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Abstract
We discuss boundary value problems for the characteristic stationary von Neumann equation (stationary sigma equation) and 
the stationary Wigner equation in a single spatial dimension. The two equations are related by a Fourier transform in the non-
spatial coordinate. In general, a solution to the characteristic equation does not produce a corresponding Wigner solution as 
the Fourier transform will not exist. Solution of the stationary Wigner equation on a shifted k-grid gives unphysical results. 
Results showing a negative differential resistance in IV-curves of resonant tunneling diodes using Frensley’s method are a 
numerical artefact from using upwinding on a coarse grid. We introduce the integro-differential sigma equation which avoids 
distributional parts at k = 0 in the Wigner transform. The Wigner equation for k = 0 represents an algebraic constraint needed 
to avoid poles in the solution at k = 0 . We impose the inverse Fourier transform of the integrability constraint in the integro-
differential sigma equation. After a cutoff, we find that this gives fully homogeneous boundary conditions in the non-spatial 
coordinate which is overdetermined. Employing an absorbing potential layer double homogeneous boundary conditions are 
naturally fulfilled. Simulation results for resonant tunneling diodes from solving the constrained sigma equation in the least 
squares sense with an absorbing potential reproduce results from the quantum transmitting boundary with high accuracy. 
We discuss the zero bias case where also good agreement is found. In conclusion, we argue that properly formulated open 
boundary conditions have to be imposed on non-spatial boundaries in the sigma equation both in the stationary and the 
transient case. When solving the Wigner equation, an absorbing potential layer has to be employed.

Keywords  Wigner equation · Neumann–Liouville equation · Characteristic von Neumann equation · Sigma equation · 
Quantum Liouville equation · Stationary · Algebraic constraint · Constrained Wigner equation · Open boundary 
conditions · Absorbing potential · Zero bias case · Non-spatial boundary

1  Introduction

Technology computer-aided design (TCAD) uses simula-
tions to aid in semiconductor product development. Quan-
tum transport models are indispensable to appropriately 
model modern devices and will further gain in relevance. 
The Wigner function method (WFM) [3, 24, 25] is based on 
a mathematical formulation of quantum mechanics which is 

formally close to a classical phase space description [5, 26]. 
This allows for flexible mixed quantum-classical models and 
makes it an attractive approach for many applications where 
only parts of the system need to be modeled fully quantum 
mechanically. For example, the Wigner function approach 
can incorporate classical boundary conditions (BCs), semi-
classical scattering models or classical force terms for the 
smooth part of the potential.

Quantum electron transport in modern semiconduc-
tor devices is described by a Wigner equation which is 
formally similar to the classical Liouville equation (also 
called Vlasov equation) [6]. Originally, the Wigner equa-
tion was used to simulate resonant tunneling diodes 
(RTDs) [4, 21]. Now that the active region of transistors 
is getting closer and closer to the de Broglie wavelength, 
quantum mechanical effects already affect many currently 
manufactured devices. Several practical applications of the 
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Wigner function method are demonstrated in the mono-
graph [17].

2 � Quantum distribution functions

Many key performance indicators of semiconductor 
devices are extracted from measured current-voltage char-
acteristics. Those characteristics can be simulated by the 
numerical solution of stationary partial differential trans-
port equations.

Stationary quantum transport is described by the Liou-
ville-von Neumann equation for the density function �(x, y)

Here, V(x) is the potential energy. We will always assume 
constant mass m and only deal with a single spatial dimen-
sion in this paper. From the density function �(x, y) , the 
Wigner function f(r, k) is defined as the result of two con-
secutive transformations described below.

2.1 � Sigma function (characteristic function)

First, we introduce new coordinates for the quantum density

Using these coordinates, the density matrix transforms into 
the sigma function

and the stationary von Neumann equation transforms into 
the stationary sigma equation

where the potential term U(r, s) is defined by

In a single spatial dimension, Eq. (3) is the characteristic 
hyperbolic form of the stationary von Neumann Eq. (1). The 
sigma function has the symmetry property

Its real part is an even function, the imaginary part is an odd 
function of s.
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Particle density and local current are given as

For practical simulation, a numerical cutoff parameter L in 
s-space has to be introduced which restricts s to an inter-
val [−L, L] symmetric around s=0 . This cutoff parameter is 
called the coherence length and is also used in the Wigner 
equation.

