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Abstract
In order to describe quantum mechanical effects, the use of the von-Neumann equation is apparent. In this work, we present 
a unified numerical framework so that the von-Neumann equation in center-of-mass coordinates leads to a Quantum Liou-
ville-type equation when choosing a suitable basis. In particular, the proposed approach can be related to the conventional 
Wigner equation when a plane wave basis is used. The drawback of the numerical methods is the high computational cost. 
Our presented approach is extended to allow reducing the dimension of the basis, which leads to a computationally efficient 
and accurate subdomain approach. Not only the steady-state behavior is of interest, but also the dynamic behavior. In order 
to solve the time-dependent case, suitable approximation methods for the time-dependent exponential integrator are neces-
sary. For this purpose, we also investigate approximations of the exponential integrator based on Faber polynomials and 
Krylov methods. In order to evaluate and justify our approach, various test cases, including a resonant tunnel diode as well 
as a double-gate field-effect transistor, are investigated and validated for the stationary and the dynamic device behavior.

Keywords  Computational nanotechnology · Transient quantum transport · Wigner transport equation · Numerical 
methods · Time integration techniques · Exponential integrators.

1  Introduction

For the analysis of quantum transport, the focus has been 
on the study of numerical methods for solving Quantum 
Liouville-type equations in recent years, because interaction 
effects could be appropriately integrated in these models. 
Above all, there is the possibility of numeric and efficient 
analysis of not only stationary but also dynamic processes 
[1–3]. As an alternative, the non-equilibrium Green’s func-
tion (NEGF) formalism is very widespread, but is associated 
with difficulties when dynamic or transient algorithms are 
implemented, especially with regard to memory require-
ments [4]. Therefore, the study of numerical methods for 
solving time-dependent Quantum Liouville-type equations 
is of particular interest.

The Wigner formalism provides a broad basis in terms 
of a phase space formulation [5]. The investigation of elec-
tronic properties is inherently combined with the numerical 

solution of the Wigner equation, which results in a quasi-
distribution function known as the Wigner function [2, 3]. 
Along with the quasi-distribution function, the electronic 
properties can be efficiently determined.

The approximation of Quantum Liouville-type equations 
has hitherto been associated with some difficulties, which 
were linked with the integration of boundary conditions 
[6–10] and the discretization methodologies [6, 11] used. 
As a consequence, the results deviate on a large scale from 
reference approaches such as the NEGF approach [10–13]. 
Additionally, highly oscillating functions within the phase 
space [14, 15] occur, which hinder the computationally 
efficient solution of the Wigner equation depending on the 
quality of the numerical approximation. The latter aspect 
is of particular interest, when quantum effects are promi-
nent. Unfortunately, to resolve all the features within the 
Wigner methodology by the use of conventional numerical 
approaches, an extremely fine computational grid is needed 
resulting in large linear systems of equations. Even worse, 
the linear system has to be solved several times along with 
the Poisson equation for quantum self-consistency.

To overcome these limitations, a real space formulation 
of the Liouville equation is preferable [12, 16, 17]. With 
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these new approaches, such as the introduction of a com-
plex absorbing potential (CAP) and a spatial discretization 
based on a norm conserving approximation of the spatial 
exponential integrator, the previous problems of unphysi-
cal reflections and an overestimation of diffusion effects are 
avoided [10, 13]. Consequently, the investigations herein are 
carried out with the approach presented in [10, 13]. The 
approaches presented in [12, 16] are based on the expansion 
of the statistical density matrix in terms of the eigenvectors 
of the diffusion matrix for the case of a simplified Hamilto-
nian assuming a spatially constant effective mass distribu-
tion, which seems to be the standard model for numerical 
investigations of the Wigner equation, e.g. [14, 17–22]. In 
[23, 24], the approach has been analyzed with regard to 
plane wave functions spanning the numerical basis, which 
become particular important when multiband transport has 
to be considered or the spatially varying effective mass has 
to be taken into account.

In this paper, we show that after a spatial discretization 
and subsequent transformations, the von-Neumann equation 
in center-mass coordinates is transformed into a Quantum 
Liouville-type equation. We show that a formal relation to 
the Wigner equation can be established when using a trans-
formation with basis functions representing plane waves. 
Moreover, a subdomain approach based on [23] is inves-
tigated by successively reducing the set of basis functions 
used to expand the statistical density matrix. This approach 
is necessary so that together with a suitable subset of the 
original complete set of basis functions, the solution proce-
dure can be significantly improved in terms of computational 
efficiency. In order to describe high-frequency behavior or 
switching processes of components, dynamic calculations 
are needed. To this end, this paper also examines approaches 
for the dynamic solution of the Quantum Liouville-type 
equation that allow a parallelization of the algorithms.

The manuscript is organized as follows. The proposed 
methodology is presented in chapter 2. Herein, the von-Neu-
mann equation is introduced (2.1) followed by the presentation 
of the expansion technique (2.2). Afterward, the connection 
with the Wigner approach is discussed in detail in Sect. 2.3. 
Finally, the structure of the system matrix and the required 
boundary conditions are briefly discussed (2.4). Based on 
these aspects, the subdomain approach is validated in chapter 3 
using several simulation examples in the stationary regime, 
covering different devices such as a GaAs-based resonant tun-
nel diode (RTD) (3.1) and a GaInAs-based double-gate field-
effect transistor (DGFET) (3.2). The results are compared 
with those of a Green’s function approach, which serves as 
a reference method. Efficient and accurate methods for the 
time-dependent solution are discussed in chapter 4. First, the 
scheme with its time-dependent exponential integrator is pre-
sented (4.1). Special attention is paid to methods that allow 
numerically stable and, most importantly, explicit methods 

(4.2). Thus, such methods can be implemented allowing par-
allelized algorithms. The eigenvector expansion method is pre-
sented, which serves as a reference method since it is based on 
an analytical solution of the matrix exponential (4.2.1). Since 
the eigenvectors and eigenvalues of the system matrix must 
be calculated, this approach leads to an accurate evaluation 
of the matrix exponential. Next, a Crank–Nicolson scheme is 
presented (4.2.2). This implicit method is widely used and is 
included for completeness. In particular, explicit approaches 
based on Faber polynomials (4.2.3) and commonly used Kry-
lov approaches (4.2.4) are presented and evaluated with regard 
to their potential to solve Quantum Liouville-type equations. 
After a detailed presentation of their approximation, a brief 
validation is performed using test examples (4.3). An analy-
sis of the dynamic regime is then undertaken in chapter 5 by 
examining a class-C operation of a DGFET (5.1) and also con-
sidering a simplified electron–phonon scattering mechanism 
to show that non-ballistic effects can also be included when 
using the proposed concept (5.2). The presentation ends with 
a summary and conclusion in chapter 6.

