) = ε0εr (x)
∂F(x, t)

∂t
. (28)

3.4.5 Total current

The total current, J is the sum of the individual current com-
ponents at each point in space and time such that

J (x, t) = Jn(x, t)+Jp(x, t)+Ja(x, t)+Jc(x, t)+Jdisp(x, t).

(29)

Fluxes and currents are calculated from the Driftfu-
sion solution structure sol using the command:

[J, j, xout] = dfana.calcJ(sol , mesh_option)

J is a structure containing the individual carrier
particle currents J.n, J.p, J.c, and J.a, the dis-
placement current J.disp, and the total current
J.tot at each spatial location and time calculated
by integrating the continuity equations. j is a struc-
ture containing the corresponding carrier and total
fluxes. mesh_option determines whether the cur-
rents and fluxes are requested on the whole interval
(’whole’) or subinterval (’sub’) spatial mesh
(see Subsect. 4.2.3). The choice of mesh output as
xout.

3.4.6 Validity criteria for the drift-diffusion approach

The drift-diffusion approach is valid for semiconductormate-
rials that satisfy the following criteria [28]:

Fig. 3 Continuity of electrons within a semiconductor. Schematic illus-
trating the principle of continuity for electrons in a thin slab of material
dx . A difference in the incoming and outgoing flux density jn , gener-
ation gn , and recombination rn of electrons results in changes in the
electron concentration over dx (Eq. 31). The conduction and valence
band energies are denoted ECB and EVB, respectively. Electrons are
represented by solid blue circles and holes by open red circles. Figure
concept adapted fromRef. [38]

1. The electron and hole populations are at quasi-thermal
equilibrium.

2. The electron and hole population temperatures are the
same as that of the atomic lattice.

3. Changes in state occupancy are more likely to be due to
scattering collisions within a band than generation and
recombination events between bands or trapping events.

4. The electron and hole states can be described by a quan-
tum number, k.

5. The mean free path length of carriers, L̄ is significantly
shorter than the layer thickness, d (L̄ << d).

3.5 Charge continuity

The continuity equations are a set of ‘book-keeping’ equa-
tions, based on the conservation of charge, describing how
charge carrier densities change in time at each locationwithin
a system. In one-dimension, the continuity equation for a
generic carrier y with flux density jy , and source/sink term
Sy can be expressed as

∂ y(x, t)

∂t
= −∂ jy(x, t)

∂x
+ Sy(x, t). (30)

For electronic carriers, S is composed of two components; 1.
Generation g of carriers by both thermal and photo excitation
and; 2. Recombination r of carriers through radiative (pho-
ton emission) andnon-radiative pathways. Figure3 illustrates
the principle of continuity: changes in the electron concen-
tration with time within a thin slab dx are determined by the
generation, recombination, and difference in incoming and
outgoing flux density of carriers.

Where chemical reactions take place within devices, addi-
tional generation and recombination terms for carriers may
also contribute to S. In the current version of Driftfusion,
mobile ionic charge carriers are treated as inert such that
gc = ga = rc = ra = 0. Users are, however, free to edit the
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default source terms using the Equation Editor (Sect. 4.5).
A guide describing how to do this is included in the Supple-
mental Information Section S.6.

In one-dimension the continuity equations for electrons,
holes, cations and anions are given by

∂n(x, t)

∂t
= −∂ jn(x, t)

∂x
+ gn(x, t) − rn(x, t), (31)

∂ p(x, t)

∂t
= −∂ jp(x, t)

∂x
+ gp(x, t) − rp(x, t), (32)

∂c(x, t)

∂t
= −∂ jc(x, t)

∂x(x, t)
+ gc(x, t) − rc(x, t), (33)

∂a(x, t)

∂t
= −∂ ja(x, t)

∂x
+ ga(x, t) − ra(x, t). (34)

Equation 17 and Eqs. 31–34 then form the complete set of
equations to be solved.

3.5.1 Steady-state approximation to electronic carrier
densities and fluxes within the interfacial regions

To better understand the discrete interface model employed
by Driftfusion we solve the electron and hole continuity
equations (Eqs. 26, 27, 31 and 32) to obtain analytical expres-
sions for the electronic carrier densities within the discrete
interfacial regions using the following approximations and
assumptions:

1. Carriers within an interface are at steady-state with
respect to the surroundings layers (dn/dt = 0, dp/dt =
0).

2. There is no optical generation within the interface (g =
0).

3. The electric field canbe treated as approximately constant
throughout the interfacial region (dF/dx = 0).

4. The recombination rate r within the interfacial region is
constant and distributed uniformly.

5. The electron and holeQFLs remainwithin theBoltzmann
regime (ECB − EFn > 3kBT and EFp − EVB > 3kBT )

As detailed in the Supplemental Information Section S.3.1,
using the boundary conditions n(xn = 0) = ns, p(xp =
0) = ps, jn(xn = 0) = jn,s , and jp(xp = 0) = jp,s (see
Fig. 4b), the following expressions can be obtained for the
carrier densities within the interfacial regions:

n(xn) = nse
αxn + jn,s

kBTαμn
(1 − eαxn ) −

r

kBTα2μn
(1 − eαxn + αxn), (35)

a b

Fig. 4 Schematic of carrier densities at (a) abrupt and (b) discrete
interfacemodels. ns and ps are the boundary electron and hole densities,
while jn,s and jp,s are the boundary fluxes. The pure exponential change
in hole density, p(x) across the interfacial region (b) implies the hole
mobility is large such that the jp,s and r terms in Eq. 36 are negligible.
By contrast, the curvature in the logarithm of the electron density, n(x)
profile indicates that the jn,s and r terms in Equation 35 are of a similar
order to the ns term close to x1. The red, yellow and blue regions
indicate Material 1 (p-type), Interface, and Material 2 (n-type) layers,
respectively. xn and xp are the translated position (x) co-ordinates

p(xp) = pse
βxp + jp,s

kBTβμp
(1 − eβxp ) −

r

kBTβ2μp
(1 − eβxp + βxp), (36)

where,

α = − 1

kBT

(
∂ΦEA(xn)

∂xn
− q

∂V

∂xn

)
+ 1

NCB(xn)

∂NCB(xn)

∂xn
,

(37)

β = 1

kBT

(
∂ΦIP(xp)

∂xp
− q

∂V

∂xp

)
+ 1

NVB(xp)

∂NVB(xp)

∂xp
.

(38)

The corresponding fluxes are given by

jn(xn) = jn,s − r xn, (39)

jp(xp) = jp,s − r xp. (40)

As illustrated in Fig. 4b, the translated co-ordinates xn and xp
are taken to be in the direction for which α and β are negative
and typically the direction for which carrier densities decay.

Example solutions comparing the analytical approxima-
tions to numerical solutions calculated using Driftfusion
under different transport and recombination regimes are
given in the Supplemental Information, Section S.3.2.Where
transport is a limiting factor within the interfaces the solu-
tions become strongly dependent on the boundary flux and
recombination rates. It is noteworthy however that in the lim-
iting case of infinitely fast transport (μn,p → ∞) Equations
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35 and 36 converge towards purely exponential forms for
which the carrier densities change by a Boltzmann factor
(Δn = NCBeαdint and Δp = NVBeβdint ) across the width of
the interface dint. For the special case where F = 0, the result
is a change in carrier densities equivalent to that expected
from an abrupt interface model using Boltzmann statistics.
The results presented in this section are applied in Sect. 3.7.3
to the interfacial volumetric surface recombination model.

3.6 Electronic carrier generation

Two optical models for electronic carrier generation are cur-
rently available for use inDriftfusion; uniform generation for
which a uniform volumetric generation rate g0 is defined for
each layer (excluding interfacial regions) and; Beer–Lambert
law generation as described below. Irrespective of the choice
of opticalmodel the generation rate is zeroedwithin the inter-
facial regions to avoid potential stability issues.

3.6.1 Beer–Lambert law generation

The Beer–Lambert law models the photon flux density as
falling exponentially within a material with a characteris-
tic photon energy-dependent absorption coefficient αabs. The
volumetric generation rate g, over a range of photon energies
Eγ with incident photon flux density ϕ0, is given by the inte-
gral across the spectrum,

g(x) = (1 − κ)

∫ ∞

0
αabs(Eγ , x)ϕ0(Eγ ) exp(−αabs(Eγ , x)x) dEγ ,

(41)

where κ is the reflectance. For simplicity, we assume that a
single electron-hole pair is generated by a single photon.

3.6.2 Arbitrary generation profiles

An arbitrary generation profile can be inserted following cre-
ation of the parameters object for users who wish to use
profiles calculated from different models using an external
software package. Details on how to do this are given in Sect.
4.2.7.

3.7 Recombination

By default, two established models for recombination are
included in Driftfusion: band-to-band recombination and
trap-mediated Shockley-Read-Hall (SRH) recombination.
Figure 5 is a simplified energy level schematic illustrating
these mechanisms. The recombination expressions can be
modified in the source terms of the Equation Editor (Sect.
4.5).

Fig. 5 Schematic of different recombination mechanisms in a hole
transport layer (HTL)-Absorber-electron transport layer (ETL) device.
Figure adapted from Ref [16]

3.7.1 Band-to-band recombination

The rate of band-to-band recombination rbtb (also commonly
termed direct, radiative or bimolecular recombination) is pro-
portional to the product of the electron and hole densities at
a given location such that

rbtb(x, t) = B(x)(n(x, t)p(x, t) − ni(x)
2), (42)

where B is the band-to-band recombination rate coefficient.
The n2i term is equivalent to including an expression for ther-
mal generation and ensures that np ≥ n2i at steady-state.

3.7.2 Shockley-Read-Hall recombination

Recombination via trap states is modelled using a simpli-
fied SRH recombination [39] expression rSRH for which the
capture cross section, mean thermal velocity of carriers, and
trap density are collected into SRH time constants, τn,SRH

and τp,SRH for electrons and holes, respectively,

rSRH(x, t)

= n(x, t)p(x, t) − ni(x)
2

τn,SRH(x)(p(x, t) + pt(x)) + τp,SRH(x)(n(x, t) + nt(x))
.

