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Abstract
Wigner functions, allowing for a reformulation of quantum mechanics in phase space, are of central importance for the 
study of the quantum-classical transition. A full understanding of the quantum-classical transition, however, also requires an 
explanation for the absence of macroscopic superpositions to solve the quantum measurement problem. Stochastic reformula-
tions of quantum mechanics based on spontaneous collapses of the wavefunction are a popular approach to this issue. In this 
article, we derive the dynamic equations for the four most important spontaneous collapse models—Ghirardi–Rimini–Weber 
(GRW) theory, continuous spontaneous localization (CSL) model, Diósi-Penrose model, and dissipative GRW model—in 
the Wigner framework. The resulting master equations are approximated by Fokker–Planck equations. Moreover, we use the 
phase-space form of GRW theory to test, via molecular dynamics simulations, David Albert’s suggestion that the stochasticity 
induced by spontaneous collapses is responsible for the emergence of thermodynamic irreversibility. The simulations show 
that, for initial conditions leading to anti-thermodynamic behavior in the classical case, GRW-type perturbations do not lead 
to thermodynamic behavior. Consequently, the GRW-based equilibration mechanism proposed by Albert is not observed.

Keywords  Wigner functions · GRW theory · Spontaneous collapse models · Master equations · Thermodynamic 
irreversibility · Foundations of physics

1  Introduction

Wigner functions provide a description of quantum systems 
in phase space. Since their initial development [1], they have 
found a significant number of applications [2–5] in fields 
such as atomic physics [6], quantum optics [7–9], visuali-
zation of quantum effects [10, 11], computational electron-
ics [12–14], and solid-state theory [15–19]. Besides these 
practical aspects, they are also of interest for fundamental 
questions in quantum mechanics such as the theory of quan-
tum chaos [20]. Moreover, they have a natural connection 

to statistical mechanics [21, 22], including nonequilibrium 
descriptions such as the Boltzmann equation [23–25] and the 
Fokker-Planck equation [26–28]. In particular, it has been 
suggested that Wigner functions might be useful in under-
standing the origin of thermodynamic irreversibility [29].

Since they allow to describe quantum mechanics in a 
way that has strong formal analogies to classical mechanics 
(Wigner functions are defined on phase space and governed 
by a dynamic equation that reduces to the classical Liouville 
equation for the phase-space density in the limit ℏ → 0 ), an 
important application of Wigner functions is the study of the 
quantum-classical transition [30, 31]. Wigner functions allow 
to develop a connection between classical and quantum mod-
els for liquid crystals [32] and to study mixed quantum-clas-
sical dynamics [33–35]. However, recovering the Liouville 
equation is not sufficient for recovering classical mechanics. 
Quantum systems can be in superpositions, whereas macro-
scopic superpositions (such as a cat being dead and alive at 
the same time [36]) are never observed. This is commonly 
attributed to a “collapse of the wavefunction” that takes place 
when a measurement is performed. However, this approach is 
often seen as unsatisfactory given that such a collapse is not 
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allowed by the Schrödinger equation, meaning that one has 
to make the strange assumption that the Schrödinger equation 
does not apply to measurements. This issue is known as the 
measurement problem [37].

A popular approach to the measurement problem is to pro-
pose a stochastic modification of quantum mechanics in which 
collapses occur spontaneously [38–41]. Spontaneous collapse 
models make empirical predictions that differ slightly from 
those of “standard” quantum mechanics and can thus be tested 
experimentally [42, 43]. Such experiments have become an 
important field of research in recent years [44–46]. Incorpo-
rating such spontaneous collapses in the theory of Wigner 
functions is desirable for at least four reasons: First, it allows 
to solve the problem of the classical-quantum transition in the 
Wigner framework also regarding the measurement problem. 
Second, if collapse models should be confirmed experimen-
tally, the Wigner formalism should of course allow to describe 
them in order to remain a powerful alternative to Hilbert-
space quantum mechanics. Third, Wigner functions are very 
useful for the visualization of collapse effects, as has been 
exploited for both spontaneous [47, 48] and environment-
induced [49] collapses. Fourth, modern quantum technol-
ogy—a field where Wigner functions are of high importance 
[2]—may be relevant for experimental tests of spontaneous 
collapse models. For example, it has been discussed whether 
SQUIDs (superconducting quantum interference devices) can 
be used for such a test [50, 51].

In addition, spontaneous collapse models might provide a 
solution to another fundamental problem of physics, namely 
to the aforementioned problem of thermodynamic irrevers-
ibility [52, 53]. This problem (which actually includes a 
variety of subproblems [53]) is concerned with the fact that 
macroscopic thermodynamics has a clear arrow of time asso-
ciated with the monotonous increase of entropy, whereas the 
microscopic laws of (classical or quantum) mechanics are 
invariant under time reversal. David Albert [54–56] has sug-
gested that spontaneous collapses of the wavefunction might 
be responsible for the irreversible approach to equilibrium. 
Although it has received significant attention in philosophy 
of physics [57–62], rigorous physical tests of this proposal 
are lacking at present.

In this work, we provide a reformulation of the four 
most important spontaneous collapse models, the Ghirardi-
Rimini-Weber (GRW) theory [38], the continuous sponta-
neous localization (CSL) model [39, 63], the Diósi-Penrose 
model [64–67], and the dissipative GRW model [68, 69], 
based on Wigner functions. We then provide an analytical 
and numerical analysis of Albert’s proposal, thereby inves-
tigating whether GRW theory might actually contribute to 
the solution of the problem of irreversibility. The mechanism 
suggested by Albert (deviations resulting from stochastic 
perturbations lead from anti-thermodynamic to thermody-
namic behavior) is not observed in the simulations.

2 � Structure of this article

Since this article is rather long and involves results of inter-
est to a variety of audiences (ranging from quantum physi-
cists to philosophers of physics), we here briefly summarize 
its structure to enable readers interested only in a particular 
topic to quickly find the relevant section.

The article consists of two main parts. Although both 
contain important results, a reader only interested in one of 
them may skip the other one. The first part deals with the 
foundations of quantum mechanics. In Sect. 3, we provide a 
brief introduction to Wigner functions. The following four 
sections each explain a particular collapse model and derive 
the equation of motion that it implies for the Wigner func-
tion. This is done in Sect. 4 for the GRW theory [with the 
main results being Eqs. (13) and (15)], in Sect. 5 for the CSL 
model [with the main result being Eq. (28)], in Sect. 6 for the 
Diósi-Penrose model [with the main result being Eq. (39)], 
and in Sect. 7 for the dissipative GRW model [with the main 
results being Eqs. (42) and (44)].

The second part deals with the foundations of statisti-
cal mechanics, in particular with Albert’s suggestion that 
GRW theory might explain thermodynamic irreversibility. 
This idea is introduced and discussed in Sect. 8. In Sect. 9, 
decoherence-based alternatives are presented. A numerical 
test of the GRW-based explanation of irreversibility is pro-
vided in Sect. 10. The main result of the second part are the 
simulations shown in Fig. 1, which disagree with Albert’s 
proposal. We conclude in Sect. 11.

3 � Wigner functions

In “standard” quantum mechanics, a system is described by 
the density operator1 (also known as “density matrix” or 
“statistical operator”) 𝜌̂ whose time evolution is given by the 
Liouville-von-Neumann equation

with time t, imaginary unit i , reduced Planck constant ℏ , 
commutator [⋅, ⋅] , and Hamiltonian Ĥ  . Furthermore, an 
observable is represented by a self-adjoint operator Â.

An alternative to the density-operator-based formalism 
is to use Wigner functions [1]. Here, the state of the system 
is described by a function W(x, p) (Wigner function) that 
depends on the phase-space coordinates x and p. (In this 
work, we only require Wigner functions depending on posi-
tion x and momentum p. However, the approach is much more 

(1)
d

dt
𝜌̂ = −

i

�
[Ĥ, 𝜌̂]

1  Throughout this work, we use a hat ̂ to denote a quantum-mechan-
ical operator.
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general and can also be applied to systems with other degrees 
of freedom, such as spin [32, 70].) The Wigner function is a 
generalization of a classical phase-space distribution function, 
from which it differs in that it can also take negative values 
[71]. For a one-particle system in one dimension, the Wigner 
function is defined as [72]

Throughout this work, the dependence of the Wigner func-
tion W and density operator 𝜌̂ on time t is not written explic-
itly to improve readability. For N particles in three dimen-
sions, Eq. (2) generalizes to [73]

Equations (2) and (3) can not only be applied to the density 
operator 𝜌̂ , but to an arbitrary operator Â . This gives its so-
called Weyl symbol A(x, p).2 The expectation value ⟨Â⟩ of 
the observable Â , which in “standard” quantum mechanics 
is given by

with the quantum-mechanical trace Tr , can then be calcu-
lated as [72]

just as in classical mechanics.
We now discuss the dynamics of Wigner functions. First, 

we introduce the star product [74]: When transforming to 
phase space, one has to replace the product ÂB̂ of two Hil-
bert space operators Â and B̂ by their star product A ⋆ B , 
which is defined as [75]

Here, the arrows indicate in which direction the deriva-
tives act. The star product (6) allows to introduce the Moyal 
bracket [74, 76]

(2)W(x, p) =
1

2𝜋� ∫ dx�
⟨
x −

1

2
x�
||||𝜌̂
||||x +

1

2
x�
⟩
e
i
x�p

� .

(3)

W(r⃗1,… , r⃗N , p⃗1,… , p⃗N)

=
1

(2𝜋�)3N ∫ d3r�
1
⋯∫ d3r�

N
e

i

�

∑N

i=1
r⃗�
i
⋅p⃗i

�
r⃗1 −

1

2
r⃗�
1
,… , r⃗N −

1

2
r⃗�
N

����𝜌̂
����r⃗1 +

1

2
r⃗�
1
,… , r⃗N +

1

2
r⃗�
N

�
.