2 � Quantum transport theory

2.1 � Von‑Neumann equation

For demonstration purposes, the one-dimensional transport 
behavior is investigated utilizing an effective mass Hamil-
tonian. In addition, the effective mass is assumed to be spa-
tially constant with regard to the comparison of the proposed 
approach to the conventional Wigner equation, where the 
homogeneous effective mass case seems to be the standard, 
see, e.g. [3, 18].

The von-Neumann equation, i.e., based on the coordinates 
r and r′ is transformed introducing center-mass coordinates 
according to � = (r� + r)∕2 and � = r� − r  . Then, the von-
Neumann equation in center-mass coordinates reads as

where the function B(� , �, t) contains the potential energy 
and � represents the statistical density matrix. The potential 
energy includes the static conduction band, the self-con-
sistent Hartree potential and the externally applied bias all 
of them contained in V as well as the complex absorbing 
potential (CAP) jW

The CAP is introduced in order to suppress artificial reflec-
tions caused by the finiteness of the computational domain 
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with regard to the �-direction [12]. The use of the CAP can 
be explained as follows. After the Wigner transformation 
related to a finite space is carried out, a surface term is 
obtained [12]. The neglect of the surface term corresponds 
to the mathematical formulation of Dirichlet boundary 
conditions for the statistical density matrix. This bound-
ary condition corresponds to a termination of the computa-
tional domain with a perfectly reflective layer. As a result, 
the portions of the statistical density matrix incident on the 
boundary are reflected and subsequently superimposed on 
the original solution leading to unphysical solutions. The 
basic idea behind the complex potential is the introduction of 
an artificial layer at the edges of the computational domain. 
Within these layers, an additional term is added onto the 
potential, which contains a complex potential jW(�) . This 
complex potential causes a decaying behavior of the statis-
tical density matrix within the layers, so that reflections at 
the edges of the computational domain can be significantly 
reduced.

Following the approach in [12], an equidistant standard 
finite volume scheme with regard to the �-direction is uti-
lized to discretize the von-Neumann equation (1). Hereby, 
the interval [−L�∕2,+L�∕2] is subdivided into N� cells with 
a volume �� . Finally, the von-Neumann equation results in a 
semi-discrete system of coupled partial differential equations

where the abbreviations cA = jℏ∕(2m��) and cB = jq∕ℏ are 
introduced. The vector �(� , t) contains the values of the dis-
cretized locations �j . For the evaluation of the so-called dif-
fusion matrix A , the central flux is chosen with regard to 
coherence effects [12] so that the nonzero matrix elements 
Ai,j of the matrix A are defined by Ai,i+1 = 1 and Ai,i−1 = −1 . 
The application of the trapezoidal rule leads to a tridiagonal 
drift matrix B(�) , with the nonzero elements Bi,i given by 
Bi,i(� , t) = 1∕4

(
B(� , �

i−
1

2

, t) + B(� , �
i+

1

2

, t)
)

 a n d 
Bi,i±1(� , t) = 1∕4 ⋅ B(� , �

i±
1

2

, t) , where the values �
i±

1

2

 repre-
sent the locations of the interfaces of the i-th cell. Further-
more, for the comparison with the Wigner equation, the 
midpoint rule is also considered leading to a diagonal drift 
matrix, where the diagonal element functions are 
Bi,i(� , t) = B(� , �i, t).

2.2 � Quantum Liouville‑type equations

Unfortunately, the open boundary conditions required for 
quantum transport described by the von-Neumann Eq. 
(3) are unknown in real space. To address this aspect, 
the proposed approach adopts the inflow boundary condi-
tion scheme stemming from the Wigner formalism. The 

(3)
�

�t
�(� , t) = cAA

�

��
�(� , t) − cBB(� , t)�(� , t),

distinction between forward and backward waves within 
the Wigner formalism emerges naturally. To establish 
such distinction within the von-Neumann equation, a 
basis transformation is needed. Along with this basis 
transformation, the Quantum Liouville-type equations 
arise.

Introducing the basis vectors �n as well as the corre-
sponding expansion coefficients cn , the semi-discrete sta-
tistical density matrix can be expanded on the basis of N 
basis vectors �n defined by

The matrix � contains the discretized basis functions col-
umn wise and c includes the corresponding expansion coeffi-
cients. The choice of the expansion order N is discussed later 
on. The basis functions can always be chosen such that they 
are orthonormal �†

n
⋅�m = �n,m so that the vector of expan-

sion coefficients c(� , t) can be easily determined by solving

To summarize, the system is discretized with regard to the 
�-direction within the real space. As a consequence, inter-
face conditions can be spatially local considered in terms of 
numerical flux functions.