(43)

Here, nt and pt are parameters that define the dependence of
the recombination rate on the trap level and are given by the
electron and hole densities when their respective QFLs are
at the position of the trap energy Et ,

nt = NCB

(
e

( −ΦEA−Et
kBT

)
+ γ

)−1

, (44)
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pt = NVB

(
e

(
Et+ΦIP
kBT

)
+ γ

)−1

. (45)

It should be noted that Eq. 43 is valid only when trapped
carriers are in thermal equilibrium with those in the bands.
It follows that the rate of trapping and de-trapping of car-
riers is assumed to be fast compared to the timescale being
simulated, such that the approximation is reasonable. In the
current version of Driftfusion we also assume that the quan-
tity of trapped carriers is negligible compared to that of the
free carriers such that trapped carriers can be neglected in
Poisson’s equation.

The volumetric recombination rate can be obtained
from a Driftfusion solution structure using the com-
mand:

r = dfana.calcr(sol , mesh_option)

rr is a structure " r.btb, r.srh, r.vsr, and
r.tot in which the band-to-band, SRH, volumet-
ric surface recombination (VSR, see below) and the
total recombination rates are stored as two dimen-
sionalmatriceswith dimensions[time, space].
mesh_option determines whether the recombi-
nation rates are requested on the whole interval
(’whole’) or subinterval (’sub’) spatial mesh
(see Subsect. 4.2.3).

The recombinationmodels used in the simulation can
be edited using the carrier source terms S_n, S_p,
S_c, and S_a in the Equation Editor in dfpde sub-
function of the core df code. Note that the models
used in dfana must also be updated in accordance
with any changes to dfpde as these functions are
not coupled. See Sect. 4.5 for further details.

3.7.3 Surface recombination at interfaces

Abrupt interface models typically use a SRH surface recom-
bination model to determine the recombination flux, Rint

between majority carriers ns and ps at the interface between
two materials (see Fig. 4a) such that [20]

Rint(t) = ns(t)ps(t) − n2i
1
sn

(ps(t) + pt) + 1
sp

(ns(t) + nt)
. (46)

Here, sn and sp are the surface recombination velocities for
electrons and holes at the interface. This model implies that
the electron and hole populations in the two materials have

delocalised wave functions that overlap significantly such
that recombination events are probable.

SinceDriftfusion uses discrete interfacial regions, in order
to obtain an equivalent recombination flux to the abrupt inter-
face model, we convert Eq. 46 into a volumetric surface
recombination rate rvsr by distributing the recombination uni-
formly across a zone of thickness, dvsr within the interface
(see Figure S.4), such that rvsr = Rint/dvsr. By default the
recombination zone is automatically located next to the inter-
face with the highest minority carrier density at equilibrium.
To obtain an expression for rvsr, Eqs. 35 and 36 can be rear-
ranged to express ns and ps in terms of n(xn) and p(xp) to
yield

ns = e−αxn

(
n(xn) − jn,s

kBTαμn
(1 − eαxn ) + ...

r

kBTα2μn
(1 − eαxn + αxn)

)
, (47)

ps = e−βxp

(
p(xp) − jp,s

kBTβμp
(1 − eβxp ) + ...

r

kBTβ2μp
(1 − eβxp + βxp)

)
. (48)

For sufficiently high values of μn , and μp the n(xn) and
p(xp) terms dominate Eqs. 47 and 48 and the carrier density
profiles within the interfaces tend towards purely exponential
functions, such that ns ≈ n(xn)e−αxn and ps ≈ p(xp)e−βxp .
In many instances it is then sufficient to approximate the vol-
umetric surface recombination rate within the recombination
zone as

rvsr(x, t)

= n(x, t)e−αxn p(x, t)e−βxp − n2i
τn,vsr(p(x, t)e−βxp + pt) + τp,vsr(n(x, t)e−αxn + nt)

,

(49)

where α and β are given in Eqs. 37 and 38, and the dvsr term
is subsumed into the volumetric surface recombination time
constants, τn,vsr and τp,vsr such that

τn,vsr = dvsr
sn

, (50)

τp,vsr = dvsr
sp

. (51)

We stress here that this is not a physically motivated
model in the sense that we do not anticipate recombina-
tion to be distributed uniformly throughout a recombination
zone in reality. This approach does however result in a good
approximation to the established abrupt interface surface
recombination model for a wide variety of devices and con-
ditions (see Sect. 5.4).
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The volumetric surface recombination model can
be toggled on and off by using the property
par.vsr_mode. Where par.vsr_mode = 1,
Et and the ni, nt and pt terms are set to constant and
calculated from the energy level values defined for
the interfacial regions. This ensures that rvsr remains
approximately constant throughout the recombina-
tion zone. Where par.vsr_mode = 0, the stan-
dard bulk SRH expression in Eq. 43 is assumed. In
this case Et is graded linearly and ni, nt and pt are
graded exponentially.

The assumptions used in the derivation of Eq. 49
breakdown when the transport within the interface
is limited or where recombination fluxes are particu-
larly high (see Section S.3). Since both the flux and
recombination terms in Eqs. 47 and 48 are unknowns
without well-defined limits, Driftfusion performs a
check for self-consistency directly following calcu-
lation of the solution when VSR mode is switched
on: the function compare_rec_flux calculates
the sum of the interfacial recombination fluxes using
the values of ns and ps from the solution and the
SRH model given in Eq. 46. This sum is compared
to that of the integrated recombination rate calculated
using the VSR model (Eq. 49) across all interfaces.
If the fractional difference in the two calculations is
greater than par.RelTol_vsr for fluxes above
par.AbsTol_vsr a warning is displayed. In such
cases users could consider increasing the electronic
carrier mobilities within the interfacial regions or
reducing the recombination coefficients.

3.8 Initial conditions

At present two sets of initial conditions are used in Driftfu-
sion, dependent on the number of layers. These conditions
are designed to be consistent with the boundary conditions
and to minimise the error in the space charge density at junc-
tions which can lead to large electric fields and convergence
failure when solving for the equilibrium conditions.

3.8.1 Single layered devices

A linearly varying electrostatic potential and exponentially
varying electronic carrier densities over the layer thickness d
are used as the initial conditions (Eqs. 53, 54, and 52) when
simulating a single layer. Uniform ionic carrier density pro-

files are used throughout the layer to guarantee ionic defect
charge neutrality (Eqs. 56 and 55).

V (x) = x

d
Vbi , (52)

n(x) = n0,l exp

(
ln

(
n0,r
n0,l

)
x

d

)
, (53)

p(x) = p0,l exp

(
ln

(
p0,r
p0,l

)
x

d

)
, (54)

c(x) = Ncat(x), (55)

a(x) = Nani(x). (56)

Here, the built-in potential Vbi of the device is determined by
the difference in boundary electrode workfunctions Φl and
Φr ,

qVbi = Φr − Φl . (57)

3.8.2 Multilayered devices

For multilayered devices the electrostatic potential is set
to fall uniformly throughout the device (Eq. 58), while the
electronic carrier densities are chosen to be the equilibrium
densities for the individual layers (n0 and p0). As with the
single layers, the ionic carriers are given a uniform density
(Eqs. 59–61), guaranteeing local electro-neutrality.

V (x) = x

ddev
Vbi , (58)

n(x) = n0(x), (59)

p(x) = p0(x), (60)

c(x) = Ncat(x), (61)

a(x) = Nani(x). (62)

Here, the device thickness ddev is the sum of the individual
layer thicknesses di (ddev = ∑

i di ). Driftfusion auto-detects
the number of layers in the device and uses the appropriate
set of initial conditions when running the equilibrate
protocol to obtain the equilibrium solutions for the device
(Sect. 4.3).

The initial conditions of the simulation can be edited
in the dfic subfunction of the core df code. See
Sect. 4.5 for further details.

3.9 Boundary conditions

Solving Eq. 17 and Eqs. 31–34 requires two constants of
integration for each variable, which are provided by the sys-
tem boundary conditions. For the charge carriers, Neumann
(defined-flux value) conditions are used to set the flux den-
sity into and out of the system. The electrostatic potential
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uses Dirichlet conditions (defined-variable value) such that
the potential is fixed at both boundaries at each point in time
as detailed in Sect. 3.9.1. The details of these boundary con-
ditions are discussed in the following subsections.

3.9.1 Electrostatic potential boundary conditions

In Driftfusion the electrostatic potential at the left-hand
boundary is set to zero (Eq. 63) and used as the reference
potential. The applied electrical bias Vapp minus the poten-
tial drop across the external series resistance VRs is applied
to the right-hand boundary as described in Eq. 64.

Vl(t) = 0, (63)

Vr (t) = Vbi − Vapp(t) + VRs(t). (64)

Here, Ohm’s law is used to calculate VRs from the electron
and hole flux densities,

VRs(t) = q( jp,r (t) − jn,r (t))Rs, (65)

where Rs is the area-normalised series resistance, given
by the product of the external series resistance and the
device active area. Setting Rs to a relatively high value (e.g.
Rs = 106 � cm2) approximates an open circuit condition
for devices with metal electrodes. Technically this can be
achieved using the lighton_Rs protocol (see Sect. 4.4 for
a description of protocols).7

The boundary conditions of the simulation can be
edited in the dfbc subfunction of the core df code.
See Sect. 4.5 for further details.