(4)⟨Â⟩ = Tr(Â𝜌̂)

(5)⟨Â⟩ = ∫ dx∫ dpA(x, p)W(x, p)

(6)

A(x, p) ⋆ B(x, p) = A(x, p) exp

(
i�

2
( �⃖�𝜕x ��⃗𝜕p − �⃖�𝜕p ��⃗𝜕x)

)
B(x, p).

which is the Wigner equivalent of the commutator. When 
neglecting terms of order ℏ2 , the Moyal bracket (7) reduces 
to the classical Poisson bracket. Combining Eqs. (1) and (7) 
and taking into account the correspondence between com-
mutators and Moyal brackets leads to the dynamic equation 
for the time evolution of Wigner functions

where H is the Weyl symbol of the Hamiltonian Ĥ . This 
Weyl symbol is given by H(x, p) = p2∕(2m) + U(x) with the 
particle mass m and potential U [71]. Equation (8) reduces 
to the Liouville equation of classical mechanics if terms of 
order ℏ are neglected or if the potential is at most a second-
order polynomial in x [72]. (Some difficulties of the limit 
ℏ → 0 are discussed in Ref. [71]. In particular, the classical 
limit cannot be taken in this simple way if the Hamiltonian 
generates chaotic classical dynamics [77].) An overview 
over theory and applications of Wigner functions is given 
in Refs. [2, 4, 5, 73, 78].

4 � GRW theory

The formalism introduced in Sect. 3 is of interest for the Ghi-
rardi–Rimini–Weber (GRW) theory [38], which is a modified 
form of quantum mechanics. It allows to deal with the famous 
quantum-mechanical measurement problem [37, 79–82]: If 
one performs a measurement on a quantum system that is in a 
superposition, then, assuming that both system and measure-
ment apparatus obey the (linear, deterministic, and unitary) 
Schrödinger equation, the apparatus will, at the end, be in 
a superposition too. The quantum-mechanical time evolu-
tion inevitably leads to macroscopic superpositions, as is 
well known from the thought experiment on Schrödinger’s 
cat [36]. However, this is not what we observe. A measure-
ment on a system in a superposition produces a definite out-
come. Therefore, one typically postulates a “collapse of the 
wavefunction”, which is a sudden transition to an eigenstate 
of the observable one has measured as a consequence of 
measurement. This postulate, however, has no basis in the 
deterministic Schrödinger equation. A variety of solutions to 
this problem have been proposed, including hidden variables 
(“Bohmian mechanics” [83, 84]), superdeterminism [85, 86], 
modal interpretations [87], and the existence of many worlds 
in which all outcomes are realized (“Everett interpretation”, 
also known as “many-worlds interpretation” [81, 88]). It is 

(7)

{A(x, p),B(x, p)}⋆

= −
i

�
(A(x, p) ⋆ B(x, p) − B(x, p) ⋆ A(x, p))

=
2

�
A(x, p) sin

(
�

2
( �⃖�𝜕x ��⃗𝜕p − �⃖�𝜕p ��⃗𝜕x)

)
B(x, p),

(8)𝜕tW(x, p) = {H(x, p),W(x, p)}⋆,

2  In the convention used here, which is identical to the one in Ref. 
[72], the equation for A(x, p) is given by Eq. (2) with W replaced by 
A, 𝜌̂ replaced by Â , and the prefactor (2�ℏ)−1 removed. See Ref. [32] 
for a discussion of the prefactor and a different convention.
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sometimes claimed that decoherence effects (see Sect. 9) pro-
vide a solution to the measurement problem. This, however, 
is wrong, since decoherence alone does not determine which 
one of two possible measurement outcomes occurs [79, 89].

The GRW theory [38] (reviewed in Refs. [40, 42, 90]) 
solves the measurement problem by assuming that the col-
lapse of the wavefunction is not a consequence of meas-
urements, but something that happens spontaneously. For a 
system with N particles, the deterministic dynamics given 
by Eq. (1) is replaced by the more general master equa-
tion [38]

where �i is the localization rate for the i-th particle. In this 
work, we assume that �i = � with a constant � for all parti-
cles. Since the localization rate is often assumed to depend 
on the particle mass [91, 92], this can be motivated by the 
assumption that the particles belong to the same species. T̂i 
is the operator

with the position operator for the i-th particle x̂i and a con-
stant � determining the width of the collapsed function. It 
is easily shown that Eq. (9) is trace-preserving [38]. The 
idea of Eq. (9) is that “spontaneous collapse of the wave-
function” simply means that the particle’s wavefunction is, 
at a certain rate � , stochastically multiplied by a Gaussian. 
The parameters are tuned in such a way that these collapses 
are very rare for small systems (such as quantum particles), 
but very common for large systems (such as a measurement 
apparatus). This explains why superpositions are observed 
in microscopic, but not in macroscopic systems.

The GRW theory (as well as other approaches to the meas-
urement problem) is conceptually very important for a particu-
lar application of Wigner functions, namely the study of the 
classical limit. As discussed in Sect. 3, the governing equa-
tion (8) for Wigner functions reduces to the classical Liouville 
equation for ℏ → 0 . The measurement problem shows that 
recovering the Liouville equation is not sufficient to recover the 
observations of classical mechanics: If a cat is in a superposi-
tion of “being alive” and “being dead”, the Liouville dynamics 
will not change this (a superposition of a dead and a living cat 
evolving classically remains a superposition of a dead and a 
living cat). What we require is a mechanism that explains why 
such superpositions are not observed in the macroscopic world. 
The GRW theory provides such a mechanism.

A typical problem of spontaneous collapse models is that 
energy is not conserved. In fact, due to the noise, it increases 
at a constant rate. Although this effect is extremely small (the 

(9)d

dt
𝜌̂ = −

i

�
[Ĥ, 𝜌̂] −

N∑
i=1

𝜆i(𝜌̂ − T̂i(𝜌̂)),

(10)T̂i(𝜌̂) =

√
𝛼

𝜋 ∫
∞

−∞

dxe−
𝛼

2
(x̂i−x)

2

𝜌̂ e−
𝛼

2
(x̂i−x)

2

temperature of an ideal GRW gas increases by about 10−15 K 
per year [38]), it is still an undesirable feature. To solve this 
problem, dissipative extensions of the GRW theory [68], CSL 
model [69], and Diósi-Penrose model [93] have been derived. 
They ensure that the energy remains finite during the time 
evolution of the system. These approaches are discussed in 
Sect. 7. Further extensions of GRW theory (not considered 
in this work) are models with colored rather than white noise 
for the stochastic perturbations of the wavefunction [94] and 
relativistic extensions [95].

We now transform the governing equation (9) of the GRW 
theory to the Wigner formalism. We first demonstrate this deri-
vation for the case of one particle in one spatial dimension to 
keep the notation compact, and then generalize to the case 
of N particles in three dimensions which is more relevant for 
statistical mechanics.

First, we use the fact that [38]

where �x⟩ is a position eigenstate with eigenvalue x. The 
operator T̂(𝜌̂) is subject to the same transformation rule (2) 
as the density operator 𝜌̂ itself. Using Eq. (11), we find

(11)⟨x��T̂(𝜌̂)�x��⟩ = e
−

𝛼

4
(x�−x��)2⟨x��𝜌̂�x��⟩,

(12)

T(W(x, p)) =
1

2𝜋�

∫ dx�
�
x −

1

2
x�
����T̂(𝜌̂)

����x +
1

2
x�
�
e
i
x�p

�

=

�
𝛼

𝜋 ∫ dx��
1

2𝜋�

∫ dx�
�
x −

1

2
x�
����e

−
𝛼

2
(x̂−x��)2 𝜌̂ e−

𝛼

2
(x̂−x��)2

����x +
1

2
x�
�
e
i
x�p

�

=
1

2𝜋� ∫ dx�e
−

𝛼

4
((x−

1

2
x�)−(x+

1

2
x�))2

�
x −

1

2
x�
����𝜌̂
����x +

1

2
x�
�
e
i
x�p

�

=
1

2𝜋� ∫ dx�e
−

𝛼

4
(x�)2

�
x −

1

2
x�
����𝜌̂
����x +

1

2
x�
�
e
i
x�p

�

=
1

2𝜋�

�
1

𝜋𝛼�2 ∫ dx� ∫ dp�e
−

1

𝛼�2
(p�)2

e
−i

x�p�

�

�
x −

1

2
x�
����𝜌̂
����x +

1

2
x�
�
e
i
x�p

�

=
1

2𝜋�

�
1

𝜋𝛼�2 ∫ dx� ∫ dp�e
−

1

𝛼�2
(p�)2

�
x −

1

2
x�
����𝜌̂
����x +

1

2
x�
�
e
i
x�(p−p�)

�

=
1√
𝜋𝛼�2 ∫ dp�e

−
1

𝛼�2
(p�)2

W(x, p − p�).
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Consequently, the spontaneous multiplication by a Gaussian 
function of the position mediated by the operator T̂(𝜌̂) in the 
Hilbert space formalism corresponds to a convolution with 
a Gaussian function of the momentum in the Wigner func-
tion formalism.

We can now combine Eqs. (8), (9), and  (12) to the GRW 
master equation for Wigner functions, given by

To simplify Eq. (13), we make two approximations. First, we 
use a Kramers–Moyal expansion [96], which at second order 
leads to a Fokker–Planck equation [97]. For this purpose, we 
Taylor expand W(x, p − p�) around p� = 0 and find

where ! is the factorial and !! is the double factorial. When 
truncating at order n = 1 , we obtain from Eq. (14) the Fok-
ker–Planck equation

with the momentum diffusion coefficient Dp = ��ℏ2∕4 . 
Equations of the same form (but with a different physical 
content) have been obtained in the context of decoher-
ence [98]. Here, one typically also has a friction term (see 
Sect. 9), Eq. (15) is then obtained when taking the limit of 
vanishing friction at fixed diffusion constant [20]. Moreo-
ver, equations similar to Eq. (15) have been obtained for the 
collapse-induced [47] and decoherence-induced [99] dynam-
ics of quantum rotors.