In order to arrive at the Quantum Liouville-type equa-
tions, the basis expansion (4) is applied onto the semi-
discrete von-Neumann Eq. (3). Then, this equation is mul-
tiplied with the Hermitian conjugate of the matrix of the 
basis functions �† resulting in

The diffusion matrix A as well as the drift matrix B have 
a dimension of N� × N�  , whereas the matrix of the basis 
vectors � shows a dimension of N� × N  . As a result, the 
transformed matrices �†

A� and �†
B(�)� show a dimen-

sion of N × N  , which constitutes the subdomain formulation.
Along with the approaches presented in [12, 16], the 

basis is spanned utilizing all eigenvectors of the diffusion 
matrix A so that no reduction in the computational effort 
can be expected if the expansion order N could be chosen 
according to N = N�  . For the particular case of a constant 
effective mass, they can be analytically determined and 
are given by [16]

This transformation matrix diagonalizes the diffusion matrix 
leading to the corresponding eigenvalues

(4)�(� , t) =
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As mentioned, the value N� indicates the number of cells 
within the �-direction. In case, a symmetric discretization 
pattern is chosen, in which the discretized mean value of 
�(� , t) at the location � = 0 is included, N� represents an 
odd number.

A major prerequisite for the application of the inflow 
boundary condition scheme [1] is the assignment of the 
flow characteristic [16]. For this purpose, a symmetri-
cally distributed eigenvalue spectrum is constructed on 
the basis of the signs of the eigenvalues. Herein, the value 
zero within the symmetrically distributed eigenvalue spec-
trum in �n as well as kn has to be excluded as usual in order 
to avoid singularity issues [21]. Accordingly, the number 
of basis functions N utilized to expand the semi-discrete 
statistical density matrix has to be even.

Besides, the transformation matrix � can be spanned 
by discretized plane wave basis functions, which then 
transform the von-Neumann equation into some kind of 
phase space representation. Here, the basis functions are 
defined as

with the variable k given by

to fulfill the orthogonality requirement. Along with this 
plane wave basis, the implementation of scattering mecha-
nisms becomes naturally facilitated. The variable k can be 
readily identified with the quantum mechanical momentum 
such that the flow behavior can be linked to the sign of k, 
which is, as aforementioned, a major prerequisite for the 
application of the inflow boundary condition scheme. On 
this basis, the advantages of the real space discretization can, 
therefore, be combined with the advantages of a direct phase 
space approach. Apart from that, subdomain approaches can 
be established.

Since the major quantum transport takes only place 
within a narrow energy window near the Fermi level, it 
is convenient to include just this region in the numerical 
calculations. Within the recognized methods based on the 
NEGF formalism [4], a constant energy is added to the 
band edge energy in the simplest case at each contact of 
interest conceptually leading to the value Emax . Along with 
the energy dispersion, this leads to an upper limit kmax , as 
well, which can be determined by using the relation

(8)�n = 2j cos

(
�n
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)
.
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√
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)
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(
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2
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)

Now, the expression (10) is exploited to establish an inter-
relationship between the length L� and the corresponding 
value of kmax by

2.3 � Relation to the Wigner equation

The proposed approach can be linked to the conventional 
Wigner Eq. [3], for which the matrix elements have to be 
evaluated analytically for the case of the basis spanned by 
plane wave functions.

The elements of the transformed diffusion matrix are 
given by

From the physical point of view, the matrix elements cor-
respond to the velocities. These velocities consist of two 
different portions as apparent from (13). The first term can 
be assigned to the numerical dispersion of the underlying 
finite volume scheme. In particular, it can be interpreted as 
the velocity of the eigenvector excluding external effects. 
The second term can be regarded as a crosstalk due to the 
remaining eigenvectors. This term is in addition strongly 
coupled to the boundaries of the computational domain in 
terms of the length L� . In the limit L� → ∞ , the latter term is 
zero-valued and the theoretical error due to the finite compu-
tational domain is zero-valued, too. When the limit �� → 0 
is additionally considered, the overall term converges toward

which exactly coincides with the values of the discretized 
diffusion matrix within the conventional Wigner formalism 
[3].

Furthermore, the transformed drift matrix can be related 
to the discretized drift operator within the Wigner formal-
ism according to

For simplicity, the midpoint rule is considered for the evalu-
ation of the discretized drift operator. Exploiting the inter-
relationship of (10), namely �k = 2�∕L� , the matrix element 
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coincides exactly with the approximated integral kernel 
within the drift operator [3].

As a consequence, the vector of expansion coefficients 
c(� , t) can be formally related to the semi-discrete Wigner 
function and the properties of the Wigner formalism can be 
retained. But, the proposed scheme is combined with a more 
flexible discretization of the real space, as aforementioned.

Nonetheless, these advantages come at a price, due to the 
numerical dispersion, which is proportional to sin(k��) . This 
proportionality represents a periodical projecting of the basis 
vectors onto their corresponding velocity.

With regard to the continuum solution given by (15), the 
numerical dispersion should be at least restricted to allow only 
one specific basis vector per velocity. As a result, the follow-
ing condition | sin(kmax𝛥𝜉)| < 1 should hold for the maximum 
value kmax included within the plane wave functions. Utilizing 
(10), an expression for kmax = �∕L�(N − 1) is found leading to

To fulfill this condition, the argument must be smaller than 
�∕2 in its absolute value so that

holds. When this condition is violated, numerical instabili-
ties arise. To avoid this restriction, higher order methods 
with regard to the discretization of the �-direction proved 
to be successful. However, that aspect is beyond the scope 
of this work and represents a topic for future discussions.

2.4 � Matrix assembly and boundary conditions

To solve the Quantum Liouville-type equations, the �-direc-
tion must be discretized and boundary conditions have to be 
included. Although, the procedure is discussed in depth in 
[12], the fundamentals are briefly outlined in the following.

To start with, the discretization with regard to the �-direc-
tion is carried out. The computational domain with regard to 
the �-direction is subdivided into N� cells within the interval 
[0, L� ] . The interface values of the i-th cell are given by �i and 
�i+1 . Furthermore, the abbreviations

are introduced enabling a compact notation. Herewith, the 
discretization procedure results in

(16)
|||||
sin

(
𝜋

N𝜉

(N − 1)

)|||||
< 1.