2.2 � Wigner function

The Wigner function f(r, k) is then derived from the sigma 
function �(r, s) via a Fourier transform in coordinate s

With these conventions, a wave function of the form 
�(x) = eik0x has a corresponding sigma function �(r, s) = eik0s 
and a Wigner function f (r, k) = �(k − k0).

Applying the Fourier transform (7) to the sigma equation 
(3) gives the stationary Wigner equation

Here, the Wigner potential Vw(r, k) is defined as the Fourier 
transform of U(r, s) divided by iℏ

The Wigner potential is a real function odd in variable k. For 
non-zero bias, it has a 1/k-pole at k=0 . Particle density and 
local current are given as

2.3 � Spatial boundary conditions

For open systems, classical inflow boundary conditions 
are imposed on the stationary Wigner equation (two-point 
boundary value problem)

Here, fL and fR are prescribed distributions in the left and 
right reservoir depending on temperature and the doping in 
the electrodes.

The existence and uniqueness of solutions to the station-
ary Wigner Eq.  (8) with inflow boundary conditions is a 
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f (rmax, k) = fR(k) (for k < 0).
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long-standing open problem even in a single spatial dimen-
sion [1, 14, 15].

2.4 � Formal classical limit

For the classical limit of the sigma equation, we rescale 
the difference coordinate s and introduce a new coordinate 
� = s∕ℏ . We label the function in rescaled coordinates as 
𝜎̃(r, 𝜏) = 𝜎(r,�𝜏).

With p = ℏk we have k s = p � and the Fourier transform of 
𝜎̃(r, 𝜏) is f̃ (r, p) . To perform the formal limit ℏ → 0 , we make 
the linear approximation

The stationary sigma equation becomes in this formal limit

where F(r) = −V �(r) is the force field. Equation (12) is the 
inverse Fourier transform of the stationary Vlasov equation

3 � Numerical solution on a shifted k‑grid

Frensley’s original method [4] uses a shifted k-grid exluding 
the point k=0 . Using a discrete Fourier transform, it is numeri-
cally much cheaper to solve for the solution in s-space where 
the equation is sparse in both coordinates, while the Wigner 
equation is not sparse in coordinate k. This has been under-
taken in [11, 12] and is discussed below. We use shooting 
methods to reduce the two-sided problem (inflow boundary 
conditions) to the one-sided case.

3.1 � Integral form and Goursat problem

Integrating both sides of Eq. (3) over a rectangular domain 
gives

The function �b(r, s) is a solution to the homogeneous sigma 
equation

and is fixed by boundary conditions of Goursat type (BCs 
�(r) , �(s) on two non-parallel characteristic lines forming 
an angle, see Fig. 1)
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Equation (14) is a two-dimensional integral equation of Vol-
terra type. Existence and uniqueness of the solution can be 
proved [2, 7, 22].

We can arrive at a solution in full s-space by solving two 
Goursat problems separately in upper and lower half space 
where solutions are matched through the shared boundary 
condition �(r) . In general, these solutions will not be L2
-integrable and the Fourier transform does not exist as an 
ordinary function.

There is a striking discrepancy between Goursat bound-
ary conditions and the boundary conditions for the Wigner 
equation. In the Wigner equation, no boundary conditions 
corresponding to �(r) are specified (however, compare the 
discussion in Sect. 6). The Wigner and the sigma equation 
are formally equivalent via Fourier transform. But existence 
of the Fourier transform as an ordinary function is a non-
trivial condition, and for this reason, the set of solutions to 
both equations is not in a simple bijective correspondence. 
This makes the mathematical analysis subtle.