The function generator fun_gendefines the applied
potential Vapp as a function of time, which can
be recalculated from a Driftfusion solution structure
sol using the command:

Vapp = dfana.calcVapp(sol)

3.9.2 Carrier selectivity and surface recombination at the
system boundaries

Many architectures of semiconductor device, including solar
cells and LEDs employ selective contact layers that block
minority carriers from being extracted (or injected) via ener-
getic barriers. These are known variously as transport layers,

7 Note that at the time of writing this method is not stable for all input
parameter sets.

blocking layers, blocking contacts, or selective contacts. For
solar cells semiconductor layers are typically sandwiched
between two metallic electrodes constituted of metals or
highly-doped semiconductors. Such materials can be numer-
ically challenging to simulate owing to their high charge
carrier densities and thin depletion widths. Consequently, a
common approach is to use boundary conditions defining
charge carrier extraction and recombination flux densities
to simulate the properties of either the contact or electrode
material. It should be noted, however, that the employment of
fixed electrostatic potential boundary conditions (as defined
in Sect. 3.9.1) implies that the potential falls within the
discrete system and not within the electrodes. This approxi-
mation is only realistic for contact materials with vanishingly
small depletion widths (infinite interfacial capacitances) i.e.
metals and highly doped semiconductors. It follows that to
accurately simulate semiconductor contacts layers with finite
depletion regions these layers must also be included within
the discretised system.

For electronic carriers the surface recombination velocity
coefficients sn and sp determine the carrier extraction/recom-
bination rate at the boundaries of the system. For majority
carriers in solar cells, high values of sn and sp (e.g.> 107 cm
s−1 [40]) are advantageous for carrier extraction, while low
values imply poor contact extraction properties. For minority
carriers, high values of sn and sp are typically undesirable as
they imply high rates of surface recombination at the elec-
trode. In Driftfusion the expressions for electronic boundary
carrier flux densities, jn and jp are given by the typical first-
order equations

jn,l(t) = sn,l(nl(t) − n0,l), (66)

jp,l(t) = sp,l(pl(t) − p0,l), (67)

jn,r (t) = sn,r (nr (t) − n0,r ), (68)

jp,r (t) = sp,r (pr (t) − p0,r ), (69)

where n0,l , n0,r , p0,l , and p0,r are the equilibrium carrier
densities at the left (x = 0) and right-hand (x = ddev) bound-
aries, calculated using Eqs. 8 and 9 under the assumption
that the semiconductor QFLs are at the same energy as the
electrode Fermi energy, which is further assumed to remain
constant. Hence, for the left-hand boundary n0,l and p0,l are
given by Eqs. 70 and 71:
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n0,l = NCB

(
e

Φl−ΦEA
kBT + γ

)−1

, (70)

p0,l = NVB

(
e

ΦIP−Φl
kBT + γ

)−1

, (71)

where Φl is the left-hand electrode work function. Analo-
gous expressions are used for n0,r and p0,r at the right-hand
boundary. Extraction barriers can also be modelled with this
approach by including a term for the barrier energy in the
exponent of Eqs. 70 and 71. At present, however, quantum
mechanical tunnelling and image charge density models for
energetic barriers at the system boundaries are not accounted
for in Driftfusion.

3.9.3 Ionic carrier boundary conditions

In the simplest case, ionic carriers are confined to the device
and do not react at the electrode boundaries. This leads to
a set of zero flux density boundary conditions for mobile
anions and cations,

jc,l(t) = 0, (72)

ja,l(t) = 0, (73)

jc,r (t) = 0, (74)

ja,r (t) = 0. (75)

Where an infinite reservoir of ions exists at a systemboundary
(such as an electrolyte), aDirichlet boundary condition defin-
ing a constant ion density could alternatively be imposed.

This concludes our description of the physical models
employed in Driftfusion. In the following section the sys-
tem architecture and key commands are introduced as well
as a guide on how to get started with using Driftfusion.

4 System architecture and how to use
Driftfusion

Driftfusion is designed such that the user performs a lin-
ear sequence of simple procedures to obtain a solution.
The key steps are summarised in Fig. 6; following ini-
tialisation of the system, the user defines a device by
creating a parameters object containing all the individual
layer and device-wide properties; the equilibrium solutions
(soleq.el and soleq.ion) are then obtained for the
device before applying a voltage and light protocol, which
may involve intermediate solutions; Once a desired solution
(sol) has been obtained, analysis and plotting functions can
be called to calculate outputs and visualise the solutions.
Below, the principal functions are discussed in further detail.

Fig. 6 Flow diagram showing the key steps to obtain a solution. A key
to the box shapes is given in Fig. 7

4.1 Initialising the system: initialise_df

At the start of each MATLAB session,
initialise_df needs to be called from within the Drift-
fusion parent folder (not one of its subfolders) to add the
program folders to the file path and set plotting defaults. This
action must be completed before any saved data objects are
loaded into the MATLABworkspace to ensure that objects are
associated with their corresponding class definitions.
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Fig. 7 Flow diagram showing the key processes involved in building a parameters object

4.2 Defining device properties and creating a
parameters object: pc(file_path)

The parameters class, pc contains the default device prop-
erties and functions required to build a parameters object,
which we shall denote herein as par. The parameters
object defines both layer-specific and device-wide proper-
ties. Layer-specific properties must be a cell or numerical
array containing the same number of elements as there are
layers, including interface layers. For example, a three-
layer device with two heterojunctions requires layer-specific
property arrays to have five elements. Examples can be found
in the Input_files folder (see Sect. 4.2.1).

Figure 7 shows the processes through which the main
components of the parameters object are built; The user
is required to define a set of material properties for each
layer. The comments in pc describe each of the param-
eters in detail and give their units (also see Supplemen-
tal Information, Table S.3 for quick reference); Several
subfunctions (methods) of pc then calculate dependent
properties, such as the equilibrium carrier densities for exam-
ple, from the choice of probability distribution function
(prob_distro_function) and other user-defined prop-
erties. The treatment of properties in the device interfaces

is dealt with, and can be changed, using the device builder
build_device (see below).

4.2.1 Importing properties

Typically, themost important user-definable properties (Table
1) are stored in a .csv file, which is easily editable with a
spreadsheet editor such as LibreOffice. The file path to the
.csv file can then be used as an input argument for pc, for
example:

par = pc(‘Input_files/spiro_mapi_tio2 .csv ’);

This functionality allows the user to easily create and store
sets of key device parameters without editing pc. Default
values for properties set in the parameters class pc will be
overwritten by the values in the .csv file during creation
of the parameters object par. New properties defined in pc
can easily be added to the .csv file provided that they are
also included in import_properties, which tests to see
which properties are present in the text file and reads them
into the parameters objectwhere present. Following the prop-
erties read-in step performed by import_properties,
the number of rows in the layer_type column (see Sect.
4.2.2) is used for error checking all other entries to confirm
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Fig. 8 The computational spatial grid. Variables are solved for on the
subintervals while flux densities are calculated on the integer intervals.
Figure concept taken from Ref [41]

that properties have been defined for each discrete layer of the
system (this does not include the electrode rows, which
are pseudo-layers). To avoid potential incompatibility, any
new user-defined material properties defined in pc, which
have distinct values for each layer, should be included in the
.csv file and added to the list of importable properties in
import_properties, as well as build_device. An
example of how to do this is given in the Supplemental Infor-
mation, Sect. S.6.

4.2.2 Layer types

Layer types, set using the layer_type property, flag how
each layer should be treated. Driftfusion currently uses four
layer types:

1. ‘electrode’: A pseudo-layer which defines the
boundary properties of the system. These are not discrete
layers and do not appear in visualised outputs.

2. ‘layer’: A slab of semiconductor for which all prop-
erties are spatially constant.

3. ‘active’: As layer but flags the active layer of the
device. The number of the first layer designated ‘active’
is stored in the active_layer property and is used
for calculating further properties such as the active layer
thickness, d_active. Flagging the active layer proves
particularly useful when automating explorations.

4. ‘interface’: An interfacial region between two dif-
ferent material layers. The properties of the interface are
varied according to the specific choice of gradingmethod
as defined in build_device (see below). It is critical
that interfacial layers are included between material lay-
ers with different energy levels and eDOS values i.e. at
heterojunctions. See the included default input files for
examples of how to set up devices with heterojunctions.

4.2.3 Spatial mesh

The computational grid is divided into N intervals with N−1
subintervals, where the position of the subintervals is defined
by xi+1/2 = (xi+1 + xi )/2 for i = 1, 2, 3, ..., N − 1.
pdepe solves for the variable values ui+1/2 on the subin-

tervals (xi+1/2) and their associated flux densities ji on the
integer intervals (xi ) as illustrated in Fig. 8.

Owing to the use of a finite element discretisation scheme
the details of the spatial mesh in Driftfusion are of critical
importance to ensure fast and reliable convergence. In this
release of Driftfusion two types of spatial mesh are available:

1. ‘linear’: Linear piece-wise spacing
2. ‘erf-linear’: Mixed error function (bulk regions)-

linear (interfacial regions) piece-wise spacing

meshgen_xgenerates integer and subinterval spatialmeshes,
x and x_sub, respectively (see Fig. 8), based on the layer
thickness, the number of layer_points defined in
the device properties, and the xmesh_type. The solution
is interpolated for the integer grid points when generating
the output solution matrix sol.u (see Sect. 4.6). The prop-
erty xmesh_coeff controls the spread of points for regions
where an error function is used for point spacing i.e. layer
and active layer types: higher values result in higher point
densities close to the layer boundaries. In general we rec-
ommend using ‘erf-linear’ for devices with relatively
high ionic defect densities as, where ionic carriers are con-
fined, high point densities are required at the layer boundaries
to resolve the carrier distributions. Where the depletion of
ionic carriers extends into the bulk, xmesh_ceoff can be
reduced to increase the bulk point density.