(17)N − 1 ≤ N�

2

A = cA�
†
A� and B(� , t) = cB�

†
B(� , t)�

(18)
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�t

ci+1(t) + ci(t)

2
= A

ci+1(t) − ci(t)

��

−B
i+

1

2

(t)
ci+1(t) + ci(t)

2

for the i-th cell, where ci is located at the value �i . This equa-
tion can be applied onto each cell, which are connected by 
the neighbored interfaces. Finally, this procedure results in 
a system of linear equations. When rewriting the system of 
linear equations (18), the system matrix is obtained [12, 16]. 
For this purpose, a supervector � containing the vectors � at 
the discretized locations �i is formed. Taking into account 
the term on the right-hand side of (18) for each value �i , a 
sparse matrix � results. In the same manner, along with the 
approximation of the left-hand side of (18), the elements of a 
sparse matrix � can be determined. So, along with the super-
vector � , the matrices � and � can be defined including the 
corresponding discretized operators within the phase space. 
Finally, the system of linear equations can be written as

Along with this definition, the discretization procedure con-
ceptually results in

with the overall system matrix � = �−1
⋅ � , which rep-

resents a non-sparse matrix. Utilizing N� discretization 
points, the matrices show a dimension of �,� ∈ ℂ

M×M with 
M = N� ⋅ N.

With regard to the formulation of the boundary conditions 
for the Quantum Liouville-type equations, the concept of 
inflow boundary conditions from the Wigner formalism [1] 
is adopted, as aforementioned. The Fermi–Dirac statistics 
fc(k) , which are usually utilized for the inflow boundary 
conditions for each contact c, reads

The chemical potential is represented by � , and the energy 
Ec(k) contains the energy dispersion as well as the potential 
energy effects arising from external sources and the Hartree 
potential at each contact c.

For the proposed approach, the inflow boundary condi-
tions must be transformed to the discretized real space pres-
entation for each contact c, resulting in [16]

Now, this inflow boundary condition is expanded in terms 
of the basis functions leading to the corresponding vector of 
expansion coefficient

(19)�
d

dt
�(t) = � ⋅ �(t).

(20)
d

dt
�(t) = � ⋅ �(t)

(21)fFD(k) =
mkBT

�ℏ2
⋅ log

(
1 + exp

(
q(�c − Ec(k))

kBT

))
.

(22)�c(�) = ∫
dk

2�
cos(k�) ⋅ fc(k).

(23)cc = �†�c(�).
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Finally, the inflow boundary conditions for the Quantum 
Liouville-type equations can be formulated with regard to kn 
or �n according to ci=1(t) = c1 for kn∕𝜆n > 0 and ci=N�

(t) = c2 
for kn∕𝜆n < 0 . Once the system of equations is solved, the 
discretized expansion coefficients are utilized to rewrite the 
statistical density matrix (4). Then, the statistical density 
matrix is utilized to calculate the carrier density n as well as 
the current density j, which are given by

and

respectively.

3 � Numerical evaluation for the stationary 
case

For the evaluation of the proposed approach, different test 
scenarios are investigated in the stationary regime. At first, 
a RTD is investigated. Secondly, a DGFET is analyzed. 
For the validation of the proposed approach, the results for 
both devices are compared to the results obtained from the 
NEGF formalism. Herein, a finite differences approximation 
is implemented for the same Hamiltonian as in (1). The dis-
cretization widths are chosen accordingly to the parameters 
used for the proposed approach.

The self-consistent Hartree potential is determined by 
coupling the transport equation along with the Poisson 
equation. To account for the corresponding nonlinearity, 
a standard Newton–Raphson method [19] is applied in 
both cases.

The stop criterion for the i-th iteration is defined as

where the vector Vi
H

 contains the Np discretized values of the 
Hartree potential at the i-th iteration.

(24)n(� , t) = �(� , �, t)
||||�=0

(25)j(� , t) =
jqℏ

m

�

��
�(� , �, t)

||||�=0
,

(26)
||Vi

H
− V

i−1
H

||
Np

< 10−5,

3.1 � AlGaAs resonant tunneling diode

The investigated resonant tunneling diode within the mate-
rial system of Al0.3Ga0.7As/GaAs consists of seven differ-
ent layers. The corresponding parameters for each layer 
utilized for the simulations can be found in Table 1. As 
mentioned, the effective mass is assumed to be constant and 
set to 0.063 ⋅ m0 . For the numerical investigations, a length 
L� = 120 nm with regard to the �-direction is presumed. The 
corresponding interval is subdivided into N� = 401 cells. 
The �-direction with the parameters defined in Table 1 is 
subdivided into N� = 361 cells ( �� = 0.25 nm). The discrete 
basis functions are either given by the set of plane waves 
(EXP-basis) or by the eigenvectors of the diffusion matrix 
(EIG-basis). Both are analyzed for the different values of the 
subspace dimension N. An increasing number of the value N 
leads to the inclusion of larger absolute values of �n and kn 
corresponding to higher energy scattering states.

3.1.1 � Investigation of the carrier density

In Fig. 1, the carrier densities n are shown in dependency of 
�-direction for different dimensions N of the subspace and 
an externally applied bias of U = 0.3 V.

In Fig. 1a, the case of the EIG-basis is depicted, whereas 
in Fig. 1b the case of the EXP-basis is shown. As can be 
observed from these figures, the results converge toward the 
reference solution obtained from the NEGF formalism with 
an increasing subspace dimension N. However, for N = 40 
basis functions the EXP-basis is superior in comparison with 
the EIG-basis, because a remarkable deviation of the carrier 
densities can be observed at � ≈ 50 nm for the EIG-basis 
with respect to the reference solution as depicted in Fig. 1a.

3.1.2 � Investigation of the current density

Now, the current densities are investigated in dependence of 
the subspace dimension N and externally applied biases in 
the range [0 V, 0.6 V] ( �U = 0.02 V) for the two different 
basis function types.

For the case of the EIG-basis, the current density is 
depicted in Fig. 2a. It can be seen from this figure, that the 
deviation with respect to the reference solution given by the 
NEGF formalism decreases with an increasing number of 

Table 1   Parameters of the 
AlGaAs/GaAs Resonant 
Tunneling Diode

Region I II III IV V VI VII

L in nm 30 10 3 4 3 10 30

N
d
 in 

1018

cm3

2 0 0 0.1 0 0 2

V in eV 0 0 0.28 0 0.28 0 0
�
r

12.9 12.9 12 12.9 12 12.9 12.9
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basis functions N. A qualitative coincidence with the refer-
ence current density is found for N = 120.