3.2 � Shooting methods

The Wigner function on a shifted k-grid (2N points) is 
related via a discrete Fourier transform to a discrete sigma 
function on a non-shifted s-grid ( 2N+1 points) plus anti-
periodic boundary conditions in s-space [16].

The one-sided boundary value problem with spatial 
boundary conditions �(s) for �(r, s) given on an s-line (r0, s) 
and anti-periodic boundary conditions �(r, L) = −�(r,−L) 
can be reduced to the case of Goursat type boundary value 
problems by splitting � into even and odd part and solving 
two separate equation systems in half space. The odd part 
fulfills �o(r, 0) = 0 and the even part fulfills �e(r, L) = 0 . 
Hence, the one-sided problem with anti-periodic boundary 
conditions is also well-posed.

(16)�b(r, s) = �(r) + �(s) − �(0), �(0) = �(0).

Fig. 1   Goursat boundary conditions are given on two non-parallel 
characteristic lines (angle)
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In the Wigner equation, usually two-sided inflow bound-
ary conditions are given which can be imposed in the sigma 
equation via the discrete Fourier transform. Existence and 
uniqueness of the solution to the two-sided inflow problem 
has been proved in [1] for the discrete Wigner equation on 
a shifted k-grid. The same problem formulated in s-space 
is equivalent via the discrete Fourier transform and also 
well-posed.

The two-sided problem can be reduced to the solution 
of the one-sided problem using shooting methods (both for 
the sigma and the Wigner equation). In this way, no system 
matrix has to be stored, the method can easily be parallelized 
and numerical solution for very dense meshes is practical.

3.3 � Failure of Frensley’s method

The shooting method for the sigma equation with non-spatial 
anti-periodic boundary conditions was presented in [11]. No 
simulation results have been included in [11], as simulation 
results from the sigma equation did not reproduce the nega-
tive differential resistance expected in the simulation of IV-
curves for resonant tunneling diodes and an implementation 
error could not be excluded.

The reason for the failure was not readily understood until 
further work was performed which is included in [10, 12]. It 
turned out that simulation results which showed no negative 
differential resistance were actually numerically correct. In 
the case of the sigma equation, the mesh spacing (Δr , Δs) 
can be repeatedly refined until the solution does no longer 
change significantly and a numerical limit is reached. If the 
discrete Wigner equation is solved without upwinding using 
the same meshing parameters, we immediately closely repro-
duce the solution from the sigma equation showing no nega-
tive differential resistance in the IV-curve.

In contrast, IV-curves calculated using Frensley’s method 
show a wished-for negative differential resistance. However, 
in Frensley’s method, upwinding is used which introduces a 
huge discretization error in variable r. In the numerical limit, 
the solutions with and without upwinding have to agree. 
When using upwinding, the limit solution is only reproduced 
if the mesh is further refined in coordinate r as this reduces 
the discretization error. This was accomplished in [12] using 
shooting methods. With refinement in r, the solution with 
upwinding slowly converges towards the solution without 
upwinding. A very dense r-mesh has to be used. For illustra-
tion, the example from [12] (Fig. 2 in the original) is repro-
duced here in Fig. 2.

We conclude that the negative differential resistance 
shown in simulations of IV-curves for RTDs based on Frens-
ley’s method is nothing but a numerical artefact stemming 
from the use of upwinding on a coarse mesh. Furthermore, 
we noticed strong negative concentractions near k=0 in 

simulation results. It is these observations which motivated 
this work.

4 � Wigner equation at k = 0

In a single spatial dimension, Eq. (8) can be rewritten for 
k ≠ 0 as

The latter form emphasizes the fact that the Wigner equation 
becomes singular at k=0 , which complicates its analysis. 
We can derive two equations for k=0 which are mathemati-
cally of different character: 

1.	 Setting k=0 in Eq. (8) gives the following integrability 
constraint

(17)

�f (r, k)

�r

=
1

k

m

ℏ � f (r, k − k�)Vw(r, k
�)dk� (∀k ≠ 0)

(18)∫ f (r,−k�)Vw(r, k
�)dk� = 0.