4.2.4 Timemesh

pdepe uses an adaptive time step for forward time integra-
tion and solution output is interpolated for the user-defined
time mesh. Convergence of the solver is weakly dependent
of the user-defined time mesh interval spacing and strongly
dependent on the maximum time and the maximum allow-
able time step. These can be adjusted by changing the tmax
and MaxStepFactor properties of the parameters object
(see Sect. 4.2). The options for different time mesh types
(tmesh_type) are:

1. ‘linear’ or 1
2. ‘log 10’ or 2

Typically, the timemesh is changed frequently for intermedi-
ate solutions within protocols to accommodate the different
timescales on which carriers move. For example, in some
cases the ionic carriers may be frozen to obtain a stable short
timescale solution for the electronic carriers, before a second,
longer timescale, solution is calculatedwith the ionic carriers
mobile. Similarly the tmesh_type is adjusted dependent
on the voltage and light conditions. For example during a
J-V scan a linear time mesh is used in keeping with the linear
change in the applied voltage with time. In other instances a

123



Journal of Computational Electronics (2022) 21:960–991 977

Table 1 Key to properties contained in external .csv parameters files and their constraints

Column heading Description Options/range Units Section ref.

layer_type Layer type electrode, layer, active,
interface

– 4.2.2

material Chemical short-form name Materials contained within
./Libraries/Index_of_
Refraction_library.xls

– 4.2.7

thickness Layer thickness > 0 cm 4.2.3

layer_points Number of points in the layer ≥ 3 – 4.2.3

xmesh_coeff A parameter defining how densely the spatial
mesh points are concentrated at the
boundaries of the layer for xmesh_type
= ‘erf-linear’

> 0 – 4.2.3

Phi_EA Electron affinity1 – eV 3.1

Phi_IP Ionisation potential1 – eV 3.1

EF0 Equilibrium Fermi energy2,3 ≥Phi_IP, ≤Phi_EA eV 3.2.1

Et SRH trap energy level (single trap level model) ≥Phi_IP, ≤Phi_EA eV 3.7, 3.7.3

Nc Effective density of conduction band states > 0 cm−3 3.2.1

Nv Effective density of valence band states > 0 cm−3 3.2.1

Ncat Intrinsic Schottky defect density(mobile cations)
at equilibrium

<c_max cm−3 3.3

Nani Intrinsic Schottky defect density (mobile anions)
at equilibrium

<a_max cm−3 3.3

c_max Limiting mobile cation density >Ncat cm−3 3.4.2

a_max Limiting mobile anion density >Nani cm−3 3.4.2

mu_n Electron mobility ≥ 0 cm2 V−1 s−1 3.4

mu_p Hole mobility ≥ 0 cm2 V−1 s−1 3.4

mu_c Cation mobility ≥ 0 cm2 V−1 s−1 3.4

mu_a Anion mobility ≥ 0 cm2 V−1 s−1 3.4

epp Relative dielectric constant > 0 – 3.3

g0 Uniform generation rate ≥ 0 cm−3 s−1 3.6, 4.2.7

B Band-to-band recombination rate coefficient > 0 cm s−1 3.7.1

taun SRH electron lifetime > 0 s 3.7.2

taup SRH hole lifetime > 0 s 3.7.2

sn Electron surface recombination velocity2,4 > 0 cm s−1 3.7.3, 3.9

sp Hole surface recombination velocity2,4 > 0 cm s−1 3.7.3, 3.9

vsr_zone_loc Volumetric interfacial surface recombination
zone location

auto, L, C, R – 3.7.3

Red Layer colour red RGB triplet component 0 − 1 norm. –

Green Layer colour green RGB triplet component 0 − 1 norm. –

Blue Layer colour blue RGB triplet component 0 − 1 norm. –

optical_model Optical model uniform, Beer–Lambert – 3.6,4.2.7,3.6.1

xmesh_type Spatial mesh type linear, erf-linear – 4.2.3

side Illumination side left, right – –

N_ionic_species Number of mobile ionic species 0, 1 (cations), 2 (cations and anions) – –

1Note that contrary to convention, Phi_EA and Phi_IP take negative values for consistency with other energies referenced to the electron energy
scale. 2These properties are required for electrode pseudo-layers, but all other properties are ignored in these rows. 3For electrode layers,
entries for EF0 are stored in the parameters object (par) as the distinct properties Phi_left and Phi_right rather than as part of the EF0 array.
Phi_left and Phi_right take negative values for consistency with other energies referenced to the electron energy scale. 4 For electrode
layers, entries for sn and sp are stored in the parameters object (par) as the distinct properties sn_l, sn_r, sp_l, and sp_r rather than as part
of the sn and sp arrays
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logarithmicmesh is more appropriate in order to resolve time
periods over which the carrier time derivatives are larger.

4.2.5 The device structures

build_device and build_property are called
during creation of the parameters object to build two impor-
tant data structures, which we call the ‘device structures’:
dev, definedon the integer grid intervals (xi ), is used to deter-
mine the initial conditions only, while dev_sub, defined on
the subintervals (xi+ 1

2
), is used by the pdepe solver func-

tion. dev and dev_sub contain arrays defining all spatially
varying properties at every location within the device includ-
ing the interfacial regions. build_property enables the
user to specify different types of interface grading for each
property listed in build_device. At present there are four
generic grading option types:

1. ‘zeroed’: The value of the property is set to zero
throughout the interfacial region.

2. ‘constant’: The value of the property is set to be
constant throughout the interfacial region. Note that the
user must define this value in the .csv file.

3. ‘lin_graded’: The property is linearly graded using
the property values of the adjoining layers.

4. ‘exp_graded’: The property is exponentially
graded using the property values of the adjoining layers.

For the volumetric surface recombination scheme,
described in Sect. 3.7.3, we also introduce parameter-specific
grading schemes for the VSR time constants:

1. ‘taun_vsr’: Sets τn,vsr according to Eq. 50.
2. ‘taup_vsr’: Sets τp,vsr according to Eq. 51.

The interface grading type for each property is set in the
build_device function e.g. the default grading type for
the electron affinity is ‘lin_graded’.

Dependent on the choice of grading option, input values
may, or may not, be required for a given material prop-
erty in the interfacial layers. For example, when using the
‘lin_graded’ option a value is not needed because the
interface property values are calculated from those of the
adjacent layers. By contrast, when using the ‘constant’
option, a property value does need to be specified for the
interfacial layer to avoid an error. Since property values that
are not required are ignored, we recommend that users spec-
ify all property values for all layers to future-proof against
problems arising when experimenting with grading options.

4.2.6 The electronic carrier probability distribution function

The class distro_fun defines the electronic carrier prob-
ability distribution function for the model and is called to
calculate the equilibrium boundary, and initial carrier den-
sities when building the parameters object. At present there
are two available options for the choice of probability distri-
bution function:

1. ‘Boltz’: The Boltzmann approximation (γ = 0)
2. ‘Blakemore’: The Blakemore approximation (γ > 0

see Sect. 3.2.1)

While the Boltzmann approximation results in marginally
faster calculations owing to the absence of a diffusion
enhancement, we recommend using Blakemore statistics for
their extended domain of validity.

4.2.7 The electronic carrier generation profile function

The function generation calculates the two generation
profiles gx1 and gx2, which can be used for a constant bias
light and a pulse source for example, at each spatial location
in the device for the chosen optical_model and light
sources (see Sect. 3.6 and the flow diagram in the Supple-
mental Information Figure S.5). The light sources can be set
using the light_source1 and light_source2 prop-
erties. There are two options for the optical_model:

1. ‘uniform’: a uniform volumetric generation rate
defined by the property g0 is applied to bulk layers with
layer and active layer types. The multiplier prop-
erties int1 and int2 define the intensities for light
sources 1 and 2 respectively.

2. ‘Beer_Lambert’: The generation profile follows the
Beer–Lambert law as detailed in Sect. 3.6.1 with mate-
rial layer optical properties taken from./Libraries/
Index_of_Refraction_library.xls for the cor-
responding materials defined in the material cell
array. As with uniform generation, the generation rate
profile is multiplied by the intensity properties int1 and
int2 before being applied.

An arbitrary generation profile calculated using an exter-
nal program (such as Solcore [42] or the McGeHee Group’s
TransferMatrix code [43]) canbe inserted into the parameters
object par by overwriting the generation profile properties
gx1 or gx2 following creation of the object. The profile
must be interpolated for the subinterval (xi+1/2) grid points
defined by x_sub (see Sect. 4.2.3). We also recommend that
the generation rate is set to zero within the interfacial regions
to avoid stability issues.
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The light source time-dependencies are controlled using
the g1_fun_type and g2_fun_type properties, which
define the function type (e.g. sinewave) and theg1_fun_arg
and g2_fun_arg properties, which are coefficient arrays
for the function generator (see Sect. 4.5.5) e.g. the frequency,
amplitude, etc.

4.3 Protocols: equilibrate

Once a device has been created and stored in the
MATLAB workspace as a parameters object the next step is
to find the equilibrium solution for the device. The function
equilibrate starts with the initial conditions described
in Sect. 3.8 and runs through a number of steps to find the
equilibrium solutions, with and without mobile ionic carri-
ers, for the device described by par. The output structure
soleq contains two solutions (see Sect. 4.6);

1. soleq.el: only the electronic charge carriers are
mobile and are at equilibrium.

2. soleq.ion: electronic and ionic carriers are mobile
and are at equilibrium.

Storing both solutions in this way allows devices with and
without mobile ionic charge to be compared easily.

4.4 Protocols: General

A Driftfusion protocol is defined as a function that contains
a series of instructions that takes an input solution (initial
conditions) and produces an output solution. For many of
the existing protocols (listed in Table 2) with the excep-
tion of equilibrate, the input is one of the equilibrium
solutions, soleq.el or soleq.ion. Figure 9 is a flow
diagram illustrating the key functions called during execu-
tion of a protocol.

Protocols typically start by creating a temporary parame-
ters object that is a duplicate of the input solution parameters
object. This temporary object can then be used to write new
voltage and light parameters that will be used by the func-
tion generator to define the generation rate at each point in
space and time and the potential at the boundary at each point
in time. Additional parameters, for example those defining
the output time mesh or carrier transport are also frequently
adjusted. The approach is to split a complex experimental
protocol into a series of intermediate steps that facilitate con-
vergence of the solver. For example, where ionic mobilities
are separated by many orders of magnitude from electronic
mobilities, a steady-state solution is easiest found by tem-
porarily increasing the ionic mobilities to be similar to that
of the electronic carriers using the K_a and K_c properties.
The simulation can then be run with an appropriate time step
and checked to confirm that a steady-state has been reached.