Utilizing the EXP-basis, a qualitative coincidence with 
the reference solution is found for all investigated dimen-
sions of the subspace N = 40, 80 and 120, as can be 
observed from Fig. 2b.

3.1.3 � Investigation of the relative error

So far only qualitative considerations have been carried 
out. Therefore, we pay particular attention to quantitative 
investigations in the following. In this regard, the relative 
error with respect to reference solution given by the NEGF 
formalism is determined according to

Fig. 1   Carrier densities n(�) for different subspace dimensions 
N = 40, 80 and 120 for an applied bias U = 0.3 V. The black dots 
indicate the values of the reference solution obtained from the NEGF 
formalism. The solid black line represents the overall potential distri-
bution. The numbers within the legend entries indicate the subspace 
dimension N 

Fig. 2   Current densities j dependence on the applied bias U for dif-
ferent subspace dimensions N = 40, 80 and 120. The black dots rep-
resent the values of the reference solution obtained from the NEGF 
formalism. The numbers within the legend entries represent the sub-
space dimension N 
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on the basis of the spatial carrier density n . The relative 
error in dependence of the subspace dimension N is shown in 
Fig. 3 for both cases, the EIG-basis as well as the EXP-basis.

For the calculations, the thermal equilibrium case is con-
sidered. As can be seen from this figure, the relative error 
converges rapidly toward an error plateau of approximately 
2 ⋅ 10−3 for an increasing subspace dimension N for the case 
of the EIG-basis. For the case of the EXP-basis, this plateau 
is reached for all considered subspace dimensions N. Since 
there is an error plateau, the inclusion of further basis vec-
tors does not provide additional physical information, but 
increases the overall computation time, because the system 
matrix increases along with N.

The small deviations in the error plateau between the pro-
posed approach and the NEGF approach can be traced back 
to the fact, that two distinct numerical methods are investi-
gated, and, therefore, different errors are apparent as well. 
Especially, the formulation of boundary conditions differs 
distinctly since the inflow boundary condition applying the 
semi-classical Fermi–Dirac statistic is only valid infinitely 
far away from the device structure [6]. As a consequence, 
these deviations could be attributed to model errors.

3.2 � GaInAs double gate field effect transistor

For the numerical simulation of a Ga0.47In0.53 As DGFET, 
which is schematically depicted in Fig. 4, the methodol-
ogy presented is combined with the so-called mode space 

(27)�2 =
||n − nNEGF||
||nNEGF||

approach as described in [25–27]. Of course, the presented 
methodology can be applied to the analysis of multidimen-
sional transport by carrying out the expansion in the k-space. 
For reasons of reducing the required computation time, a 
combination with other suited methods should be applied. In 
many applications nowadays, the carrier transport is domi-
nant in a specific direction, so the carrier transport problem 
should be mapped onto this particular direction. The use 
of the mode space approach is appropriate for exactly this 
purpose. A demonstration also shows that the methodology 
presented can be combined with other methods in a versatile 
way.

Finally, the mode space approach is based on the projec-
tion of a multidimensional transport problem onto a one-
dimensional transport problem, for which the proposed 
methodology is applied. Therefore, for the example under 
investigation, the corresponding equations are projected onto 
the eigenvector basis of the lateral direction, in which the 
electrons are confined between the oxide layers. These eigen-
vectors are referred to as modes. Intermodal coupling effects 
have been neglected. The distribution of eigenenergies forms 
the potential energy for the one-dimensional transport.

The source and drain contact extensions are highly doped 
2 ⋅ 1019 cm−3 , whereas the channel is assumed to be intrinsic. 
For the Ag gate-contacts, a workfunction of �m = 4.74 eV 
is assumed and the electron affinity of the GaInAs is set to 
�GaInAs = 4.72 eV, which are needed to formulate the bound-
ary conditions for the 2D-Poisson equation [25, 28]. Other 
relevant material parameters are also taken from [25]. A 
discrete step width �� = 0.25 nm regarding the transport 
direction is applied, and three modes are taken into account. 
Regarding the �-direction, the same set of parameters has 
been applied as in the previous section. The results are pre-
sented for a subdomain dimension of N = 80.

In Fig. 5, the drain current density in dependence of the 
source-drain-voltage UDS is depicted for different applied 
gate voltages. To calculate this current density, the current 
density given by (25) is accumulated for each mode.

Fig. 3   Relative error dependence on the subspace dimension N for 
both cases, the EXP-basis (blue line) and the EIG-basis (red line) 
(Color figure online)

Fig. 4   Schematic diagram of the GaInAs-DGFET with the corre-
sponding length parameters as defined in the following: wox = 1 nm, 
wch = 3 nm, Lsource/drain = 15 nm and Lgate/channel = 10 nm
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As can be seen from the results, the current densities 
coincide with the results obtained from the NEGF reference 
method.

4 � Numerical evaluation for the dynamic 
case

4.1 � Matrix exponential integrators

To introduce the concept of the matrix exponential integra-
tors [29], (20) is formally integrated resulting in

with t0 being the initial time and �t the time step size, respec-
tively. In order to implement transient algorithms, particu-
lar information regarding the eigenvalue spectrum of the 
system matrix � is required, whereby a time-independent 
system matrix � is assumed first for clarity. Consequently, 
the eigenvalue spectrum for the system matrix � is investi-
gated by evaluating the complete eigenvalue spectrum for 
the AlGaAs resonant tunneling diode introduced in the last 
chapter. Therefore, the contour of the eigenvalue spectrum 
depending on the Hartree potential, on the band conduction 
energy as well as on the CAP is examined for practically 
important values and schematically depicted in Fig. 6.