Fig. 2   The upper dotted black line represents the IV-curve for a RTD 
obtained from numerical solution of the Wigner equation without 
upwinding (resp. sigma equation with anti-periodic boundary condi-
tions) calculated using N

r
= 800 points. The solid red lines are the 

IV-curves obtained from Frensley’s discretization using upwinding. 
The grid is refined from N

r
= 800 up to N

r
= 102400 . With refine-

ment of r the solutions slowly converge towards the solution without 
upwinding showing no negative differential resistance (Color figure 
online)
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 In this degenerate case, the left hand side in Eq. (8) 
vanishes and we do not get a differential equation. This 
special case is called an algebraic constraint in [1, 15] 
and is needed to avoid poles on the right hand side of 
Eq. (17). The integrability constraint has also a physical 
interpretation in the particle picture: The total potential 
inscattering rate at k=0 must vanish in the steady state.

2.	 If constraint (18) is fulfilled, then we can take the limit 
k → 0 in Eq. (17). This gives the “transport” equation at 
k=0

 Here, fk(r, k) =
�f (r,k)

�k
 denotes the first order derivative 

of f(r, k) with respect to k. Alternatively, Eq. (19) can 
be derived by differentiating both sides of Eq. (8) with 
respect to k and then setting k=0.

Derivation of the equations at k=0 assumes some regular-
ity of f(r, k), respectively, its partial derivatives near k=0 , 
symbolically written as

Two equations at p = 0 can be derived also in the classical 
case. By setting p = 0 in (13), we get

as the classical version of the quantum integrability con-
straint (18). Differentiating both sides of Eq.  (13) with 
respect to p, we get the equation

as the classical version of the transport Eq. (19).
The Wigner potential is odd in k, and in the station-

ary Wigner equation  even and odd part only couple 
through inflow boundary conditions. The integrability 
constraint (18) only concerns the odd part of the Wigner 
function, while the transport equation at k=0 (19) only 
concerns the even part. As the (inverse) Fourier transform 
conserves parity, this parity analysis transfers to the sigma 
equation.

In this work, we use the quantum transmitting bound-
ary method (QTBM) [13] for comparison with the Wigner 
function method. The Schrödinger modes occurring in the 
QTBM solution represent unnormalizable states. Their 
Wigner transform can be calculated analytically for simple 
potentials (e.g., potential step and barrier structures in 1D) 
and in general contains distributional parts. When summed 
up according to the distribution of incoming modes, the 

(19)
�f (r, 0)

�r
=

m

ℏ ∫ fk(r,−k
�)Vw(r, k

�)dk�.

(20)kfr(r, k)
|||k=0

= 0

(21)kfrk(r, k)
|||k=0

= 0.

(22)f̃p(r, 0)F(r) = 0

(23)f̃r(r, 0) = −mF(r)f̃pp(r, 0)

distributional parts are smoothed out and the resulting over-
all Wigner function does not contain distributional parts.

Here, the zero bias case (see Sect. 6) is exceptional 
because for each QTBM mode �(k)-singularities appear 
in its Wigner transform. Consequently, for zero bias, the 
Wigner transform of the full QBTM solution may contain 
distributional parts �(k) . For non-zero bias, the Wigner 
transform of each QTBM mode is found to be smooth at 
k=0 fulfilling both Eq. (18) and Eq. (19) in the appropri-
ate sense.

5 � Constrained equation

Solution of the Wigner equation on a shifted k-grid does 
not produce physically meaningful results as discussed in 
Sect. 3. Using a shifted k-grid, we can derive a discrete form 
of the transport equation at k=0 (19) by subtracting the dis-
crete equations for Δk∕2 and −Δk∕2 . But those solutions 
violate the integrability constraint (18).