Fig. 9 Flow diagram illustrating execution of a Driftfusion protocol

The possibilities are too numerous to list here and users
are encouraged to investigate the existing protocols listed
in Table 2 in preparation of writing their own.

4.5 TheDriftfusionmaster function df

df is the core of Driftfusion. The function takes the device
parameters, and voltage and light conditions, calls the solver
and outputs the solution (Fig. 9). df contains three important
subfunctions: dfpde, dfic, and dfbc, which respectively
define the continuity equations to be solved, deal with the
initial conditions, and define the boundary conditions of the
system.
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Table 2 List of protocols available in Driftfusion at the time of publication

Command Description

changeLight Switches light intensity using incremental intensity steps.

doCV Cyclic Voltammogram (CV) simulation using triangle wave function generator .

doIMPS Intensity Modulated Photocurrent Spectroscopy (IMPS) simulation at a specified frequency and light
intensities.

doIMVS Switches to open circuit (OC), runs to steady-state OC, then performs Intensity Modulated Photovoltage
Spectroscopy (IMVS) measurement simulation at a specified frequency and light intensities.

doJV Forward and reverse current–voltage (JV) scan with options for dark and constant illumination conditions.

doLightPulse Uses light source 2 with square wave generator superimposed on light source 1 (determined by the initial
conditions) to optically pulse the device.

doSDP Step, Dwell, Probe (SDP) measurement protocol: Jump to an applied potential, remain at the applied
potential for a specified dwell time and then perform optically pulsed current transient. See Ref. [44] for
further details of the experimental protocol.

doSPV Surface PhotoVoltage (SPV) simulation: Switches bias light on with high series resistance.

doTPV Transient PhotoVoltage (TPV) simulation: Switches to open circuit with bias light and optically pulses the
device.

equilibrate Start from base initial conditions and find equilibrium solutions without mobile ionic charge (soleq.el)
and with mobile ionic charge (soleq.ion).

findVoc Obtains steady-state open circuit condition using Newton–Raphson minimisation.

findVocDirect Obtains an approximate steady-state open circuit condition using 1 M� cm2 series resistance.

genIntStructs Generates solutions at various light intensities.

genIntStructsRealVoc Generates open circuit solutions at various light intensities.

genVappStructs Generates solutions at various applied voltages.

jumptoV Jumps to a new applied voltage and stabilises the cell at the new voltage for a user-defined time period.

lightonRs Switches on the light for a specified period of time with a user-defined series resistance.

stabilize Runs a set of initial conditions to a steady-state.

sweepLight Linear sweep of the light intensity over a user-defined time period.

transient_nid Simulates a transient ideality factor (nid ) measurement protocol [16]

VappFunction Applies a user-defined voltage function to a set of initial conditions.

4.5.1 Driftfusion Partial Differential Equation function
dfpde and the Equation Editor

dfpde defines the equations to be solved by MATLAB’s
Partial Differential Equation: Parabolic and Elliptic solver
toolbox (pdepe) [31]. For one-dimensional Cartesian co-
ordinates, pdepe solves equations of the form

C

(
x, t, u,

∂u

∂x

)
∂u

∂t
= ∂

∂x

(
F

(
x, t, u,

∂u

∂x

))
+ S

(
x, t, u,

∂u

∂x

)

(76)

Here, u is a vector containing the variables V , n, p, c,
and a at each position in space x and time t . C is a vector
defining the prefactor for the time derivative, F is a vector
determining the flux density terms (note: F does not denote
the electric field in this section), and S is a vector containing
the source/sink terms for the components of u. By default
C = 1 for charge carriers but could, for example, be used to
change the active volume fraction of a layer in a mesoporous
structure. The equations can be easily reviewed and edited

in the dfpde Equation Editor as shown in Listing 1. Here,
device properties that have a spatial dependence are indexed
with the variable i to obtain the corresponding value at the
location given by x_sub(i). A step-by-step example of
how to change the physical model using the Equation Editor
is given in the Supplemental Information, Section S.6.

4.5.2 Driftfusion Initial Conditions dfic

dfic defines the initial conditions to be used by
pedpe. If running equilibrate to obtain the equilib-
rium solution or running df with an empty input solution,
the first set of initial conditions is as described in Sect. 3.8.
Otherwise, the final time point of the input solution is used.

4.5.3 Driftfusion Boundary Conditions dfbc

dfbc defines the systemboundary conditions. The boundary
condition expressions are passed to pdepe using two coeffi-
cients P and Q, with Nu elements, where Nu is the number of
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247 %% Equation editor
248 % Time -dependence prefactor term
249 C_V = 0; C_n = 1; C_p = 1; C_c = 1; C_a = 1;
250 C = [C_V; C_n; C_p; C_c; C_a];
251

252 % Flux terms
253 F_V = (epp(i)/eppmax)*dVdx;
254 F_n = mu_n(i)*n*(-dVdx + gradEA(i)) + (Dn(i)*(dndx - ((n/Nc(i))*gradNc(i))));
255 F_p = mu_p(i)*p*(dVdx - gradIP(i)) + (Dp(i)*(dpdx - ((p/Nv(i))*gradNv(i))));
256 F_c = mu_c(i)*(z_c*c*dVdx + kB*T*(dcdx + (c*(dcdx/(c_max(i) - c)))));
257 F_a = mu_a(i)*(z_a*a*dVdx + kB*T*(dadx + (a*(dadx/(a_max(i) - a)))));
258 F = [F_V; mobset*F_n; mobset*F_p; mobseti*K_c*F_c; mobseti*K_a*F_a];
259

260 % Electron and hole recombination
261 % Radiative
262 r_rad = radset*B(i)*(n*p - ni(i)^2);
263 % Bulk SRH
264 r_srh = SRHset*srh_zone(i)*((n*p - ni(i)^2)/(taun(i)*(p + pt(i)) + taup(i)*(n + nt(i))));
265 % Volumetric surface recombination
266 alpha = sign_xn(i)*q*dVdx/(kB*T) + alpha0_xn(i);
267 beta = sign_xp(i)*q*-dVdx/(kB*T) + beta0_xp(i);
268 r_vsr = SRHset*vsr_zone(i)*((n*exp(-alpha*xprime_n(i))*p*exp(-beta*xprime_p(i)) - ni(i)^2)...
269 /( taun_vsr(i)*(p*exp(-beta*xprime_p(i)) + pt(i)) + taup_vsr(i)*(n*exp(-alpha*xprime_n(i)) + nt

(i))));
270 % Total electron and hole recombination
271 r_np = r_rad + r_srh + r_vsr;
272

273 % Source terms
274 S_V = (q/( eppmax*epp0))*(-n + p - NA(i) + ND(i) + z_a*a + z_c*c - z_a*Nani(i) - z_c*Ncat(i));
275 S_n = g - r_np;
276 S_p = g - r_np;
277 S_c = 0;
278 S_a = 0;
279 S = [S_V; S_n; S_p; S_c; S_a];

Listing 1 The Equation Editor. Coefficients that are defined at every position are indexed for the current x position using the index i . Gradient
coefficients (prefixed with ‘grad’) are equal to zero outside of the interfacial regions. Location: ./Core/df - dfpde subfunction.

407 Pl = [-V_l;
408 mobset*(-sn_l*(n_l - n0_l));
409 mobset*(-sp_l*(p_l - p0_l));
410 0;
411 0;];
412

413 Ql = [0; 1; 1; 1; 1;];
414

415 Pr = [-V_r+Vbi -Vapp -Vres;
416 mobset *(sn_r*(n_r - n0_r));
417 mobset *(sp_r*(p_r - p0_r));
418 0;
419 0;];
420

421 Qr = [0; 1; 1; 1; 1;];

Listing 2 Default boundary condition expressions for electrons,
holes, cations and the electrostatic potential. Location: ./Core/df
- dfbc subfunction.

independent variables being solved for. The boundary con-
ditions are expressed in the form

P(x, t, u) + Q(x, t)F

(
x, t, u,

∂u

∂x

)
= 0. (77)

For Dirichlet conditions P must be nonzero to define the
variable values, whereas for Neumann conditions Q must be
nonzero to define the variable flux. Listing 2 shows how the

default Driftfusion boundary conditions (described in Sect.
3.9) are implemented in this release of the code.
In addition to these subfunctions,df also calls two important
external functions: the time mesh generator, meshgen_t
and the function generator, fun_gen.

4.5.4 The timemesh generator meshgen_t

df calls the time mesh generator meshgen_t at the start
of the code. As discussed in Sect. 4.2.4, the solver uses an
adaptive time step and interpolates the solution to the user-
defined mesh. The values of the mesh should be chosen
such as to resolve the solution properly on the appropri-
ate timescales. It should be noted that the total time step
of the solution tmax and the maximum time step (con-
trolled using the MaxStepFactor property) influence
convergence strongly. For this reason, where convergence
is proving problematic, it is recommended that either tmax
or MaxStepFactor is reduced and the solution obtained
in multiple stages.

4.5.5 The function generator fun_gen

df calls fun_gen to generate time-dependent algebraic
functions that define the applied voltage and light inten-
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1 % Voltage function type
2 par.V_fun_type = ’sin’;
3 % DC offset voltage (V)
4 par.V_fun_arg (1) = 0;
5 % AC voltage amplitude (V)
6 par.V_fun_arg (2) = 20e-3;
7 % Frequency (Hz)
8 par.V_fun_arg (3) = 1e3;
9 % Phase (Rads)
10 par.V_fun_arg (4) = 0;

Listing 3 Setting the function type and coefficients for the applied
voltage function. Location: ./Scripts/VappFunction_
script.

sity conditions. df includes the ability to call two different
light intensity functionswith different light sources, enabling
users to simulate a constant bias light and additional pump
pulse using the square wave generator, for example. Each
function type requires a coefficients array with a number of
elements determined by the function type and detailed in
the comments of fun_gen. Listing 3 is an example from
the ./Scripts/VappFunction_script script show-
ing how to define a sinewave function for the applied voltage.