Since Eq. (15) is of order ℏ2 , the first term in Eq. (13) (the 
Moyal bracket) should also be expanded up to this order. 
This gives

We have assumed here that H  has the form 
H(x, p) = p2∕(2m) + U(x) with a potential U. If U is quad-
ratic, linear, or constant, e.g., if we have a free particle or 
a harmonic oscillator, the time evolution obtained from 
Eq. (16) is thus classical. Making this assumption, the Fok-
ker-Planck equation (15) reduces to

(13)

𝜕tW(x, p) ={H(x, p),W(x, p)}⋆ − 𝜆

�
W(x, p)

−
1√
𝜋𝛼�2 ∫ dp�e

−
1

𝛼�2
(p�)2

W(x, p − p�)

�
.

(14)

𝜕tW(x, p) ={H(x, p),W(x, p)}⋆

+

∞∑
n=1

𝜆
(𝛼�2)n(2n − 1)!!

2n(2n)!
𝜕2n
p
W(x, p)

(15)𝜕tW(x, p) = {H(x, p),W(x, p)}⋆ + Dp𝜕
2
p
W(x, p)

(16)

{H(x, p),W(x, p)}⋆ ≈ −
p

m
𝜕xW(x, p) + (𝜕xU(x))(𝜕pW(x, p))

−
�2

24
(𝜕3

x
U(x))(𝜕3

p
W(x, p)).

The same result is obtained if, e.g., due to a weak potential, 
the last term in Eq. (16) is small compared to the diffusion 
term in Eq. (17).

Now, we consider N particles in three dimensions. A cal-
culation analogous to Eq. (12) gives

Hence, the extension of Eq.  (13) to N particles in three 
dimensions is given by

with 
∑

i Ti given by Eq. (18). The Fokker–Planck equation 
(17) generalizes to

with Dp = 3��ℏ2∕4 . This derivation shows that the Wigner 
approach is very useful in the study of spontaneous col-
lapse models: Using Hilbert space theory, the derivation of 
a Fokker-Planck equation for GRW theory (as done in Ref. 
[38]) requires several pages of calculation and a significant 
number of auxiliary assumptions. In the Wigner formalism, 
however, it is obtained almost immediately and in a very 
natural way. On the other hand, it is notable that Eq. (13) has 
the form of a convolution in momentum space, whereas in 
Eq. (9) the density operator is simply multiplied by a Gauss-
ian in position space. For this reason, if we do not operate 
with a simplified (Fokker-Planck) model, it is easier to work 
with the Fourier-transformed Wigner function

(17)
�tW(x, p) = −

p

m
�xW(x, p)

+ (�xU(x))(�pW(x, p)) + Dp�
2

p
W(x, p).

(18)

N∑
i=1

Ti(W({r⃗j, p⃗j})) =

N∑
i=1

1

(𝜋𝛼�2)
3

2

∫ d3p�e
−

1

𝛼�2
(p⃗�)2

W({r⃗j}, p⃗1,… , p⃗i−1, p⃗i − p⃗�, p⃗i+1,…).

(19)

x𝜕tW({r⃗j, p⃗j}) =
{
H({r⃗j, p⃗j

}
),W({r⃗j, p⃗j})}⋆

− 𝜆

(
W({r⃗j, p⃗j}) −

N∑
i=1

Ti(W({r⃗j, p⃗j}))

)

(20)

𝜕tW({r⃗j, p⃗j}) =

N∑
i=1(

−
p⃗i

m
⋅ ∇⃗r⃗i

W({r⃗j, p⃗j}) + (∇⃗r⃗i
U({r⃗j}))⋅

(∇⃗p⃗i
W({r⃗j, p⃗j})) + Dp∇⃗

2

p⃗i
W({r⃗j, p⃗j})

)

(21)W̃(x, x�) = ∫ dpW(x, p)e−i
x�p

�
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that depends on two position coordinates rather than on a 
position and a momentum coordinate. A physical reason for 
why it is easier to work with the Fourier-transformed Wigner 
function (21) is that Wigner functions typically treat position 
and momentum on an equal footing, whereas in GRW theory 
collapses take place in position space. For the Fourier-trans-
formed Wigner function (21), Eq. (12) simplifies to

The result (22) also directly follows from Eq.  (11) 
together with the fact that W̃  is related to the density 
operator in position representation, 𝜌(x, x�) = ⟨x�𝜌̂�x�⟩ , by 
W̃(x, x�) = 𝜌(x − x�∕2, x + x�∕2) [as is obvious from Eq. (2)]. 
The relation of W and � via the Fourier transformation [100] 
also explains why we need a convolution when describing 
the GRW dynamics in terms of Wigner functions (a Fourier 
transformation converts a multiplication to a convolution).

5 � CSL model

A drawback of the GRW theory is that it does not preserve the 
symmetry properties of a system of identical particles [90]. In 
particular, it does not respect the fact that the wavefunction 
of a system of identical particles has to be symmetric under 
particle exchange for bosons and antisymmetric for fermi-
ons. This problem was solved by the continuous spontaneous 
localization (CSL) model introduced in Refs. [39, 63]. We 
here follow Ref. [90]. (A discussion of this model can also be 
found in Refs. [101, 102].) First, we define the locally averaged 
density operator

where â†(r⃗�, s) and â†(r⃗�, s) are creation and annihilation 
operators for a particle with spin component s at position r⃗′ 
and g is a symmetric positive function typically chosen to be

The density operator is assumed to follow the dynamic 
equation

with a constant � that is related to the localization rate, see 
Eq. (29) below, and the anticommutator [⋅, ⋅]+ . From here 
on, we ignore the spin degrees of freedom since they are 
not relevant for the collapse dynamics. See Ref. [90] for a 

(22)T(W̃(x, x�)) = e
−

𝛼

4
(x�)2

W̃(x, x�).

(23)N̂(r⃗) =
∑
s
∫ d3r�g(r⃗� − r⃗)â†(r⃗�, s)â(r⃗�, s),

(24)g(r⃗) =
(
𝛼

2𝜋

) 3

2

exp
(
−

𝛼

2
r⃗2
)
.

(25)

d

dt
𝜌̂ = −

i

�
[Ĥ, 𝜌̂]

+ 𝜉 ∫ d3r
(
N̂(r⃗)𝜌̂N̂(r⃗) −

1

2
[N̂2(r⃗), 𝜌̂]+

)

discussion of how Eq. (25) follows from the theory of sto-
chastic processes in Hilbert space.

We now derive the Wigner representation of Eq. (25). In 
position representation, the last two terms on the right-hand 
side of Eq. (25) read [90]

Thus, the Weyl symbol for the operator given by the last two 
terms on the right-hand side of Eq. (25) is

Therefore, the CSL master equation for Wigner functions 
reads

(26)
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Equations (28) and (19) coincide for N = 1 if we set [90]

6 � Quantum gravity

We now come back to the measurement problem. An inter-
esting solution in the spirit of dynamical collapse models 
was proposed by Penrose [64, 65] and Diósi [66, 67], which 
is based on the problem of quantum gravity: As is well 
known, there is at present no generally accepted and experi-
mentally verified unification of quantum mechanics and 
general relativity. While most approaches to this issue are 
based on quantizing gravity, an alternative approach consists 
in “gravitizing quantum mechanics” [64], i.e., in modifying 
quantum mechanics to incorporate effects of gravity. A spa-
tial quantum superposition generates a superposition of spa-
cetimes, which is supposed to lead to a gravity-induced col-
lapse of the wavefunction [45]. Since this effect will depend 
on the mass of the system, it will be important for macro-
scopic, but negligible for microscopic systems; explaining 
why superpositions are not observed on macroscopic scales. 
Recent experimental tests [45], however, found no evidence 
of a gravity-induced collapse of the wave function, putting 
significant constraints on the possible validity of the Diósi-
Penrose model.

A simple quantitative model for this effect is given by 
[45, 66, 67]

with the gravitational constant G, the total mass density 
operator M̂ , and the Euclidean norm ‖ ⋅ ‖ . This operator is 
given by [45]
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(30)

d

dt
𝜌̂ = −

i

�
[Ĥ, 𝜌̂] −

4𝜋G

� ∫ d3r ∫ d3r�
[M̂(r⃗�), [M̂(r⃗), 𝜌̂]]

‖r⃗ − r⃗�‖

with the mass-density operator 𝜇̂i for the i-th particle. The 
Diósi-Penrose model constitutes a third type of collapse 
models in addition to GRW theory and CSL model.

A difficulty arises from the fact that the standard 
definition

with the mass mi of and the position operator ̂⃗ri for the i-th 
particle leads to divergences [45]. To solve this problem, 
one has to smear out the mass density. This can be done in 
various ways [93]. Proposals from the literature include [67]

with a length scale R0 and the Heaviside function Θ , as well 
as [103]

We are only interested in the non-Hamiltonian term on the 
right-hand side of Eq. (30). Moreover, we restrict ourselves 
to a single particle with mass density operator 𝜇̂ . As shown 
in the supplementary material of Ref. [45], the non-Hamil-
tonian term in Eq. (30) can be written as

with the function

depending on the Fourier-transformed mass density 𝜇̃ . The 
matrix element of Eq. (35) is given by [45]

Hence, the Weyl symbol of the expression (35) is given by
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Using Eq.  (38), the Diósi-Penrose master equation for 
Wigner functions is given by

When comparing Eq. (39) with Eq. (13), it is easily seen that 
the general structure is the same, in particular if we assume 
that the mass-density distribution is Gaussian. However, the 
expression that the Wigner function is convoluted with dif-
fers due to the presence of the factor 1∕(‖p⃗‖�)2 in Eq. (36). 
A similar observation was made in Ref. [93]. Equation (39) 
is an important result, since it has recently been suggested 
that Wigner functions could be helpful for experimental tests 
of quantum gravity [104].

7 � Dissipative GRW model

Finally, we turn to a more recent extension of the GRW theory, 
the dissipative GRW model proposed by Smirne et al. [68]. As 
discussed in Sect. 4, the standard spontaneous collapse models 
have the problem that the energy increases continuously. This 
increase is not measurable on typical observational timescales, 
but leads to a divergence of the temperature for t → ∞ . To 
avoid this problem, the dissipative GRW model includes dis-
sipation to ensure that the system thermalizes to a finite tem-
perature. A similar extension has been developed for the CSL 
model by Smirne and Bassi [69] and for the Diósi-Penrose 
model by Bahrami et al. [93].