A natural attempt to repair this is to include k=0 in the 
mesh which incorporates the integrability constraint. Using 
a suitable discrete inverse Fourier transform [16], this cor-
responds to periodic boundary conditions in s-space. Unfor-
tunately, the sigma equation with periodic boundary con-
ditions (and hence also the corresponding discrete Wigner 
equation) is ill-posed. This can be seen by a parity splitting: 
The odd part fulfills boundary conditions �o(r, 0) = 0 and 
�o(r, L) = 0 (overdetermined), while for the even part, we 
get no boundary conditions at all (underdetermined).

The equation for the even part can be made well-posed by 
imposing �e(r, L)=0. Together with �o(r, L) = 0 this implies 
�(r, L) = �(r,−L) = 0 , i.e., double homogeneous boundary 
conditions. With double homogeneous boundary conditions, 
the sigma Eq. (3) is overdetermined and we refer to it as the 
constrained sigma equation.

Both periodic and anti-periodic boundary conditions are 
linked to the stationary Wigner equation at k=0 which is 
further discussed below. 

1.	 The integrability constraint on a finite interval becomes 

 Integrating both sides of the sigma Eq. (3) over a finite 
s-interval [−L, L] and using (24) 

resu l t s  in  pe r iod ic  boundar y  cond i t ions 
�r(r, L) = �r(r,−L).

(24)∫
L

−L

U(r, s)�(r, s)ds = 0.

(25)�r(r, L) − �r(r,−L) =
m

ℏ2 ∫
L

−L

U(r, s)�(r, s)ds = 0
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2.	 Consider the stationary Wigner equation written in the 
singular form 

 Taking the inverse Fourier transform of Eq. (26) gives 
what we call the integro-differential sigma equation 

 where sgn denotes the sign function.
	   In s-space there is a priori no unique antiderivative, 

the antiderivative is undefined by an additive constant. 
The derivative �

�s
 turns into multiplication with ik in 

k-space. This operation has a canonical inverse opera-
tion in k-space, namely division by ik , because we do not 
allow for distributional parts �(k) in the Wigner function. 
This is tacitly assumed in Eq. (26).

	   By splitting the integral on the right hand side of 
Eq. (27) 

 we see that this expression picks out a specific anti-
derivative H(s) of a function h(s), in particular the arith-
metic mean of upper and lower antiderivative.

	    Restricting the integro-differential sigma Eq. (27) to 
a finite s-domain [−L, L]

 results in anti-periodic boundary conditions 
�r(r, L) = −�r(r,−L).

It follows that �r = 0 and � is constant on the s-boundaries. 
The only reasonable choice for the integration constant is 
to set

on a s-domain symmetric around s=0 , i.e., fully homoge-
neous boundary conditions. Fully homogeneous boundary 
conditions have been motivated by inverse Fourier transform 
of the integrability constraint (18) and the transport equa-
tion at k=0 (19) in [10]. When solving the Wigner equation 
in k-space on a shifted k-grid, one has to incorporate the 
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(31)�(r, L) = �(r,−L) = 0

integrability constraint (18) which also results in an overde-
termined system (constrained Wigner equation).

6 � Zero bias case

It has to be pointed out that the zero bias case is exceptional. 
At zero bias, independent of the energy, the Wigner func-
tion resulting from a single Schrödinger mode (as used in 
the QTBM method) has a singularity at k=0 which stems 
from the long range correlation between the reflected and 
the transmitted part of the mode.

All the Wigner functions from the stationary Schrödinger 
modes contain distributional parts at k=0 which are not 
smoothed out when modes are summed up. If distributional 
parts at k=0 are allowed in the solution, then multiple solu-
tions may actually exist.

A related kind of critique has been raised in the papers 
[18] and [23]. The authors claim a “failure of conventional 
boundary conditions” and suggest that the inflow boundary 
value problem might have multiple solutions. We note that 
those papers fail to identify the more fundamental cause 
of numerical problems (proper non-spatial open boundary 
conditions need to be employed, see Sect. 8).