From Fig. 6 can be seen that the area of existing eigen-
values lies entirely in the left half-plane of the eigenvalue 

(28)�(t0 + �t) = exp (��t) ⋅ �(t0),

spectrum containing negative real parts, only. This particular 
characteristic ensures stability for appropriately validated 
algorithms. The non-hermiticity of the Wigner operator can 
also be seen from this illustration.

In addition to the eigenvalues on the real negative axis, 
there are conjugated complex eigenvalue pairs with a nega-
tive real part. The investigations regarding the maximum 
absolute eigenvalue show that for parameters relevant in 
practice with regard to the Hartree potential and the conduc-
tion band energy, this eigenvalue is purely real and is located 
on the negative real axis. With increasing values for those 
parameters, conjugated complex eigenvalue pairs appear to 
be the maximum absolute eigenvalues. Hence, the contour 
does not essentially change its characteristics.

4.2 � Approximation of the matrix exponential

Unfortunately, methods are used for the analysis of the 
dynamic behavior for time-dependent solutions of Quantum 
Liouville-type equations, which are not computationally effi-
cient. Implicit methods such as Crank–Nicolson schemes [1, 
19, 30, 31] are very time-consuming due to the solution of 
large scale linear equation systems and are difficult to paral-
lelize. Instead, explicit methods such as Euler schemes [1, 3] 
or Runge–Kutta schemes [15] are based on the calculation 
of matrix-vector multiplications, so that they are predestined 
for parallelization. However, these are limited by stability 

Fig. 5   Drain current density in dependence of the applied drain-
source bias for different applied gate voltages. The blue dots repre-
sent the values of the reference solution obtained from the NEGF 
approach, whereas the solid red line shows the results obtained from 
the proposed approach

Fig. 6   Eigenvalue distribution � of the matrix � for the non-equi-
librium case applying an external bias of U = 0.2 V. The contours 
needed for further discussions are as well depicted, as there are the 
rectangle (-.-.-) with its length and width, on which basis the semi-
axes a and b of the ellipse (...) are defined, and the circle (—) with a 
radius of r =

√
a2 + b2
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criteria, so the necessary time step sizes are small leading 
to high computing times. These methods are, therefore, very 
time-consuming and consequently inefficient, particularly 
for analyzing components in which multiband effects occur. 
The difficulties will increase, if interaction effects have to 
be included. Among the several methods utilized to cal-
culate the matrix exponential function [32], especially the 
Faber polynomial-based approximation [33] and the Krylov 
subspace approach [32, 34, 35] are suitable and, therefore, 
analyzed to compute the action of the matrix exponential 
function since they combine efficiency and accuracy.

The appropriate approximation of an exponential inte-
grator is decisive for the analysis of the dynamic behavior, 
which, in the approximated case, is converted into a matrix-
valued exponential. For the approximation, methods come 
into play, which build up a basis in a subspace adapted to 
the problem. The approximation includes the conventional 
Krylov space methods [34, 35], herein combined with 
Padé approximants [36, 37], but also methods based on the 
expansion of the exponential integrator dependent on Faber 
polynomials [33]. Depending on the characteristics of the 
eigenvalue spectrum, there are advantages for one or the 
other method. Krylov space methods are particularly useful 
when the parameters describing the eigenvalue spectrum, 
such as the maximum possible eigenvalue, are not known. 
Faber polynomial-based methods are interesting if and only 
if the eigenvalue spectrum and its characteristic parameters 
are known.

The structure of the present eigenvalue spectrum is also 
important. Krylov methods are particularly predestined 
when the eigenvalues differ only slightly from the largest 
absolute eigenvalue. Faber-polynomial-based methods are 
particularly interesting in the contrary case. In practice, both 
methods must be compared with one another in order to be 
able to carry out an evaluation for the respective applica-
tion. The results obtained herein are important because they 
form the basis for nonlinear methods in which interaction 
effects are to be included, but are based on the knowledge of 
the linear behavior of the exponential integrators [29]. The 
Crank–Nicolson scheme is included in the investigations for 
the sake of completeness.

4.2.1 � Eigenvector expansion method

For the purpose of the evaluation of approximated matrix 
exponential functions, the matrix exponential can be ana-
lytically reformulated utilizing the transformation onto the 
principal axis. Formally, the matrix exponential can then be 
determined by

(29)exp (��t) = � exp (��t)�−1

utilizing the matrix of eigenvectors � as well as the diagonal 
matrix of eigenvalues � containing the corresponding eigen-
values �i of each eigenvector Vi . Due to the requirement of 
determining the eigenvalues and eigenvectors, this procedure 
is impractical in realistic device simulations. In addition, 
the eigenvectors � are not orthogonal in general so that the 
matrix-inversion increases the computational burden, too. 
Here, the method is utilized to determine the reference solu-
tion with regard to the transient propagation.

4.2.2 � Crank–Nicolson scheme

In the following, the Crank–Nicolson scheme is presented 
briefly as they are the mainly utilized transient approxima-
tion schemes applied onto the WTE [1, 3, 19, 30, 31]. The 
Crank–Nicolson scheme is an unconditionally stable scheme, 
but implicit scheme. Consequently, to proceed in time within 
the WTE, an inverse matrix has to be calculated according to

In the worst case, this inversion has to be carried out each 
time step, i.e., in the selfconsistent transient case.

4.2.3 � Faber polynomial‑based expansion

The matrix exponential in (28) can be approximated by the use 
of Faber polynomials [33, 38–40]. For this purpose, the matrix 
exponential is expanded dependent on the Faber polynomials 
Pm(�) as proposed in [33] according to

where M denotes the order of the expansion and the coef-
ficients cm represent the expansion coefficients given by

The Faber polynomials Pm(�) are evaluated by using the 
relation [40, 41]

Hereby, the eigenvalue spectrum of the matrix � in the 
z-plane is mapped on an inner circle with a radius of � in 
the w-plane. A conformal mapping z = �(w) introducing 
the mapping function � has to be identified [39]. In order 
to ultimately carry out the exact mapping and to determine 
the Faber polynomials Pm(�) and its corresponding coef-
ficients cm , the area of the present eigenvalue spectrum and 

(30)�(t0 + �t) =
(
1 −

�t

2
�
)−1(

1 +
�t

2
�
)
⋅ �(t0).