4.6 Solution structures

df outputs a solution structure solwith the following com-
ponents:

– The solution matrix u: a three dimensional matrix for
which the dimensions are [time, space, variable].
The order of the variables is:

1. Electrostatic potential
2. Electron density
3. Hole density
4. Cation density (where 1 mobile ionic carrier is stip-

ulated)
5. Anion density (where 2mobile ionic carriers are stip-

ulated)

– The spatial mesh x.
– The time mesh t.
– The parameters object par.

All other outputs can be calculated from the above by calling
methods from dfana.

4.7 Calculating outputs dfana

dfana is a collection of functions (methods) that enable the
user to calculate outputs such as carrier currents, quasi-Fermi
levels, recombination rates, etc. from the solution matrix u,
the parameters object par, and the specified physical mod-
els. The use of a class in this instance enables the package

syntax dfana.my_calculation(sol) to be used. For
example the command

rho = dfana.calcrho(sol , "whole");

outputs a twodimensionalmatrix containing the space charge
density as function of time and position. Additional exam-
ples of how dfanamethods can be used to calculate outputs
are given in the highlighted boxes of Sect. 3. The full list of
the available analysis methods can be viewed and easily nav-
igated by selecting the dfana in the Current Folder
window and opening the functions browser sub-window in
MATLAB.

Due to the computational cost of calling functions
external to pdepe, the physical model described in
the Equation Editor is not coupled to that used in the
analysis functions.Users should, therefore, take great
care when adapting the physics of the simulation to
make certain that the models defined in dfana and
df are consistent with one another.

4.8 Plotting outputs dfplot

dfplot is a class containing a collection of plotting meth-
ods. Similar to dfana, this enables the package syntax
dfplot.my_plot(sol) to be used. For variables plot-
ted as a function of position, an optional vector argument
[t1, t2, t3, ...tm] can be included to plot the solution at t =
t1, t2, t3, ...tm , where m is the mth time point to be plotted.
For example the command

dfplot.Vx(sol , [0, 0.2, 0.4, 0.6, 0.8]);

plots the electrostatic potential component of the solution
as a function of time at the position t = 0, 0.2, 0.4, 0.6,
and 0.8 s (an example is shown in Fig. 15a). If no second
argument is given then only the final time point is plot-
ted. dfplot also includes the generic property plotting
function dfplot.x2d to allow users to easily create new
two-dimensional plots.

For variables plotted as a function of time the second argu-
ment defines the position. For example the command

dfplot.Jt(sol , 1e-5);

plots the current density for each carrier as a function of posi-
tion at x = 10−5 cm. For plots where variables are integrated
over a region of space, the second argument is a vector con-
taining the limits [x1, x2]. Further details can be found in the
comments of dfplot.
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4.9 Getting started and the example scripts

While the underlying system may appear complex, Drift-
fusion has been designed such that with a few simple
commands, users can simulate complex devices and transient
optoelectronic experiment protocols. Table 2 is a com-
plete list of protocols available at the time of writing. In
addition to the brief guide below, a quick start with up-
to-date instructions can be found in the README.md file
contained within the Driftfusion GitHub repository, [26]
and a series of example scripts for running specific pro-
tocols are also presented in the Scripts folder. New
users are advised to study these scripts and adapt them
to their own purposes. In addition, we have written an
introductory workshop to guide students through the pro-
cess of building basic semiconductor devices and applying
optical and voltage biases to them. This can be found in
the Semiconductor-device-physics-workshop
branch of the Driftfusion GitHub repository.

4.9.1 How to build a device object, find the equilibrium
solution, and run a cyclic voltammogram

In this section some commonly used commands are put
together to show new users how to create a device object,
obtain the device equilibrium solutions, and run a proto-
col, which in this example simulates a cyclic voltammogram
(CV). The doCV protocol applies a triangular wave voltage
function to the device, with optional constant illumination,
for a set number of cycles enabling the device current–voltage
characteristics at a given scan rate to be calculated.

At the start of each session, the system must be initialised
by typing the command

initialise_df;

To create a parameters object using the default material
and device properties for a Spiro-OMeTAD/perovskite/TiO2

perovskite solar cell the parameters class pc is called with
the file path to the relevant .csv file as the input argument:

par = pc(‘Input_files/spiro_mapi_tio2.csv ’);

The equilibrium solutions with and without mobile ionic
carriers for the device can now be obtained by calling the
equilibrate protocol:

soleq = equilibrate(par);

As discussed in Sect. 4.3, the output structuresoleq con-
tains two solutions: soleq.el and soleq.ion. In this
example we are interested in seeing how mobile ionic carri-

Fig. 10 Current–voltage scan results obtained from the cyclic voltam-
mogram protocol (doCV) applied to the default Spiro-OMeTAD/
perovskite/T iO2 solar cell parameters. See the corresponding guide in
Sect. 4.9.1 for step-by-step instructions on how to obtain these results

ers influence the device currents so we will use the solution
including mobile ionic charge carriers, soleq.ion.

To perform a cyclic voltammogram simulation from 0 to
1.2 to−0.2 to 0 V at 50 mVs−1, under 1 sun illumination we
call the doCV protocol with the appropriate argument values
as detailed in the protocol comments shown in Listing 4.

solcv =doCV(soleq.ion ,1,0 ,1.2,...
-0.2,50e-3 ,2,400);

Once a solution has been calculated the different compo-
nents of the currents can be plotted as a function of voltage
using the command:

dfplot.JVapp(solcv , par.d_midactive);
ylim([-25e-3, 5e-3]);

The second argument of dfplot.JVapp is the pre-
calculated dependent property d_midactive, the value of
which is equal to the position at the midpoint of the active
layer of the device. The resulting plot is given in Fig. 10 for
reference.

4.9.2 How to change the physical model

A detailed step-by-step example of how to modify the
physical model to account for the possible effects of photo-
generatedmobile ionic charge carriers is described in Section
S.6 of the Supplemental Information.
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1 function sol_CV = doCV(sol_ini , light_intensity , V0, Vmax , Vmin , scan_rate , cycles ,
tpoints)

2 % Performs a cyclic voltammogram (CV) simulation
3 % Input arguments:
4 % SOL_INI = solution containing initial conditions
5 % LIGHT_INTENSITY = Light intensity for bias light (Suns)
6 % V0 = Starting voltage (V)
7 % VMAX = Maximum voltage point (V)
8 % VMIN = Minimum voltage point (V)
9 % SCAN_RATE = Scan rate (Vs -1)
10 % CYCLES = No. of scan cycles
11 % TPOINTS = No. of points in output time array

Listing 4 First lines of the doCV protocol function. The input arguments for Driftfusion protocols are detailed in the comments at the start of
each function. Location: ./Protocols/doCV .

4.10 Advanced features

4.10.1 Rebuilding device structures and spatial meshes:
refresh_device

In some situations where device properties, such as layer
widths, are changed in a user-defined script or function,
users may need to rebuild the device structures dev and
dev_sub, and spatial meshes x and x_sub. To maintain
code performance this is not performed automatically using
dependent properties within the parameters class definition
since non-device-related parameters are frequently changed
within protocols. meshgen_x and build_device can be
rerun and stored using the newparameter set using the syntax:

par = refresh_device(par);

To further illustrate how to use refresh_
device,refresh_device_script, a script describing
the necessary steps to change the interfacial recombination
parameters, is provided in the Scripts folder of the Drift-
fusion repository.

4.10.2 Parallel computing and parameter exploration:
explore

Driftfusion’s parameter exploration class explore takes
advantage of MATLAB’s parallel computing toolbox to
enable multiple simulations to be calculated using a parallel
pool. explore_script is an example script demonstrat-
ing how to use explore to run an active layer thickness
versus light intensity parameter exploration and plot the out-
puts using explore’s embedded plotting tools.

5 Validation against existingmodels

To verify the numerical accuracy of the simulation, results
from Driftfusion were compared against those from two

analytical and two numerical models. In Sect. 5.1 current–
voltage characteristics obtained using analytical and numer-
ical solutions for a p-n junction solar cell are compared.
In Sect. 5.2 the simulation’s time integration is verified by
calculating the transient photovoltage response of a single,
field-free layer and comparing it to the solution obtained
using a zero-dimensional kinetic model. In Sect. 5.3, numer-
ical solutions for three-layer, dual heterojunction devices
obtained using Driftfusion are compared with those from the
Advanced Semiconductor Analysis (ASA) simulation tool,
an established, commercially available package [37]. Finally,
in Sect. 5.4, J -V characteristics calculated using Driftfusion
for devices dominated by bulk and interfacial recombina-
tion processes are compared with those of IonMonger [20],
a recently published, free-to-use, mixed ionic-electronic car-
rier semiconductor device simulator.

The location of the MATLAB scripts and the parameter sets
used to obtain the results in this section can be found in the
Supplemental Information, Section S.9.

5.1 The depletion approximation for a p-n junction

The p-n junction depletion approximation The Depletion
Approximation (DA) allows the continuity equations and
Poisson’s Equation (Eqs. 31, 32 and 17) to be solved analyt-
ically for a p-n homojunction [45]. Provided that the space
charge region at the junction of the device is in a depleted
state, the space charge density ρ can be approximated using a
step functionwithmagnitude equal to the background doping
density (see Fig. 11, top panel). Transport and recombina-
tion of free carriers in the depletion region are also neglected
within the approximation. Poisson’s equation can then be
solved by applying fixed carrier density (p(x = −∞) = p0
and n(x = ∞) = n0) and zero-field boundary conditions to
obtain the depletion widths for n- and p-type regions,wn and

123



Journal of Computational Electronics (2022) 21:960–991 985

wp, yielding [27]

wn = NA

NA + ND

√√√√√
2εrε0Vbi

q

(
1

NA
+ 1

ND

) , (78)

wp = ND

NA + ND

√√√√√
2εrε0Vbi

q

(
1

NA
+ 1

ND

) . (79)

Solving the DA for the current flowing across the junction
under the assumption that the diffusion length of both carriers
is significantly greater than the device thickness (Ln,p >>

d) yields the Shockley diode equation:

J = J0

(
e

(
qVapp
kB T

)
− 1

)
− JSC , (80)

where JSC and J0 are the short circuit and dark saturation
current densities, respectively. Here, we use the convention
that a positive applied (forward) bias generates a positive
current flowing across the junction.