Specific examples discussed by [18] use a symmetric and 
periodic potential, hence zero bias. In the zero bias case, the 
Wigner potential Vw(r, k) is not singular at k=0 and we may 
allow for �(k)-terms and also for 1/k-poles in the solution 
f(r, k). Using the ansatz

in the Wigner Eq. (8), we get the Wigner equation for h(r, k)

Here, we have defined Ṽw =
m

�
Vw . In the ansatz (32) the 

function c(r) can be freely chosen and acts like a boundary 
condition on the line k=0 (i.e., an analogue of Goursat type 
boundary data). The integrability constraint (18) will in gen-
eral not be fulfilled by the solution if we allow for poles 1/k.

In the zero bias case, the solution to the stationary Wigner 
equation is non-unique. Here, the right choice of a func-
tional space could help to filter out the relevant solution for 
the boundary value problem. Our numerical strategy is to 
assume an equilibrium distribution function without distri-
butional parts or poles at k=0 , and in this work, we always 
impose the constrained sigma equation.

(32)f (r, k) = c(r)�(k) +
h(r, k)

k

𝜕h(r, k)

𝜕r
= c(r)Ṽw(r, k) + ∫

h(r, k − k�)

k − k�
Ṽw(r, k

�)dk�.
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7 � Simulation results

The constrained Wigner equation has first been introduced 
in [12]. Solving the constrained sigma equation in a least 
squares sense gives reasonable but not completely satisfac-
tory results [10]. The natural way to incorporate double 
homogeneous boundary conditions is by employing an 
absorbing potential layer as recently introduced in [20]. 
This has the effect of damping down the solution near the 
non-spatial boundary. The imaginary potential is chosen as 
an even function in s and we still get a real Wigner poten-
tial which can be employed when solving the Wigner equa-
tion. The absorbing potential couples even and odd parts 
of the equation inside the simulation domain which oth-
erwise only couple through inflow boundary conditions.

In [8], a spectral method for the constrained sigma 
equation with an absorbing potential layer has been pre-
sented. This amounts to a discrete solution of the con-
strained Wigner equation in k-space. Memory require-
ments are huge and a special direct linear solver had to be 
implemented for the solution.

Below we present simulation results from solving the 
constrained sigma equation (double homogeneous bound-
ary conditions) with an absorbing potential layer using 
finite differences. The corresponding discrete equation 
is sparse in both variables and memory requirements are 
much lower than if solving in k-space. The aim in this 
work is to investigate whether the constrained equation 
reproduces the solution from the QTBM in the numerical 
limit (fine mesh).

We use an orthogrid symmetric around s=0 including 
s=0 and a stencil

for the unit square.
Given � on the boundary, we calculate f on the boundary 

via the discrete Fourier transform and then impose inflow 
boundary conditions exactly as in Frensley’s method on 
a shifted k-grid. As we are solving an overdetermined 
system, there is a freedom to choose equations which are 
imposed as strict constraints and which equations are only 
fulfilled in a least squares sense. In our over-determined 
method, the inflow boundary conditions are imposed as 
strict constraints.

The overdetermined system is then solved in a least 
squares sense with constraints exactly fulfilled. Mathe-
matically this represents a quadratic programming prob-
lem with linear equality constraints. For the solution, we 

(33)

�(0, 0) + �(1, 1) − �(0, 1) − �(1, 0)

=
1

4

m

ℏ2

1∑

i=0

1∑

j=0

U(i, j)�(i, j)

use the method described in [8] which avoids the explicit 
building of normal equations.

The numerical method is evaluated by simulating a 
GaAs/AlGaAs RTD and comparison with the quantum 
transmitting boundary method which we take as the ref-
erence model. The RTD structure used in the simulation 
is depicted in Fig. 3, it consists of a 4.5 nm-wide GaAs 
quantum well and 2.8 nm-wide AlGaAs barrier layers. The 
barrier height is 0.27 eV.

In order to get a good fit to QTBM a coherence length 
of at least 120 nm and a mesh spacing Δr < 0.1 nm should 
be employed. Here, we consider an even larger coherence 
length of 170 nm and a mesh size of Nr=6000,Ns=5601 
with Δs = 2Δr . The length of the electrodes used in the 
simulation is 85 nm (half the coherence length). The coher-
ence length and the mesh size have been chosen in order to 
study the method in the limit of a large coherence length 
and a fine mesh.