(31)exp(��t) =

M∑

m=0

cm ⋅ Pm(�),

(32)cm =
1

2�j ∫|w|=R

f (�(w))

wm+1
dw.

(33)Pm+1(z) = zPm(z) −

m∑

k=0

�kPm−k(z) − m�0.
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the curve shapes R defining it have to be utilized. The coef-
ficients �k and the parameter m depend on the characteristics 
of the curve shape. The choice of suitable curve shapes and 
the related values for �k as well as for the parameter m are 
discussed in the next section.

Methods based on Faber polynomial expansions of an 
exponential integrator are particularly advantageous in terms 
of their efficiency, if the eigenvalue spectrum of the system 
matrix � under consideration is known and the parameters 
of the contour comprising the eigenvalue spectrum can be 
determined as precisely as possible. Based on the character-
istics of the contour, the Faber polynomial-based expansion 
can be carried out.

The parameters of the contour will be important for the 
expansion of the exponential integrator based on Faber poly-
nomials. Due to the contour of the area of the existing eigen-
values in the eigenvalue spectrum, the choice of an ellipse 
or a circle is appropriate. For both forms of representation, 
the knowledge of its center is important, which is located on 
the negative real semi-axis. Based on the conclusions above, 
the following approximations can be evaluated on the basis 
of the contour and its related characteristics.

To ensure that all eigenvalues are located within an ellipse 
or a circle, a rectangle is defined with the maximum possible 
real part as well as the maximum possible imaginary part 
of the eigenvalues obtained as shown in Fig. 6. The specific 
sizes define the sides of the rectangle. Either an ellipse or a 
circle containing the corner points of the rectangle can be 
placed around this rectangle. When choosing a circle, the 
radius can be defined by the distance from the center to one 
of the corner points of the rectangle. For the parameters 
of the ellipse, a method described in [38] is utilized and 
explained later on.

The intervals have to be determined, in which, on the 
one hand, the real parts of the eigenvalues [−Rmax, 0] and, 
on the other hand, the imaginary parts of the eigenvalues 
[−Imax, Imax] can be found. These limits can be used to define 
a circle or an ellipse surrounding the eigenvalue spectrum 
as shown in Fig. 6. The parameters c and l are introduced 
and linked with the values of Rmax and Imax by the relations 
l = Rmax∕2 as well as c = Imax . Therefore, for all cases, the 
value z0 = −l indicates the center of the comprising shape. 
When the maximum absolute eigenvalue is located on the 
real axis, the center �0 of the area can be determined with the 
maximum absolute eigenvalue by simply taking the half of 
the maximum absolute eigenvalue �0∕2 . The semi-axes of 
an ellipse, for which the mapping is designed, are defined by 
the parameters a and b as depicted in Fig. 6. Obviously, the 
ellipse turns out to be a circle for a = b . The choice of the 
parameters a and b is discussed in the following.

Further discussions are firstly addressing the general case 
of an ellipse, which is constructed on the basis of a rectangle 
as shown in Fig. 6. The radius � in the w-plane should be 1 

to allow stability [42]. For this purpose, a scaling factor �s 
is introduced according to [42] and defined along with the 
considerations above by choosing

to allow stability [42]. With the information given, the 
mapping can be designed for each of the above enumerated 
options. An ellipse in the z-plane, which of course implicitly 
includes the case of a circle in the z-plane and which com-
prises the eigenvalue spectrum in the z-plane, is mapped 
onto a circle in the w-plane via the transformation [42, 43]

The system matrix � and the time step size �t are normal-
ized according to �s = �∕�s and �ts = �t�s to allow stability. 
The parameters c and l are normalized as well resulting in 
the normalized parameters cs = c∕�s and ls = l∕�s . With the 
help of these parameters, the semi-axes of the ellipse can be 
specified as follows

The parameters �0 and �1 as introduced in (35) are given by 
[42]

whereby the value z0 = −l indicates the center of the ellipse. 
When considering a circle, the value of �1 vanishes as the 
condition a = b holds. In general, the Faber polynomials 
Pm(z) can be determined by using the recursive relation

applying the initial conditions F0(z) = 1 and F1(z) = z − �0 
[39]. Accordingly, after replacing z by the matrix � , the 
propagation in time can be realized by a recursive relation. 
The expansion coefficients are given by [42, 43]

For the case of a circle, this relation can be rearranged lead-
ing to

Along with (40) a stop criterion, the corresponding order m 
of the expansion can be defined. When the expansion coef-
ficient cm is getting smaller than 10−15 , then the expansion is 
stopped. All different concepts require the determination of 
the eigenvalue spectrum with its maximum absolute eigen-
value. The limits of the eigenvalue spectrum can only be 

(34)�s =
(l2∕3 + c2∕3)3∕2

2
.

(35)�(w) = w + �0 + �1∕w.

(36)b =

√
l2
s
+ (csl

2
s
)3∕2 and a = 2 − b.

(37)�0 = −l∕�s , �1 = (a − b)∕2,

(38)Pm+1(z) = (z − 𝛾0)Pm(z) − 𝛾1Pm−1(z);m > 2

(39)cm = exp(�ts�0)(
1

j
√
�1
)mJm(j2�ts

√
�1).