Tomake ameaningful comparison between numerical and
analytical current–voltage (J -V ) characteristics, values for
J0 and JSC need to be related to input parameters of the sim-
ulation. J0 embodies the recombination characteristics of the
device; with respect to the contribution to recombination in
the quasi-neutral region, J0 can be related to the electron and
hole diffusion lengths Ln and L p, minority carrier lifetimes
τn and τp, and diffusion coefficients Dn and Dp, according
to [27]

J0 = qDp p0,n−t ype

L p
+ qDnn0,p−t ype

Ln
, (81)

where L p = √
τpDp and Ln = √

τnDn .
The material band gap and AM1.5 solar spectrum were

used to calculate the theoretical maximum current density
JSC,max and corresponding uniform generation rate through-
out the depletion region. Figure S.8 of the Supplemental
Information shows the AM1.5 Global Tilt solar spectrum
obtained from Ref. [46] used for the calculation.

The limiting short circuit photocurrent for a perfectly
absorbing semiconductor of band gap Eg is given by

JSC(Eg) = q
∫ ∞

0
η(Eγ )φ0(Eγ )dEγ , (82)

where η is the external quantum efficiency [28]. If η = 1
for photon energies Eγ ≥ Eg, and η = 0 for Eγ < Eg, the
maximum theoretically achievable short circuit current for a
single junction JSC,max is given by the integral of φ0 from the
bandgap energy to infinity. Figure S.8 of the Supplemental
Information shows the maximum achievable current density

JSC,max over a range of band gap energies. For the compar-
ison we use the bandgap of silicon Eg = 1.12 eV resulting
in JSC,max = 42.7 mA cm−2.

Simulation methods A p-n junction was created in Drift-
fusion with very thick n- and p-type layers (≈ 100 μm,
NA = 9.47 × 1015 cm−3, ND = 2.01 × 1015 cm−3) to
approximate the assumptions and boundary conditions used
in the DA. Furthermore, ionic carriers and trapped electronic
charges are not included in the simulations in this section. The
surface recombination velocity was set to zero for minority
carriers at both the left and right systemboundaries. A special
recombination schemewas implemented using the following
simplified first-order expressions:

r = n − n0
τn

for x < d/2 − wp, (83)

r = p − p0
τp

for x > d/2 + wn, (84)

where τn and τp are the electron and hole lifetimes, respec-
tively. For simplicity, τn and τp were set equal to one
another and, for consistencywith the DA, recombination was
switched off in the depletion region.

To convert the value obtained for JSC,max into a uni-
form carrier generation rate, the short circuit flux density
( jSC,max = JSC,max/q) was divided by the depletion region
thickness dDR, yielding g0 = jSC,max/dDR. The complete
parameter sets for the simulations in this section are given in
Tables S.5 and S.6.

Results Both the analytical and numerical solutions for the
space charge density, electric field, and electric potential are
shown in Fig. 11: The space charge widths, field strength and
potential profiles all show good agreement.

Figure 12 shows the light and dark current–voltage curves
for the analytical solution obtained using equation 80, as
compared to the numerical solutions from Driftfusion for
three values of τn,p. For τn,p = 10−6s and τn,p = 10−7s the
agreement is very good, even at current densities as low as
10−14 mA cm−2. The solutions begin to diverge with τn,p =
10−8 s, for which Ln,p = 2.3 μm such that Ln,p << d
and the underlying assumptions of the DA break down. The
deviation from the idealmodel inDriftfusion at higher current
densities (Fig. 12, inset) is expected due to the absence of
series resistance in the DA and because the capacitance of
the space charge regions can no longer be approximated using
the DA at applied voltages close to, and beyond, the built-in
voltage of the junction.
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Fig. 11 Analytical approximation and numerical solutions of a p-n
junction. Solutions obtained from Driftfusion (solid orange curve) and
the depletion approximation (Dep. Approx., dashed black curve) for
a p-n junction with Eg = 1.12 eV and NA = 9.47 × 1015 cm−3,
ND = 2.01 × 1015 cm−3. Green and white regions indicate the n-type
and p-type layers, respectively. The complete parameter sets for the
simulations are given in Tables S.5 and S.6

5.2 Transient photovoltage response of a single
layer field-free device

Analytical methods To verify the time-dependence of the
solution from Driftfusion, the transient photovoltage (TPV)
response for a field-free slab of intrinsic semiconductor was
calculated numerically and compared to results from a zero-
dimensional (0-D) kinetic model. During a TPV experiment
the device is illuminated at open circuit with a constant bias
light and pulsed with an optical excitation source to produce
a small additional photovoltage ΔVOC. As detailed in Sup-
plemental Information, Sect. S.9.2, it can be shown using a
kinetic model that ΔVOC is given by:

ΔVOC = 2kBT

qnOC

Δg

kTPV

(
1 − e−kTPV(t+tpulse)

)

for − tpulse < t ≤ 0, (85)

ΔVOC = 2kBT

qnOC
e−kTPVt for t > 0, (86)

Fig. 12 Comparison of current–voltage characteristics obtained using
Driftfusion and the Depletion Approximation for a p-n junction.
Current–voltage characteristics for numerical and analytical solutions
for a p-n junction with τn = τp = 10−6, 10−7, and 10−8 s. Results
from Driftfusion and the Depletion Approximation (Dep. Approx.) are
denoted by solid and dashed lines, respectively. The complete param-
eter sets for the simulations are given in Tables S.5 and S.6. The dark
currents are shown on a logarithmic scale in the inset

where tpulse is the length of the laser pulse, Δg is the
additional uniform volumetric generation rate due to the
excitation pulse, nOC is the steady-state open circuit carrier
density, and kTPV is the decay rate constant of the TPV signal.

Simulation methodsA100 nm field-free single layer of semi-
conductor with Eg = 1.6 eV was simulated in Driftfusion
with the zero flux density boundary conditions for elec-
tronic carriers representing perfect blocking contacts. The
constant and uniform volumetric generation rate was set to
g0 = 1.89 × 1021 cm−3 s−1 = 1 sun equivalent, based on
the integrated photon flux density for theAM1.5G solar spec-
trum and a step function absorption. In this special case the
splitting of the quasi-Fermi levels in the simulation is solely
attributable to changes in chemical potential. It should be
noted however that, for instances where an electric field is
present in the device, these boundary conditions will not rep-
resent an open circuit condition and a high value of external
series resistance Rs or amirrored cell approach (see Ref. [18]
for details) should be used instead. The second-order band-
to-band recombination coefficient was set to B = 10−10

cm3s−1 and SRH recombination was switched off. Since the
underlying kinetic theory demands that the TPV perturba-
tion must be small such that the additional carrier density
Δn << nOC,weused tpulse = 1μs and set the pulse intensity
equivalent to be 20% of the bias light intensity. The complete
parameter sets for the simulations are given in Tables S.7 and
S.8.
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Fig. 13 Zero-dimensional kinetic model solution versus 1-D numerical
drift-diffusion simulations for the transient photovoltage response of a
single layer of semiconductor. Change in photovoltage as a function
of time calculated using Driftfusion (DF, solid curves) and a zero-
dimensional kinetic model (Analytical, black dashed curves) at bias
light intensities of 0.1, 1, and 10 sun equivalent. The inset shows the
results on a log vertical scale. The complete parameter sets for the sim-
ulations are given in Tables S.7 and S.8

Results A comparison of the results from the analytical and
simulation models for bias light intensities of 0.1, 1, and
10 sun equivalent is shown in Fig. 13. The steady-state
charge carrier densities and open circuit voltages obtained
using Driftfusion agreed to within 10 decimal places with
the analytical values calculated using Equations S.15 and
S.14 (n = 4.35×1015 cm−3, VOC = 1.08 V at 1 sun equiva-
lent). The transient photovoltage perturbations also behaved
as predicted, with the rate constants extracted from fitting
the TPV decays correct to within 3 significant figures of the
values calculated using the analytical expression in Eq. 86.

5.3 Numerical solution for three-layer devices with
electronic carriers

Simulation methods To verify that the discrete treatment of
the interfaces employed in Driftfusion produces equivalent
results to models that use abrupt interfaces, a HTL/ab-
sorber/ETL device was simulated using both Driftfusion and

the Advanced Semiconductor Analysis (ASA) simulation
tool [37]. To maintain consistent layer dimensions the lin-
ear grid spacing for the ASA simulations and the interface
thickness in Driftfusion were set to be 1 nm.

The base material parameters for the active layer were
based loosely on those for a perovskite material excluding
mobile ionic charge. The parameters for the contact lay-
ers were not chosen to simulate real materials but rather
to produce a large built-in potential and to vary as many
properties as possible including the layer thickness, dielec-
tric constants, recombination coefficients,mobilities, etc. For
optical generation the Beer–Lambert option (without back
contact reflection) was chosen and the same optical constant
and incident photon flux density spectrum data were used
in both simulators. Four different parameter sets (PS) were
compared, the key differences for which are summarised in
the first four columns of Table 3. The complete parameter
sets for the simulated devices are given in Tables S.9–S.12.

Results: Beer–Lambert optical modelThe results for the inte-
grated generation rate profiles are shown in Figure S.10.
Despite the wavelength-dependent generation rates appear-
ing to be very closely matched between the two simulators
(Figure S.11), the integration across photon energies resulted
in marginally different generation profiles in the two simula-
tions corresponding to a total difference in generation current
of 1.24mA cm−2. As ameans to ensure that the input genera-
tion profiles were identical, the generation profile from ASA
was inserted into theDriftfusion parameters objects using the
method described in Sect. 4.2.7.