Since the derivation of the Wigner representation is more 
involved for this theory, we restrict the discussion to a sin-
gle particle in one dimension to improve readability (the 
extension is straightforward). The dissipative GRW model 
is given by the master equation [68]

which looks exactly like Eq. (9). However, the standard 
collapse operator T̂  is replaced by the dissipative collapse 
operator

(38)
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(39)
𝜕tW(r⃗, p⃗) =

{
H(r⃗, p⃗),W(r⃗, p⃗)
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⋆
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(40)𝜕t𝜌̂ =
i

�
[Ĥ, 𝜌̂] − 𝜆(𝜌̂ − T̂d(𝜌̂)),

with a localization length scale rc = 1∕
√
� and a tempera-

ture parameter k. The operator (41) reduces to the standard 
collapse operator (10) (and the dissipative GRW model [40) 
to the ordinary GRW model (9)] for k → 0 , which corre-
sponds to the high-temperature limit.

A transformation of Eqs. (40) and (41) to the Wigner for-
malism is carried out in “Appendix A”. The result, the dis-
sipative GRW master equation for Wigner functions, reads

with

Performing a Kramers–Moyal expansion in analogy to the 
treatment in Sect. 4 gives (as shown in “Appendix A”) the 
Fokker–Planck equation

with damping parameter � = 2�k , Boltzmann constant kB , 
and noise temperature Tn = ℏ2∕(8mkkBr

2
c
) . This is precisely 

the temperature a dissipative GRW system thermalizes to 
[105], which confirms the consistency of our approach. If 
we ignore the fact that Eq. (44) contains a Moyal rather than 
a Poisson bracket, it is formally identical to the Kramers 
equation [106]

which describes the dynamics of an underdamped Brown-
ian particle in contact with a heat bath that has temperature 
Tb . In Eq. (44), however, the damping and diffusion terms 
arise not from the interaction with a solvent, but from the 
fundamental equations of motion of (GRW-type) quantum 
mechanics, implying that they are also present in a closed 
system.
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8 � Irreversibility and approach 
to equilibrium

We now move to a different topic, namely the foundations 
of statistical mechanics. Among the central problems in this 
field is the question how, given the fact that the microscopic 
laws of physics are time-reversal invariant, macroscopic 
thermodynamic irreversibility can be explained [52, 53]. 
A widely discussed idea in this context is David Albert’s 
[54–56] suggestion that the spontaneous collapses postu-
lated by GRW theory might play a role in the explanation of 
irreversibility. In the remainder of this article, we make use 
of the results from Sects. 4 and 7 to discuss this proposal 
and to test (and refute) it via numerical simulations. The 
significance of this test lies in two aspects. First, it consti-
tutes an application of the results from the previous sec-
tions and thereby demonstrates the usefulness of the Wigner 
approach for GRW theory. Second, and more importantly, 
it constitutes the first quantitative examination of a well-
known proposal from philosophy of physics. The null result 
presented here has to be taken into account when discussing 
GRW-based approaches to irreversibility.

We now introduce Albert’s proposal following Refs. 
[54–56]. A typical explanation for the approach to thermo-
dynamic equilibrium runs as follows: Macroscopic states 
of a system are associated with a large number of possible 
microscopic states. The equilibrium state is the macrostate 
with the largest entropy, i.e., the state with the largest num-
ber of possible microscopic realizations. Consequently, most 
of the microstates associated with an initial macrostate will 
evolve towards an equilibrium state, and since we do not 
know the exact microstate of the system, we have to con-
clude that it is considerably more likely that the system will 
evolve towards equilibrium rather than away from it.

This explanation, Albert argues, is unsatisfactory because 
it involves an appeal to the limitations of observers (igno-
rance about the precise initial microstate) in explaining what 
appears to be an observer-independent phenomenon, namely 
the approach to equilibrium. GRW theory provides a pos-
sible solution by introducing objective probabilities asso-
ciated with the spontaneous collapse of the wavefunction. 
If the system is initially in an “abnormal” microstate that 
would lead to an evolution away from equilibrium—which 
is unlikely, but not impossible—then a GRW collapse will 
in most cases lead to a “normal” state from which the system 
equilibrates. According to Albert, this happens since every 
microscopic neighborhood of the abnormal microstate in 
phase space contains significantly more normal than abnor-
mal microstates, such that thermodynamic abnormality is 
unstable under perturbations. Some discussions of Albert’s 
proposal can be found in Refs. [57–59]. See Ref. [62] for a 
review.

Albert’s approach belongs to the so-called Boltzmann 
approach to statistical mechanics [58]. In this framework, 
one is interested in a single system that has a certain mac-
rostate (characterized by its macroscopic properties). This 
macrostate depends on the microscopic state of the system. 
Various microstates can correspond to the same macrostate. 
The equilibrium state is then the macrostate that the largest 
number of microstates correspond to. An alternative frame-
work, which is more widely used in practical applications, 
is the Gibbs approach, where one studies ensembles (hypo-
thetical sets of infinitely many copies of a system with dif-
ferent initial conditions). “Approach to equilibrium” then 
means that the probability distribution over an ensemble of 
systems converges towards the equilibrium (in the simplest 
case: Maxwell-Boltzmann) distribution. A more detailed 
discussion and comparison of both approaches can be found 
in Ref. [107].

Albert’s proposal is conceptually appealing for at least 
three reasons [58]: First, it allows to solve two problems—
the quantum measurement problem and the problem of ther-
modynamic irreversibility—at once. Second, it unifies quan-
tum-mechanical probabilities with the probabilities used in 
statistical mechanics. Third, it allows to explain thermody-
namic irreversibility without requiring assumptions about a 
probability distribution over initial conditions. However, it 
is only based on a qualitative argument, a quantitative test 
is lacking at present. Such a test would be required to see 
how far GRW collapses can actually get us on the road to 
equilibrium [62].

A simple argument for Albert’s proposal can be developed 
based on Eq. (20). As is well known, the Boltzmann equation 
[108] provides a useful model for the approach to thermo-
dynamic equilibrium. The one-particle distribution function 
f (p⃗) , giving the probability that a particle has momentum p⃗ , 
approaches the Maxwell-Boltzmann (equilibrium) distribu-
tion due to the presence of collisions. This is a consequence 
of the fact that, in the derivation of the Boltzmann equa-
tion, one assumes that velocities are uncorrelated, i.e., that 
the two-particle distribution satisfies f2(p⃗1, p⃗2) = f (p⃗1)f (p⃗2) 
(molecular chaos), before a collision [109]. If one instead 
assumes that velocities are uncorrelated after a collision, we 
would have found that the entropy always decreases.

Thus, if Eq. (20) should explain the approach to thermody-
namic equilibrium, it should enforce f2(p⃗1, p⃗2) = f (p⃗1)f (p⃗2) . 
There is a good reason to believe that this is the case: The 
distributions f and f2 can be obtained by integrating the 
Wigner function3 over all positional and over all but one 

3  Although the Wigner function is not a classical probability distri-
bution, integrating out the positional degrees of freedom does give a 
probability distribution over possible momenta [71]. Interestingly, a 
Wigner-Boltzmann equation also exists [25]. It is a transport equation 
for the Wigner function used, e.g., in semiconductor physics [110].
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(for f) or two (for f2 ) momentum degrees of freedom [21]. 
Ignoring the reversible Hamiltonian part of the dynamics, 
we find that the difference between a factorized and a non-
factorized distribution evolves as

Equation (46) is a diffusion equation for the function 
�(p⃗1, p⃗2) = f2(p⃗1, p⃗2) − f (p⃗1)f (p⃗2) . Due to the diffusive 
dynamics, � will be homogeneous at long times, implying 
f2(p⃗1, p⃗2) = f (p⃗1)f (p⃗2) + c with a constant c. Since f and f2 
are normalized, we have c = 0 . Consequently, the GRW 
dynamics indeed tends to destroy correlations in momentum 
space and thereby leads to molecular chaos.

There is also a different aspect that has to be taken into 
account: When comparing Eq. (20) to the Kramers equation 
(45) we can note that Eq. (20) has no friction term. However, 
the friction term in Eq. (45) is known to be essential for 
the approach to an equilibrium state (corresponding, in the 
classical case, to the Maxwell-Boltzmann distribution), and 
is intimately connected to the fluctuations described by the 
diffusion term in Eq. (45) via a fluctuation-dissipation theo-
rem. The fluctuations in Eq. (20), in contrast, are not con-
nected to any form of dissipation. Thus, if Eq. (20) induces 
equilibration, it will be of a different form than equilibration 
processes resulting from friction.

This brings us back to the distinction between Boltz-
mannian and Gibbsian approaches to equilibrium intro-
duced above. If W can be interpreted as a probability dis-
tribution (i.e., in the classical case), the Kramers equation 
(45) describes an approach towards the Maxwell-Boltzmann 
distribution, which is the equilibrium distribution of Gibb-
sian statistical mechanics. For this, the friction term plays 
an essential role. In Eq. (20), in contrast, a friction term is 
not present, such that we cannot expect that W converges to 
a Maxwell-Boltzmann distribution. This, however, does not 
exclude that it leads (with high probability) to a convergence 
towards the macrostate with the largest phase-space volume, 
i.e., to Boltzmannian equilibrium.

Up to now, we have only considered the original GRW 
model by Ghirardi et al. [38]. This is the theory that Albert’s 
original suggestion is based on.4 The drawbacks of the stand-
ard GRW model in explaining equilibration might, how-
ever, be avoided by considering the dissipative GRW model 
introduced in Sect. 7. As shown there, the Wigner function 
approximately follows the dynamic Eq. (44) in this theory. 
The fact that Eq. (44) does contain a damping term related 
to the diffusion term in the standard way (actually, Eq. (44) 

(46)
𝜕t(f2(p⃗1, p⃗2) − f (p⃗1)f (p⃗2))

= Dp(∇⃗
2

p⃗1
+ ∇⃗2

p⃗2
)(f2(p⃗1, p⃗2) − f (p⃗1)f (p⃗2)).

reduces to Eq. (45) for ℏ → 0 if we set Tn = Tb ) seems to 
suggest a modification of Albert’s proposal in which the 
approach to thermodynamic equilibrium is described by the 
dissipative GRW model.