An absorbing layer is employed at upper and lower 
s-boundary. We use an imaginary quadratic potential with 
maximum value at the boundary corresponding to a bias 
of 2 V. Each absorbing layer comprises 10% of half the 
s-domain.

Simulation results for particle density are depicted in 
Fig. 4. In general, the fit with QTBM is very good. For zero 
bias, we see a small deviation in the density at the center of 
the well but also in this case the fit is still good.

In order to demonstrate the numerical capability of the 
method, we simulate up to a high bias which is beyond the 
usual operating conditions of the device. In Fig. 5, we see 
a weak second resonance in the IV-characteristics for both 
QTBM and sigma function method. The fit between both 
methods is excellent.

Fig. 3   Structure of the resonant tunneling diode with two AlGaAs 
barrier layers as used in simulations. In the plotted example, a bias of 
−0.1 V is assumed
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8 � Conclusion

Frensley’s method [4] uses a shifted k-grid which ignores 
the integrability constraint (18). Results showing a negative 
differential resistance when simulating IV-curves of reso-
nant tunneling diodes are an artefact of numerical diffusion 
(upwinding) using a too coarse mesh. The method breaks 
down in the limit of a fine mesh [10].

In order to avoid a singularity at k=0 , the integrability 
constraint has to be incorporated when solving the station-
ary Wigner equation. The integro-differential sigma equa-
tion  (27) avoids distributional parts in the Wigner trans-
form at k=0 . We impose the inverse Fourier transform of 
the integrability constraint in the integro-differential sigma 
equation. After a cutoff, double-homogeneous boundary 
conditions are derived.

To get results closely reproducing QTBM, an absorb-
ing potential layer has to be employed. When using an 
absorbing potential, double homogeneous boundary con-
ditions are naturally fulfilled and results from QTBM are 
reproduced with high accuracy. In the zero bias case, a 
solution to the stationary Wigner equation may contain 
distributional parts at k=0 . Exemplary simulation results 
still show a good fit for the density n(x) between QTBM 
and our method.

We want to stress that it is not necessary to actually 
solve an overdetermined system (neither for the sigma nor 
for the Wigner equation). Results presented in [20] dem-
onstrate that combining an absorbing potential with anti-
periodic boundary conditions gives good results closely 
reproducing results from QTBM. We have also experi-
mented with combining an absorbing potential and peri-
odic boundary conditions which again gives good results 
in numerical simulations but will not be further discussed 
here.

The overall insight from these studies is that proper 
open boundary conditions should be employed on non-spa-
tial boundaries when solving the stationary sigma equation 
(characteristic Neumann equation). Analysis of the two 
equations for k=0 [10] has been a detour to arrive at this 
conclusion. An alternative formulation (not based on an 
absorbing potential and not overdetermined) of non-spatial 
open boundary conditions for the sigma equation has been 
suggested in [9].

We point out that the considerations above concern 
the stationary case as well as the transient case. Transient 
simulation of RTDs using an absorbing potential is dem-
onstrated in [19]. In transient simulations, the absorb-
ing potential avoids artificial reflections on non-spatial 
boundaries. The requirement to impose properly formu-
lated open boundary conditions is in line with simulation 

(a) (b)

Fig. 4   Particle density in the active region of the RTD depicted in Fig. 3 for different biases comparing QTBM and constrained sigma equation. 
The dashed black lines indicate potential energy

Fig. 5   Simulation of the current-voltage curve for the same reso-
nant tunneling structure as used for Fig.  4. Again, good agreement 
between the solution based on the constrained sigma equation and the 
QTBM solution
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of wave-like phenomena in various application domains, 
for example electromagnetic phenomena. Using an absorb-
ing potential layer non-spatial open boundary conditions 
are conveniently incorporated in the transient/stationary 
Wigner equation.
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