Results: Current–voltage characteristics To compare the
current outputs from the different simulation tools, current–
voltage scans were performed from Vapp = 0 to 1.3 V. Since
ASA solves for the steady-state current, the J -V scan rate
was set to be kscan = 10−10 V s−1 in Driftfusion to minimise
contributions from the displacement current.

Figure 14a shows a comparison of the J -V characteristics
obtained from the two simulation tools for Parameter Sets
(PS) 1a and 2a. While the different parameter sets result in
distinctly different characteristics for the two devices, the
data show excellent agreement between the two simulators

Table 3 Summary of the key simulation parameters for comparison of Driftfusionwith ASA. CB and VB denote the conduction and valence bands,
respectively

Parameter
set

Description Built-in
voltage (V)

Active layer
thickness (nm)

CB and VB effective density of states (cm−3)

HTL Absorber ETL

1a 3-layer device based on MAPI active layer 1.05 400 1019 1018 1019

1b As 1a with thinner active layer 1.05 200 1019 1018 1019

2a Randomised layer properties 0.6 200 1019 1018 1020

2b As 2a with uniform eDOS all layers 0.6 200 1018 1018 1018
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b

a

Fig. 14 Comparison of dark and light current–voltage characteristics
calculated byDriftfusion andASA aCurrent–voltage characteristics for
Parameter Sets (PS) 1a and 2a. Inset dark currents shown on log scale.
Dashed and solid lines indicate the current calculated using Driftfusion
and ASA, respectively. b Percentage difference between dark current
calculated using Driftfusion and ASA for the 4 different parameter sets
investigated. The complete parameter sets for the simulations are given
in Tables S.9 - S.12

despite the significant difference in discretisation schemes
and interface treatment.

Closer examination of the results from the two simulators
(Fig. 14b) reveals that, the percentage difference (calculated
as 100×(JASA− JDF)/JASA) for PS 1a is on the order of 1%
for current densities beyond J = 10−12 A cm−2. Halving the
active layer thickness has little impact on this difference (PS
1b). The percentage difference calculated for PS 2a, however,
is much greater, with a maximum of≈ 5% for current densi-
ties J > 10−12 mA cm−2. The larger difference between the
two simulators in this instance can be attributed to a change
of over 7 orders of magnitude in the electron density at the
absorber-ETL interface (Figure S.14) due to both a transition
in the conduction band eDOS from NCB = 1018 to 1020 cm−3

and a change in the conduction band energy of 0.3 eV. Under
these circumstances the difference in discretisation schemes
between the two tools becomes apparent: the linear discreti-

a

b

Fig. 15 Comparison of the electrostatic potential and hole density pro-
files during a J -V scan for a three-layer device calculated byDriftfusion
(solid lines) and ASA (dashed lines). Corresponding electron densities
are given in Supplemental Information Figure S.15

sation method used in the PDEPE and Driftfusion cannot
calculate the change in carrier densities within the interfaces
to as high a degree of accuracy as the internal boundary con-
ditions used in ASA (see Section S.8.1 for further details).
The deviation can be reduced significantly, however, by using
a uniform eDOS of NCB = 1018 cm−3 across all layers as the
results for PS 2b show.With respect to device characteristics,
despite the percentage difference in results for PS 2a, the key
metrics of the J -V curve such as the VOC, ideality factor and
fill-factor are all preserved. Figure 15 shows a comparison of
the electrostatic potential and hole density profiles calculated
using Driftfusion and ASA for PS 1a under illumination at
increasing applied bias. The electron density is given in the
Supplemental Information, Figure S.15. The agreement here
between the solutions is excellent taking into consideration
the difference in treatment of the interfaces between the two
simulators.

5.4 Numerical solution for three-layer devices with
electronic andmobile ionic carriers

Courtier et al. recently published IonMonger, [20] a three-
layer (HTL/absorber/ETL) drift-diffusion simulation tool for
modelling perovskite solar cells which solves for coupled
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electron, hole and cation carrier distributions. In contrast
to Driftfusion, IonMonger uses abrupt interfaces and solves
carriers and the electrostatic potential for each of the three
device layers simultaneously. The advantage to this approach
is that boundary conditions can be established between the
absorber and transport layers, such that interfacial recombi-
nation between electrons from one material and holes from
another can be evaluated at the same grid point. The dis-
advantage is that 8 variables are solved for simultaneously
(minority carriers are not included in the transport regions)
as opposed to 4 in Driftfusion, for an equivalent three-layer
device with a single mobile ionic species. Here, we compare
results obtained fromDriftfusionwith those from IonMonger
for devices with similar parameter sets.

Methods We modelled three layer perovskite HTL/ab-
sorber/ETL solar cells with electronic and mobile ionic
carriers in the absorber layer and electronic carriers only in
the HTL and ETL using IonMonger and Driftfusion. For the
IonMonger simulations only holes were solved for within the
HTL and electrons within the ETL. For the Driftfusion simu-
lations all carriers were solved for in all regionswith the ionic
carrier mobility set to zero in the HTL, ETL and interfacial
regions. Since the ionic carriers are modelled as inert and
their charge is compensated by a static background charge
density (see Eq. 17) they have no effect in these regions. For
the comparison we ran J -V scan simulations at a variety of
scan speeds using similar parameter sets to those published
in Ref. [8]: a device dominated by bulk recombination and
a device dominated by interfacial recombination using the
volumetric surface recombination scheme described in Sect.
3.7.3.

Results: Current–voltage characteristics Fig. 16a, b shows
the J -V results from Driftfusion (solid coloured curves) and
IonMonger (black dashed curves) for the bulk and inter-
facial recombination dominated devices at varying voltage
scan rates. The electrostatic potential profile, ionic carrier
accumulation and electronic carrier profiles during the 1 V
s−1 forward scan for the bulk recombination device, and at
100 mV s−1 for in the interfacial recombination dominated
device, at increasing applied bias are given in the Supple-
mental Information Figures S.21 and S.22, respectively. For
both sets of parameters the results obtained from the two
simulators are very similar with marginal differences in the
calculated current outputs. This variance arises principally
from the treatment of electronic currents across interfaces,
differences in the spatial mesh, and calculation of ionic car-
rier densities throughout all layers of the device inDriftfusion
as opposed to IonMonger, which introduces small additional
integration errors into the space charge density (Supplemen-
tal Information Figure S.20). For the device dominated by
interfacial recombination (Fig. 16b), additional errors are
also introduced by the volumetric surface recombination

a

b

Fig. 16 Comparison of results calculated using Driftfusion and Ion-
Monger for three-layer solar cells including mobile ionic carriers in the
absorber layer. a Current–voltage scans at kscan = 0.1, 1, and 10 V
s−1 for a device dominated by bulk recombination. b Current–voltage
scans at kscan = 50, 100, and 200 mV s−1 for a device dominated by
interfacial recombination using the scheme described in Sect. 3.7.3. The
complete parameter sets for the simulations are given in Tables S.13–
S.15

scheme. Figure S.23 shows that, while the scheme is self-
consistent, differences arise from the surface carrier densities
(specifically the electron density at the active layer-HTL
interface). These differences are accentuated by increasing
the energetic barriers to minority carriers from 0.4 to 0.8
eV (Eqs. 37 and 38) as shown in Supplemental Informa-
tion Figure S.24. The differences can however be reduced by
increasing the interface thickness and using a larger number
of interface mesh points (Figure S.24). To this end, con-
sistency with established analytical models that use abrupt
interfaces is somewhat sacrificed in Driftfusion in favour of
greater flexibility, which enables the physical models to be
easily edited, devices with any number of material layers to
be simulated and a range of interface-specific properties and
grading functions to be specified.

We have verified Driftfusion against two analytical and
two existing numerical models and found that in all cases the
calculated results are in good agreement. The results show
that the discrete interface approach produces results compa-
rable to models with abrupt interfaces, albeit with marginal
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errors introduced attributable to the combination of the inter-
face treatment and the linear discretisation scheme used in
Driftfusion.

6 Conclusions

We have developed an efficient and powerful one-
dimensional drift-diffusion simulation tool for modelling
semiconductor devices with mixed ionic-electronic conduct-
ing layers based onMATLAB’spdepe toolbox.Distinct from
existing codes, in addition to electronic carriers, Driftfusion
can include up to two ionic carrier species and virtually any
number ofmaterial layers. This flexibility ismade possible by
a discrete interlayer interface approach whereby the material
properties can be graded between two adjoining semicon-
ductor layers. This method has the added advantage that
interface-specific properties can easily be specified.

The default physical models underlying the simulation
were described and analytical approximations to the carrier
densities and fluxeswithin the interfacial regionswere stated.
Using these solutions, a method for approximating surface
recombination within interfacial regions using a volumetric
recombination scheme was derived.

The system architecture was presented and the processes
by which users can define device properties and change
the simulation’s physical model were outlined. Protocol
functions, determining time-dependent voltage and light con-
ditions, were described aswell as solution structures and how
to use built-in analysis and plotting functions to calculate and
visualise outputs from the simulation solutions. A step-by-
step guidewas presented detailing how to create a device, find
an equilibrium solution, and calculate current–voltage char-
acteristics using a cyclic voltammogram protocol. Lastly,
advanced features, including how to calculate multiple solu-
tions in parallel, were briefly introduced.

Driftfusion was verified by comparing calculated solu-
tions with two analytical and two existing numerical models
which tested different aspects of the simulation. In all cases
the agreement was good and the general device behaviour
was reproduced. The discrete treatment of the interfaces
resulted in small variations in the calculated currents as com-
pared to other simulators using abrupt interfaces at layer
boundaries.

The ease with which the underlying models can be
changed, and new material layers introduced, places Drift-
fusion in a unique space compared to other free-to-use
simulation codes for which an intricate knowledge of the
numericalmechanics is required to adapt the physicalmodels
and device architecture. By making Driftfusion both acces-
sible and free-to-use our hope is that this work will advance

our collective understanding of mixed ionic-electronic con-
ducting materials and devices.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10825-021-01827-
z.
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