This would have interesting consequences: The Kramers 
equation (45), of which Eq. (44) is an extension, describes 
a system coupled to a heat bath at fixed temperature (rather 
than an isolated system with fixed energy) that should be 
described in the canonical ensemble. Since spontaneous 
GRW-type collapses occur also in isolated systems, this 
would imply that the equilibrium distribution of an isolated 
system is given by the canonical rather than by the micro-
canonical distribution [69, 93]. This is a very significant 
difference to “standard” statistical mechanics, where iso-
lated systems are described by a microcanonical distribution, 
which corresponds to the energy-conserving case. While the 
different ensembles agree in the thermodynamic limit, they 
can differ significantly for systems with a small number of 
particles [111]. A different result would be obtained in an 
energy-conserving spontaneous collapse model that might 
be derived in the future. (Note, however, that Albert’s origi-
nal discussion [54, 55] is set up in a Boltzmannian frame-
work that is not based on ensembles at all.) In addition, the 
reduction of the spontaneous heating by dissipation has 
implications for tests of spontaneous collapse models that 
rely on this effect, for example those based on measurements 
of neutron star heating [112].

The idea that the dissipative GRW model (44) is more 
appropriate as an explanation for thermodynamic irreversi-
bility than the original GRW model is, however, solely based 
on the fact that it is formally analogous to Eq. (45), which 
is known to lead to equilibration. Physically, the dissipa-
tive GRW model essentially assumes that all particles in the 
universe are coupled to a universal heat bath with a certain 
temperature Tn . (The nondissipative GRW model is the spe-
cial case Tn → ∞ .) Consequently, in the dissipative GRW 
model, systems will (in the long run) approach a canonical 
equilibrium state with temperature Tn . This is irreversibility, 
but not of the type known from classical thermodynamics. 
There, a typical manifestation of equilibration is that if two 
systems with initially different temperatures T1 and T2 are 
brought in thermal contact, heat will flow from the hotter to 
the colder system until they have reached equal temperatures 
[113]. This final temperature will depend on the initial tem-
peratures and other properties of the systems. It is certainly 
not a prediction of classical thermodynamics that all isolated 
systems converge to the same equilibrium state characterized 
by a universal temperature Tn.

This, of course, does not necessarily imply that the dis-
sipative GRW model is incorrect. It merely implies that it 
makes a different empirical prediction than standard ther-
modynamics, namely that there is a universal temperature 
that all systems, irrespective of their initial temperature and 

4  Albert’s theory was formulated in 1994 [54, 55], whereas the dis-
sipative GRW model was developed in 2014 [68].
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energy, will equilibrate to. This equilibration will take place 
on a very long timescale, such that this prediction does not 
contradict the observation of “normal” equilibration in the 
form of heat exchange on ordinary timescales. However, it 
was this equilibration that we were seeking an explanation 
for. In this regard, the dissipative GRW model will play the 
same role (if any) as the standard one, namely that of erasing 
correlations by providing dissipation.

These conclusions are not affected in a significant way 
by working (as Albert does) in a Boltzmannian rather than 
a Gibbsian framework. As discussed by te Vrugt [53], the 
distinction between Gibbsian and Boltzmannian statistical 
mechanics can be linked to the distinction between deter-
ministic and stochastic forms of dynamical density func-
tional theory (DDFT) [33]. DDFT is a theory for the non-
equilibrium evolution of the one-body density in classical 
fluids. Deterministic DDFT describes ensembles, whereas 
stochastic DDFT a (possibly spatially averaged) single 
system [114]. We can thus get an idea of the Boltzmann-
ian equilibration predicted by dissipative GRW models by 
considering the predictions of stochastic DDFT, namely an 
approach to the minimum state of the free energy functional 
(which has a different definition compared to deterministic 
DDFT [33]). Hence, according to dissipative GRW theory, 
the system will (in equilibrium) fluctuate around the mini-
mum of a free energy functional5 with temperature Tn.

When it comes to solving the fundamental problems 
of explaining thermodynamic irreversibility, typical argu-
ments against coarse-graining—namely that the equilibrium 
state of equilibrium statistical mechanics is reproduced 
only approximately [117] and on certain timescales—also 
apply to GRW-based explanations. Nevertheless, Albert’s 
approach, if successful, would still explain why anti-thermo-
dynamic behavior is never observed in macroscopic systems. 
For microscopic systems, it has recently been demonstrated 
experimentally that heat can spontaneously flow from a cold 
to a hot system for initially correlated spins [118]. This is 
not in contradiction to the GRW-based approach, since GRW 

collapses are (by construction) extremely rare for small 
quantum systems and thus allow for such a behavior.

9 � Connection to decoherence

Spontaneous collapse models like the GRW theory have a 
very close connection to the theory of quantum decoher-
ence [119], which is reviewed in Refs. [77, 79, 98, 120]. In 
fact, some authors refer to GRW-type collapses as “intrinsic 
decoherence” [121]. Moreover, there has been a significant 
amount of research on explaining the emergence of irrevers-
ibility based on the interaction of quantum systems with 
their environment [122], in particular decoherence [77, 120, 
123]. Consequently, it is of interest to relate such approaches 
to Albert’s proposal discussed here. The purpose of this sec-
tion (which is a slight digression) is thus to present some 
other approaches from the literature that Albert’s theory, 
on which we focus here, is related to. This allows to see our 
results in a more general context.

In contrast to the GRW theory, decoherence does by itself 
neither provide a solution to the measurement problem nor 
produce stochasticity. However, it is an important ingredi-
ent in various interpretations of quantum mechanics [81]. 
This has been exploited in an explanation of the approach to 
equilibrium proposed by Hemmo and Shenker [57–59]. Like 
Albert’s idea, it is based on explaining probabilities in statis-
tical mechanics based on quantum-mechanical probabilities. 
However, Hemmo and Shenker take as a starting point not 
GRW theory, but no-collapse interpretations (such as modal 
interpretations or the Everett interpretation), in which a col-
lapse of the wavefunction does not occur. Since the quantum 
dynamics of closed systems is isolated in the absence of 
collapses, stochasticity then requires external interventions. 
Thus, the proposal discussed in this section belongs to the 
tradition of interventionism [117, 124, 125], which explains 
the approach to equilibrium based on external perturbations.

We discuss the approach following Ref. [58]. In decoher-
ence theory, one typically assumes that the initial state �Ψ⟩ 
of a quantum system and its environment can be written in 
the form

with the state of the system ��⟩ , the state of the environ-
ment �E⟩ , and the tensor product ⊗ . Moreover, one assumes 
that the interaction Hamiltonian describing the interaction 
of the system with its environment commutes with a certain 
observable, the so-called pointer variable. A typical pointer 
variable is the position. Let {��i⟩} be a basis of the Hilbert 
space of the quantum system that consists of eigenstates of 
the pointer variable. The state of the system at time t can 
then be written as

(47)�Ψ⟩(0) = �𝜓⟩⊗ �E⟩
5  In Gibbsian statistical mechanics, it is well known that equilibrium 
systems coupled to a heat bath minimize a free energy functional. For 
the Boltzmannian case, this deserves some comment: As shown by 
Dean [115], a system of Langevin equations for the position of clas-
sical particles can be exactly rewritten as a Langevin equation for the 
microscopic one-body density. The latter Langevin equation can be 
written in terms of a (free energy) functional depending on the one-
body density. Then, the corresponding Fokker-Planck equation has a 
stationary solution if one inserts the one-body density that leads to 
the minimum of this functional. As discussed in Sect. 10, the classi-
cal limit of dissipative GRW theory also leads to Langevin equations, 
with the difference to Dean’s treatment being that we have to take 
also the momentum density into account. Dean’s formalism has been 
extended to underdamped Langevin equations (for which the momen-
tum density is relevant) by Nakamura and Yoshimori [116].
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with the relative states �Ei⟩ and the amplitudes �i(t) . Due to 
the coupling with the environment, the relative states will 
satisfy ⟨Ei�Ej⟩ ≈ �ij with the Kronecker delta �ij after an 
extremely short time. Then, the reduced density operator 
(obtained by tracing over environmental degrees of freedom) 
of the system takes the form

For a harmonic oscillator weakly coupled to an environment 
in equilibrium, the states ��i⟩ correspond to narrowly peaked 
Gaussians, such that the decohered system follows quasi-
classical trajectories [126].

This result is, by itself, no solution of the quantum meas-
urement problem since it leads to a superposition of different 
classical time evolutions. However, in no-collapse interpre-
tations of quantum mechanics, such as modal interpretations 
[127], it is possible to interpret the reduced state (49) as 
a probability distribution over the different quasi-classical 
states {��i⟩} . During the time evolution, there will then be 
stochastic transitions between such states. These stochas-
tic transitions can then play the same role in the approach 
to equilibrium as the stochastic GRW collapses in Albert’s 
theory.

What is interesting about this approach is that the Wigner 
function of a decohering system coupled to a thermal envi-
ronment can, in the simplest case, be shown to have the form 
[20, 58, 123, 128–130]

which, for ℏ → 0 , reduces to the Kramers equation (45). 
Thus, in this approach, the probability distribution also 
approaches a Maxwell-Boltzmann form in the classical case. 
Consequently, it is, like the dissipative GRW model, close 
in form to standard theories of equilibration. However, for 
these models, the temperature the system equilibrates to is 
that of the environment (rather than that of a universal heat 
bath).

It should be noted that there are important conceptual 
differences between the GRW-based and the decoherence-
based explanation of equilibration—if we explain thermo-
dynamic irreversibility by decoherence, then there can be 
no irreversibility in an isolated system. In contrast, such a 
behavior is to be expected from the GRW perspective, which 
would thus (in a sense) imply that the standard models of 
stochastic dynamics (such as the Fokker-Planck equation or 
the Langevin equation) are actually more fundamental than 

(48)�Ψ⟩(t) = �
i

𝜈i(t)�𝜓i⟩⊗ �Ei⟩

(49)𝜌̂(t) =
�
i

�𝜈i(t)�2�𝜓i⟩⟨𝜓i�.

(50)
𝜕tW(x, p) = {H(x, p),W(x, p)}⋆

+ (𝜕p𝛾p + 𝛾mkBTb𝜕
2
p
)W(x, p),

the ordinary Hamiltonian dynamics which they are usually 
thought to be an approximation to.

A further recent approach to the problem of explaining 
the emergence of statistical mechanics that is interesting in 
this context was proposed by Drossel [131–134]. She argues 
that the practice of statistical mechanics, including (but not 
limited to) the presence of irreversibility, is incompatible 
with the universal validity of deterministic unitary quan-
tum mechanics, and has to be explained by the presence 
of fundamental stochasticity. Her view can be classified as 
an intermediate position between that of Albert and that of 
Hemmo and Shenker. Like Albert (and unlike Hemmo and 
Shenker), she sees the origin of irreversibility in a stochastic 
quantum dynamics that violates the standard Schrödinger 
time evolution. However, like Hemmo and Shenker (and 
unlike Albert), she attributes this stochasticity to interactions 
of a quantum system with the environment. Finally, Wallace 
[29] has argued, within an Everettian framework, that the 
probabilities of statistical mechanics can be understood as 
arising from quantum-mechanical probabilities based on the 
fact that the classical limit of quantum mechanics is approxi-
mately isomorphic to a theory of classical probability dis-
tributions (as is evident from the Wigner function picture).

10 � Numerical experiments

To test Albert’s proposal, we have performed simulations of 
a many-particle quantum system with and without GRW col-
lapses. A first aspect to take into account here is the fact that 
our dynamics should allow for equilibration. This means that 
it is not possible to use an ideal gas, where “ideal” means 
that there are no interactions, not even collisions. Such an 
ideal gas is not guaranteed to approach equilibrium, since 
all particles will just move on a straight line without affect-
ing each other. As soon as interactions are present, it is not 
possible to describe the system using a one-particle Wigner 
function without a closure for the interaction part of the 
dynamics. However, such closures often already introduce 
prior assumptions regarding the approach to equilibrium 
(such as the time-reversal symmetry breaking associated 
with the hypothesis of molecular chaos, see Sect. 8), which 
we want to avoid here. Thus, we would have to solve the 
dynamic Eq. (19) or (20) numerically for a many-particle 
system over a significant timescale, which is impossible.

We can simplify the problem by noting that we are mainly 
interested in the effect of GRW collapses on the approach 
to equilibrium, and not in quantum effects such as super-
positions. Using the Wigner framework, we have been able 
to derive the Fokker-Planck equation (20) which, although 
describing a quantum system, is very similar in form to clas-
sical Fokker-Planck equations. Thus, we can assume that 
we work in the classical limit where quantum effects apart 
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from collapses (which, in the Fokker-Planck approximation, 
correspond to momentum diffusion) are negligible, such that 
particles have well-defined trajectories that can be described 
using Langevin equations.6 The Langevin equations corre-
sponding to the Fokker-Planck equation (20) read

where 𝜒i(t) is white noise with the properties

with the ensemble average ⟨⋅⟩E , dyadic product ⊗ , and 
identity matrix 1 . Thus, we can base our simulations on the 
Langevin equations (51) and (52). These are numerically 
much easier to handle than the many-particle Wigner func-
tion and thus allow us to model a large system. Moreover, 
this approach is in the spirit of Albert’s discussion, which 
is based on the idea that the role of quantum collapses is 
to provide random perturbations, here represented by the 
noise term in Eq. (52). If we use a dissipative model such as 
Eq. (44) instead, Eq. (52) has to be replaced by

and the diffusion constant Dp in Eq.  (54) is given by 
Dp = �mkBTn . This then recovers the standard equations of 
motion for an underdamped Brownian particle, from which 
the GRW-based model given by Eqs. (51) and (52) can be 
obtained by taking the limit � → 0 at fixed Dp . We use a 
smoothed Lennard-Jones potential for the particle interac-
tions (see “Appendix B”). For our simulations, Eqs. (51) 
and (52) are nondimensionalized (see “Appendix C”) and 
then solved using the Leapfrog algorithm with time step 
size dt = 0.0025.

To see how our simulations should be set up, we take 
into account what precisely Albert’s suggestion is based 
on: Although, if the initial state of the system is chosen 

(51)d

dt
r⃗i(t) =

p⃗i

m
,

(52)
d

dt
p⃗i(t) = −∇⃗r⃗i

U({r⃗j}) + 𝜒i(t),

(53)⟨𝜒i(t)⟩E = 0⃗,

(54)⟨𝜒i(t)⊗ 𝜒j(t
�)⟩E = 2Dp1𝛿ij𝛿(t − t�)

(55)
d

dt
p⃗i(t) = −𝛾 p⃗i − ∇⃗r⃗i

U({r⃗j}) + 𝜒i(t)

randomly, it is much more likely that the system evolves 
towards equilibrium, there are certain (“abnormal”) initial 
conditions for which the system does not evolve towards 
equilibrium. It is then the (expected) effect of the GRW col-
lapses that the system is brought back onto the right track.

To see whether this actually works, we first require such 
an abnormal initial condition. For this purpose, we consider 
a many-particle system whose time evolution is governed by 
Eq. (8) (i.e., by unitary quantum mechanics without spon-
taneous collapses). Starting from an initial nonequilibrium 
distribution at t = 0 , we study its time evolution by solv-
ing the unitary dynamics (in its Newtonian approximation 
given by Eqs. (51) and (52) with 𝜒 = 0⃗ ) numerically. After 
a certain time trev , the system has evolved towards a distribu-
tion that is relatively close to an equilibrium state. We then 
stop and use the distribution at time t = trev with reversed 
momenta as the initial condition for a second simulation. 
By the time-reversal invariance of quantum and classical 
mechanics, the system should then evolve back towards the 
initial distribution. Since it has thereby moved from a close-
to-equilibrium to a far-from-equilibrium state, we have thus 
found an “abnormal” initial condition (distribution at t = trev 
with reversed momenta) with the property that the system 
spontaneously moves away from equilibrium.

Next, we perform another simulation with the same 
abnormal initial condition, but this time using GRW theory. 
As is obvious from Eq. (20), the dynamics with spontaneous 
collapse is no longer time-reversal invariant (the left-hand 
side and the first two terms on the right-hand side change 
signs under (t, p) → (−t,−p) , the third term on the right-
hand side does not). If spontaneous collapses can enforce 
the validity of the second law of thermodynamics in the way 
suggested by Albert, then the system should be observed 
to evolve towards equilibrium rather than away from it this 
time.

The results are shown in Fig. 1, visualizing the local tem-
perature measured by the kinetic energy density ekin (see 
“Appendix C”, all variables are dimensionless). We con-
sider a dense fluid (the dimensionless7 number density is 
� = 0.7 ), which makes the simulations more efficient and 
therefore allows us to see all relevant effects. For the first 
simulation, we prepare two two-dimensional systems of the 
same size and let them equilibrate at different temperatures 
T1 = 0.5335 and T2 = 0.6391.8 Afterwards, the systems 

6  Of course, this approximation ignores many important quantum 
effects, as discussed below. Nevertheless, our derivation shows that 
a classical Fokker-Planck equation, which is equivalent to a system of 
classical Langevin equations, can provide a good first approximation 
to incorporate GRW effects. In particular, it is important that Albert’s 
approach is based simply on the fact that GRW collapses serve as a 
source for microscopic random perturbations rather than on details 
of the quantum-mechanical dynamics. Random perturbations are 
already well described by Langevin equations.

7  From the dimensionless number density � , the dimensional number 
density can be obtained by multiplication with �2 , where � is a length 
scale (see “Appendix C”).
8  We have set the temperatures in such a way that (a) the system 
behaves as a liquid, and (b) the two temperatures are different but not 
too far from each other (to avoid strongly nonlinear effects). The val-
ues of T1 and T2 are then obtained as the long-time averages in the 
equilibration simulations. These simulations had as an initial condi-
tion a homogeneous density with some noise and a Rayleigh velocity 
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are brought in thermal contact. This reference state, which 
has a sharp temperature gradient, is shown in Fig 1a. The 
total system contains about 8.5 ⋅ 106 particles. We consider 
a quadratic domain with boundary length L = 3461.75.9 If 
we evolve the system forward in time following standard 
Hamiltonian dynamics (Eqs. (51) and (52) with 𝜒(t) = 0⃗ ) 
up to time trev = 625,10 we observe—in agreement with what 
one would expect from thermodynamics—an equilibration 
towards a state with a more homogeneous temperature 

distribution. This relaxed state is shown in Fig. 1b. A more 
detailed analysis of this classical relaxation process can be 
found in Ref. [52].

For the second simulation, we use as an initial condi-
tion the final state of the first one (shown in Fig. 1b), but 
with reversed particle momenta. This creates an “abnormal” 
initial condition that leads to anti-thermodynamic behav-
ior under the Hamiltonian time evolution. The simulations 
confirm this: if we evolve this state forward in time using 
Hamilton’s equations, we see that the system evolves from 
a state with a relatively homogeneous temperature (Fig. 1b) 
towards a state with a sharp temperature gradient shown 
in Fig. 1c, where the two subsystems have regained their 
initial temperatures. Consequently, the system has moved 
away from thermal equilibrium. This is surprising from a 
thermodynamic perspective, but should be expected from 
the fact that the underlying Hamiltonian microdynamics is 
time-reversible. Moreover, effects of this type are known 
from spin systems [117, 118, 135].

ba c

d e f

Fig. 1   a Initial state of the first simulation (reference state). The sys-
tem consists of two parts in thermal contact, separated by a sharp 
temperature gradient. b Final (relatively homogeneous) temperature 
distribution of the first simulation, obtained from evolving the system 
shown in (a) forward in time using Hamiltonian dynamics. c Final 
temperature distribution of the second simulation, obtained from 
evolving a system with “abnormal” initial conditions (state shown in 
(b) with reversed momenta) under Hamiltonian dynamics. The sys-
tem moves away from thermal equilibrium. d Final temperature dis-
tribution of the third simulation, obtained from evolving a system 

with the same initial condition as in (c) using GRW dynamics. The 
stochastic perturbations make no difference for the anti-thermody-
namic behavior. e Final temperature distribution of the fourth simula-
tion, obtained from evolving a system with the same initial condition 
as in (c) using dissipative GRW dynamics. This also leads to anti-
thermodynamic behavior. f Comparison of the final temperature dis-
tributions of the second (deterministic), third (undamped stochastic), 
and fourth (damped stochastic) simulation with the initial state of the 
first one

9  We have made the system as large as reasonably possible given 
the computational constraints. The precise particle number was then 
N = 223 = 8388608 , from which the domain length L is obtained as 
L =

√
N∕� ≈ 3461.75.

10  This time was chosen based on the available computing time. It is 
sufficiently long to achieve a reasonable degree of (but not full) equi-
libration, which is what we require for the problem at hand.

Footnote 8 (continued)
magnitude distribution. The standard deviation for the Gaussians used 
for the initial velocity distributions were 0.75 and 0.85, respectively.
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Finally, Albert’s suggestion is tested via the third simula-
tion, which has the same initial condition as the second sim-
ulation, but uses the GRW-based model given by Eqs. (51) 
and (52) with nonvanishing noise 𝜒(t) (see “Appendix C” 
for the noise amplitude). If his suggestion is correct, then 
the stochastic perturbations induced by the GRW dynamics 
should lead to “normal” thermodynamic behavior despite 
the abnormal initial condition. As can be seen from Fig. 1d, 
which shows the final state of the third simulation, this is 
not the case: the system moves away from thermal equilib-
rium towards a state with inhomogeneous temperature even 
in the presence of stochastic GRW-type perturbations. We 
have also performed a fourth simulation with the same initial 
condition as the second and third simulations, but using the 
dissipative GRW model given by Eqs. (51) and (55). The 
final state of this simulation is shown in Fig. 1e, revealing 
that damping also does not lead to a restoration of thermo-
dynamic behavior. Figure 1f, which compares the tempera-
ture profiles for the final states of the second (green), third 
(orange), and fourth (red) simulation to the initial state of the 
first simulation (blue), shows that the system evolves back 
to the initial state (with a small difference due to unavoid-
able numerical errors) regardless of whether or not stochas-
tic GRW-type perturbations are present. Consequently, our 
results refute Albert’s proposal according to which, for anti-
thermodynamic initial conditions, thermodynamic behavior 
can be recovered via stochastic GRW-type perturbations.

The numerical experiments presented here are similar to 
the ones by Orban and Bellemans [136], where anti-ther-
modynamic behavior was also achieved by time-reversing 
a molecular dynamics simulation. Orban and Bellemans 
found that the initial state is not completely recovered due 
to numerical round-off errors, from which they inferred that 
anti-thermodynamic behavior is unstable (similar in spirit 
to Albert’s suggestion). Such “numerical irreversibility” 
has subsequently been investigated also by other authors 
(some of whom even linked it to quantum effects) [137, 
138]. Since the effects of the round-off errors are now well 
understood, we can test what happens if GRW noise is added 
to the dynamics. Figure 1f shows that the difference between 
the reference state and the result of the deterministic time-
reversed simulation (resulting purely from numerical errors) 
is larger than the difference between the deterministic and 
the stochastic simulations, even though the amplitude of the 
GRW noise is much larger than that of the “numerical noise” 
(such that our “null result” is not a consequence of numeri-
cal errors). The temperature gradient in the final state of the 
time-reversed simulations is smoother than in the reference 
state, suggesting that the way back from equilibrium has not 
been completed. However, this increased smoothness is pre-
sent for both the deterministic and the stochastic simulations. 
This implies that the GRW noise has no significant effect 
on whether or not there is anti-thermodynamic behavior, 

and that the small differences between the initial state of the 
first simulation and the final states of the second and third 
simulations are a consequence of round-off errors.

A similar conclusion can be obtained from Fig. 2, which 
shows the time dependence of the absolute values of the Fou-
rier modes of the kinetic energy density |ẽkin| for the wave-
numbers (a) k = 2�∕L , (b) k = 8�∕L , and (c) k = 28�∕L 
for all four simulations (see “Appendix C”, all variables 
are dimensionless). In this section and in “Appendix C”, k 
denotes the wavenumber, and not the temperature parameter 
as in Sect. 7 and in “Appendix A”. The second, third, and 
fourth simulations are plotted with reversed time to allow for 
a comparison to the first one. For all three wavenumbers, the 
agreement between the two time-reversed simulations is bet-
ter than their agreement with the first (reference) simulation, 
implying that the GRW collapses make no significant differ-
ence for the macroscopic (thermodynamic) behavior of the 
system. Therefore, it is unlikely that they are responsible for 
the emergence of macroscopic irreversibility. However, the 
collapses do make a certain difference: as can be seen from 
comparing Fig. 2a–c, the disagreement between determinis-
tic and stochastic simulation results (i.e., the effect of GRW 
noise) becomes larger for increasing wavenumber k. Since 
larger wavenumbers correspond to smaller length scales, this 
means that there are notable differences between determin-
istic and GRW dynamics on microscopic scales. However, 
these differences become less important on the macroscopic 
(thermodynamic) level. A similar result is found when com-
paring the damped and the undamped GRW model: there are 
differences on smaller length scales (larger wavenumbers), 
but not on the macroscopic level.

The results of our simulations thus strongly indicate that, 
contrary to a widespread claim in the foundations of statisti-
cal mechanics, spontaneous wavefunction collapses can not 
explain the approach to thermodynamic equilibrium even 
if GRW theory is correct. To understand this result in more 
detail, we should recapitulate what has led Albert [54–56] to 
the idea that such an explanation would be possible, namely 
(a) that the property of being an abnormal initial microstate 
(one that induces anti-thermodynamic behavior) is highly 
unstable under perturbations, and (b) that GRW theory pro-
vides the right kind of perturbations that bring one from an 
abnormal to a normal microstate. In the simulations, it has 
been found that the initial macrostate is not completely, but 
approximately restored, and that the effect of “numerical 
irreversibility” is much larger here even though the GRW 
noise has a larger amplitude. This suggests that (a) abnormal 
microstates are not really stable, but also not as unstable as 
it is commonly believed, and (b) that GRW theory does not 
provide the “right” kind of perturbations in this context.

At this point, we should discuss three possible objections 
to our result. First, it can be argued that the relevant GRW 
parameters (in particular Dp ) are so small that observable 
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differences should be expected for macroscopic systems 
( 1023 particles), but not for systems with only a few parti-
cles (Albert [54] explicitly notes that, if his explanation is 
correct, an absolutely isolated gas with about 105 particles 
would not be expected to show thermodynamic behavior). 
A macroscopic system would be far too large to be studied 
with microscopic simulations on reasonable timescales. To 
compensate for this fact, we have used a very strong noise. 
Assuming, for the sake of definiteness, that our fluid con-
sists of argon atoms, our simulation parameters correspond 
to Dp ≈ 2.554 ⋅ 10−43 J2s/m2 (see “Appendix C”), whereas 
using the parameter values � = 10−16 /s and � = 1014 m−2 
used in Ref. [38] (to get an idea for the order of magnitude of 
Dp ) gives (in two dimensions) Dp = ��ℏ2∕2 ≈ 5.56 ⋅ 10−71 J2

s/m2 . Adler [43] has suggested values of � that are about 10 
orders of magnitude larger, increasing the possible value 
to Dp ≈ 10−61 J2s/m2 , which is still significantly below our 
value. If we assume that GRW effects become relevant if �N 
is of the order 1/s, then for Dp ≈ 10−61 J2s/m2 (correspond-
ing to � ≈ 10−6/s) one would require about 106 particles to 
see GRW effects. Since we have about 107 particles and a 
noise that is about 9 orders of magnitude larger, there is no 
reason to assume that our “null result” for effects of GRW 
collapses on thermodynamics is a consequence of the system 
size. Current bounds for the GRW parameters are given in 
Ref. [44].

Second, we have tested a quantum-mechanical theory 
(GRW) using classical molecular dynamics simulations, 
motivated by the fact that solving the quantum-mechanical 
equations for a many-particle system is impossible. This can 
be justified using the Wigner formalism, which shows that 
if we ignore all quantum effects except for the spontaneous 
collapses, GRW theory is equivalent to a classical statis-
tical theory for a system whose dynamics is governed by 
Langevin equations. Obviously, the result we would have 
obtained from a full quantum-mechanical calculation would 
be different. Nevertheless, if a full quantum-mechanical 
calculation would have led to a different result regarding 
the problem of irreversibility, then irreversibility would 
not (solely) be a consequence of GRW collapses, but (also) 
of the other quantum effects (such as the peculiarities of 
quantum chaos) that have been ignored in our simulations. 
Clearly, for a system that is in a macroscopic superposi-
tion, the GRW collapses will make an important difference 
for the dynamics (namely, they will destroy this superposi-
tion). However, for explaining why a system of particles that 
already behave quasi-classically approaches thermodynamic 
equilibrium, they appear to play no significant role.

Let us consider in particular the position of Wallace [29], 
who argued that the Wigner function can in principle not be 
interpreted as a distribution over the positions and momenta 
of particles in the classical sense, and that even for initially 

ba

c

Fig. 2   Time evolution of the absolute values of the Fourier modes 
of the kinetic energy density |ẽkin| with wavenumbers a k = 2�∕L , b 
k = 8�∕L , and c k = 28�∕L for the first (deterministic, reference), 
second (deterministic), third (undamped stochastic), and fourth 
(damped stochastic) simulation. For the second, third, and fourth sim-

ulation, time is reversed in this plot to allow for a comparison to the 
first simulation. The difference between deterministic and stochastic 
time-reversed dynamics (and between the different forms of stochas-
tic dynamics) is larger for larger wavenumbers, but generally smaller 
than between the reference and the time-reversed simulations
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localized particles the classical microdynamics will quickly 
cease to be accurate in a typical many-particle system due to 
delocalization and entanglement11. From this view, it might 
appear inappropriate to simulate a quantum system using 
classical many-body dynamics. However, one should note 
here that Albert’s argument (as emphasized above) requires 
only the fact that GRW theory leads to random perturba-
tions, but not any details of the quantum dynamics. Moreo-
ver, the existence of GRW collapses will generally local-
ize the particles and thereby increase the accuracy of the 
quasi-classical approximation. Finally, even if one denies the 
existence of localized microscopic particles, solving Eq. (51) 
and (52) still gives an indication of the solution of Eq. (20) 
(which is what we are interested in) due to the mathematical 
relation of Langevin and Fokker-Planck equations.12

Third, we have made the approximation of moving from 
a master to a Fokker-Planck equation [e.g., from Eq. (13) 
to Eq. (17)] in the derivation of the Langevin equations 
(51) and (52). This corresponds to the assumption that the 
Gaussian function that the Wigner function is convoluted 
with in Eq. (13) decays very rapidly for larger values of 
|p′| . Since the full width at half maximum of this Gaussian 
is 2

√
ln(2)�ℏ2 ≈ 1.756 ⋅ 10−27 kg m/s (which is extremely 

small), this assumption should also be unproblematic.

11 � Conclusion

This article has two central results. First, we have derived 
master and Fokker-Planck equations for the Wigner function 
based on the GRW theory, the CSL model, the Diósi-Pen-
rose model, and the dissipative GRW model. This provides 
a dynamical theory in phase space that allows to explain the 
emergence of classicality from quantum mechanics regard-
ing both the emergence of Liouville dynamics and the solu-
tion of the quantum measurement problem. Moreover, it 
makes the advantages of the Wigner framework available 
to researchers interested in spontaneous collapse models. 
Second, we have used Langevin equations derived from 
the GRW Fokker-Planck equation for a numerical test of 
Albert’s suggestion that GRW collapses might be respon-
sible for the approach to thermodynamic equilibrium. The 
simulations reveal that stochastic GRW-type perturbations 
do not lead to thermodynamic behavior if it is not already 

present in the deterministic dynamics. Consequently, our 
results do not support Albert’s idea.

Appendix A: Wigner representation 
of the dissipative GRW model

Here, we present the derivation of Eqs. (42) and (44) from 
the main text. For this purpose, we first write the operator 
(41) in the momentum representation, with momentum coor-
dinates denoted by p and q. We find

where �p⟩ and �q⟩ are momentum eigenstates with eigen-
values p and q, respectively. We now use the fact that the 
Wigner function (2) can also be written as [32]

Thus, the Weyl symbol of T̂d is given by
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11  Drossel [132] takes, in a sense, the opposite standpoint as she 
argues for the existence of limitations to quantum dynamics based on 
the success of classical molecular dynamics simulations.
12  This line of thought is similar to Wallace’s [29] own argument, 
who explains the success of classical statistical mechanics (even in 
the case of probably inaccurate microdynamics) based on the fact that 
it arises as a limiting case of quantum many-body dynamics.



2226	 Journal of Computational Electronics (2021) 20:2209–2231

1 3

Hence, the dissipative GRW master equation for Wigner 
functions reads

with Td given by Eq. (A3). Equations (A4) and (A3) cor-
respond to Eqs. (42) and (43) from the main text.

Since Eq. (A4) with the Weyl symbol (A3) is extremely 
complicated, we now derive a simplified form. First, we 
note that Eq. (A3) can be written as

(Equation (A5) is simply the first line of Eq. (A3).) Moti-
vated by the fact that the standard (nondissipative) GRW 
model is recovered for k = 0 , we now Taylor expand the 
integrand in Eq. (A5) to first order in k. This gives

(A3)
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The result (A6) is already reminiscent of Eq. (12) from 
the standard GRW model. In analogy to the treatment in 
Sect. 4, we now Taylor expand W(x, p − p�) around p = p� 
in Eq. (A6) and find

where we have dropped terms of order k2 and products of k 
and ℏ2 in the last step. After inserting Eq. (A7) into Eq. (A4) 
and defining � = 2�k and Tn = ℏ2∕(8mkkBr

2
c
) , we finally 

obtain the Fokker-Planck equation

which is Eq. (44) from the main text.

Appendix B: Interaction potential

The potential in Eqs. (52) and (55) is (in nondimensional-
ized form) given by
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with the pair-interaction potential U2 . For U2 , we use, fol-
lowing Ref. [139], the smoothed Lennard-Jones potential

with r = ‖r⃗‖ ,  smoothing parameters  C0,… ,C8 , 
and cutoff length rc . We here use rc = 3.5 , imply-
i n g  [ 1 3 9 ]  C

0
= 7.5910165343877297 ⋅ 10

−2  ,  C
2
=

−1.8581547966307284 ⋅ 10−2  ,  C
4
= 1.8195943357253561 ⋅ 10−3  , 

C6 = −8.2498747696767786 ⋅ 10−5 , and C
8
= −1.4428113900989101⋅

10−6. The form of the interaction potential and the choice of 
the smoothing parameters ensure that the potential and its 
first four derivatives vanish at r = r

c
.

Appendix C: Dimensionless quantities

For the nondimensionalization of our equations, we first 
write Eqs. (51) and (55) as

where A is the noise amplitude and 𝜉i(t) has zero mean and 
correlation ⟨𝜉i(t)⊗ 𝜉j(t

�)⟩E = 1𝛿ij𝛿(t − t�) . We then rescale 
r⃗(t) = 𝜎r⃗nd(t∕𝜏)  ,  t = �tnd  ,  U({r⃗j}) = 𝜖Und({r⃗j∕𝜎})  , 
𝜉i(t) = 𝜉i,nd(t∕𝜏)∕

√
𝜏 , � = �nd∕� , and A = m�And∕�

3

2 , where 
� is a length scale, � = �

√
m

�
 a time scale, � an energy scale, 

and the subscript nd denotes a nondimensionalized quantity. 
(This subscript is omitted in the other sections and the fig-
ures.) We then obtain

As discussed in Sect. 10, it is useful to compare the strength 
of the noise used in our simulations to the values expected 
from current estimates of the GRW model parameters. For 
the purposes of testing Albert’s theory, it is good if the noise 
is “too large”, since we can thereby ensure that we are not 
overlooking any effects due to our “small” system size. An 
estimate of the order of magnitude is sufficient. The value 
of Dp in SI units is given by

In the Lennard-Jones potential, the parameters � and � meas-
ure the range and depth of the potential, respectively. To get 
concrete numbers, we take the example of argon, for which 
the parameters � and � take the values � = 3.4 ⋅ 10−10 m and 
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(C3)Dp =
A2
nd
�2�

2�2
.

� ≈ 1.657 ⋅ 10−21 J, respectively [140]. Moreover, the mass 
of an argon atom is m ≈ 6.634 ⋅ 10−26 kg [141], such that 
� ≈ 2.151 ⋅ 10−12 s. From Eq. (C3) and And = 10−4 (value 
used in the simulations13), we then find Dp ≈ 2.554 ⋅ 10−43 J2

s/m2.
For the simulation with damping, we have used a noise 

amplitude And = 10−4 (as in the undamped case) and a noise 
temperature Tn,nd = 0.5863 related to the noise amplitude via 
the fluctuation-dissipation relation A2

nd
= 2�ndTn,nd , which 

determines the dimensionless damping parameter �nd . For 
the example of argon, this corresponds to a physical value 
Tn = Tn,nd�∕kB = 70.356 K of the noise temperature.14

The dimensionless temperature Tnd (we here use 
T1 = 0.5335 and T2 = 0.6391 ) is defined as

with the dimensional temperature T, number of spatial 
dimensions d (we use d = 2 for the simulations), and dimen-
sionless velocity v⃗i,nd of the i-th particle. For argon, the tem-
peratures used here correspond to T1�∕kB = 64.02 K and 
T2�∕kB = 76.692 K.15

The local temperature is measured by the local kinetic 
energy density

(C4)Tnd =
kBT

𝜖
=

1

dN

N∑
i=1

v⃗2
i,nd

(C5)ekin(r⃗nd) =
1

2

N∑
i=1

v⃗2
i,nd

𝛿(r⃗nd − r⃗i,nd).

13  To achieve a good description of GRW effects in approximately 
classical fluids, we have chosen the noise amplitude in such a way 
that it is significantly larger than the numerical round-off error, but 
also significantly smaller than the typical order of magnitude of the 
force resulting from the particle interactions.
14  To avoid over- or undercooling the system, the dimensionless 
noise temperature Tn,nd was simply chosen as the average of T1 and T2 . 
This specific choice avoids the problem that (as discussed in Sect. 8) 
the presence of the noise field will in general lead to a temperature 
different from the thermodynamically expected one (an effect that 
is also interesting, but different from the one we wish to investigate 
here). It is difficult to give an estimate of the real value of Tn (assum-
ing that there is such a real value, i.e., that the dissipative GRW 
model is correct). Assuming that the noise has a cosmological ori-
gin, a value of about 1 K is reasonable [69]. Given that the damping 
parameter � is proportional to ℏ2∕Tn (see Sect.  7), this is already a 
“high” temperature in the sense that it leads to small damping. For 
our purposes, it is acceptable to choose a higher temperature since, 
due to the fluctuation-dissipation relation, this partially compensates 
for a too large value of Dp when calculating �.
15  This is below the freezing temperature for argon at normal condi-
tions (83.8 K) [141]. Note, however, that the freezing temperature is 
affected by the density and that the potential (B2) used here is not the 
exact interaction potential of argon. Nevertheless, since a Lennard-
Jones fluid is typically a good model for argon [140], the estimates 
for the orders of magnitude of Dp obtained for argon can be expected 
to be accurate.
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Moreover, the y-averaged local kinetic energy density shown 
in Sect. 1d is given by ⟨ekin⟩y = 1

L
∫ dyndekin(r⃗nd) . For the 

figures, the local kinetic energy density was calculated via a 
mass redistribution technique16.

The Fourier coefficients shown in Sect. 2 are defined as

where k⃗ = (2𝜋∕L)n⃗ with n⃗ ∈ ℕ
2 . The definition (C6) ensures 

that ẽkin(0⃗) = Tnd for d = 2 [see Eq.  (C4)]. In Fig. 2, we 
always set ky = 0 , such that k = kx = ‖k⃗‖.
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