(40)cm =
1

m!
exp(�ts�0).
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insufficiently estimated with commonly applied methods, 
such as the Gershgorin method, spectral methods or pertur-
bation methods. The limits are overestimated by factors up 
to an order of magnitude. The exact knowledge is crucial 
to ensure stability and to develop efficient methods with 
regard to computing time, especially when the advantages 
of the Faber polynomial expansion shall be exploited. With 
these methods, however, a first estimate is possible on the 
basis of which the actual spectrum of eigenvalues can be 
determined. The eigenvalue range can be limited with this 
known spectrum of eigenvalues. Therefore, also to identify 
whether conjugate complex pairs of values occur, a subspace 
is built up by a set of vectors resulting from the Faber poly-
nomial expansion applied onto an initial vector. The expan-
sion according to (31) forms a subspace of the n-th order as 
defined by

and when considering a circle, the subspace Ln turns into 
a space, which is similar to the Krylov space approach. 
An orthogonal basis is calculated by using the standard 
Gram–Schmidt orthogonalization. The vectors �k of the new 
basis are stored within the matrix �n ∈ �

N×n given by

so that the original matrix � can be transformed into a matrix 
� ∈ �

n×n according to

This procedure allows the computation of the dominant 
eigenvalues of � by the use of a matrix � of lower order 
with which the contour of the eigenvalue spectrum can be 
defined.

4.2.4 � Krylov based expansion

Faber polynomial-based approaches require the knowledge 
of the eigenvalue spectrum in contrast to conventional meth-
ods based on approximations in the Krylov space. The lat-
ter methods are of particular interest and efficiency, if the 
eigenvalues in the eigenvalue spectrum deviate only slightly 
from the maximum absolute eigenvalue. The conventional 
Krylov subspace of the n-th order is defined by

Unfortunately, the vectors �k
⋅ �(ti) converge rapidly toward 

the eigenvector of � with the largest absolute eigenvalue. 
As a consequence, the vectors become progressively lin-
ear dependent. To overcome these limitations, the so-called 
Arnoldi process is utilized to build an orthogonal basis of 

(41)Ln(�,�(ti)) = span
{
�(ti),�1�(ti),… ,�n−1�(ti)

}

(42)�n =
[
�1, �2,… , �n

]
,

(43)� = �−1
n
��n.

(44)Kn(�,�(ti)) = span
{
�(ti),� ⋅ �(ti),… ,�n−1

⋅ �(ti)
}
.

the Krylov subspace [34]. The orthogonal basis vectors �k 
are stored within the matrix �n ∈ ℂ

N×n according to

which satisfies the so-called Arnoldi decomposition

The matrix �n+1,n ∈ ℝ
n+1×n is upper-Hessenberg being 

directly obtained by the Arnoldi process. Exploiting the 
characteristics of the upper-Hessenberg matrix �n+1,n , the 
expression (46) can be rewritten

because the elements hi,j of the matrix �n+1,n are equal to 
zero for i > j + 1 . The vector �T

n
 is the n-th canonical basis 

vector given by [0, 0,… , 1] ∈ ℝ
n . Consequently, the action 

of � onto a vector of the Krylov subspace Kn can be re-
expressed in terms of vectors belonging to the same Krylov 
subspace Kn and a multiple of the next Krylov basis vector 
�n+1 . Especially, when the last term on the right-hand side 
of (47) becomes extremely small for a certain order n of the 
Krylov subspace, the Krylov subspace nearly represents an 
invariant subspace of the matrix �.

Following the Arnoldi process, the first vector of the Kry-
lov subspace is defined by �1 = �(t0)∕||�(t0)|| , so that the 
time propagation (20) can be easily rewritten

where �1 is the first canonical basis vector [1, 0,… , 0] ∈ ℝ
n . 

The evaluation of the matrix exponential of the upper-Hes-
senberg matrix �n,n is computationally much cheaper than 
the evaluation of the original matrix exponential function of 
� due to n ⋘ N  . Additionally, an a priori stopping criterion 
based on the residual [35] can be defined

utilizing (46) and (48). Along with the stopping criterion, the 
residual of the approximant �n(t) with regard to discretized 
transient WTE in (20) can be controlled. As a consequence, 
the dimension of the Krylov subspace can be determined 
adaptively in a computationally efficient manner.

The remaining task is the evaluation of the matrix expo-
nential function of the Hessenberg matrix, which can be 
efficiently approximated by using the Padé approximation 
as discussed in the following. A commonly utilized and 
highly accurate method to approximate the matrix expo-
nential function is given by the (n, m)-Padé approximation 

(45)�n =
[
�1, �2,… , �n

]
,

(46)��n = �n+1�n+1,n.

(47)��n = �n+1�n,n + hn+1,n�n+1�
T
n
,

(48)
�(t0 + �t) = exp (� ⋅ �t) ⋅�� ⋅ ||�(t0)||�1

≈ �n exp
(
�n,n�t

)
⋅ ||�(t0)||�1

(49)
�n(t) =

d

dt
�n(t) − � ⋅ �n(t)

= −
(
hn+1,n�

T
m
exp

(
�n,n�t

)
⋅ ||�(t0)||�1

)
�n+1
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with n, m being the degrees of the polynomials. To reduce 
the computational costs, this technique is combined with 
the scaling and squaring method. For the case of (n, n)-Padé 
approximations, the matrix exponential of the Hessenberg 
matrix � = �n,n can be approximated by

where the polynomial Pn(��t) is defined according to

The expansion coefficient ci fulfills the recurrence relation

The scheme is unconditionally stable. Nonetheless, the 
matrix-inversion needed to compute the approximant repre-
sents a serious bottleneck of the scheme. As a consequence, 
the Padé approximation seems to be impractical for large-
scale applications.

4.3 � Numerical simulation results

The evaluation takes place with regard to the relative error, 
the computation time and computational efficiency. For the 
transient analysis, different time steps �t subdividing the 
interval It = [0 fs, 5 fs] are chosen. For all methods and time 
steps, the transient evolution of the Wigner function is car-
ried out in an iterative manner until the final time tf = 5 fs 
is reached. At the initial time t = 0 fs, the Wigner function 
is set to be in the thermal equilibrium state. Hereby, the 
Wigner function for the thermal equilibrium state is obtained 
from the numerical solution of the stationary WTE applying 
the commonly utilized inflow boundary condition scheme. 
Then, for t > 0 the device is driven toward the non-equilib-
rium situation applying a constant external bias of U = 0.2 
V. The Wigner function for the thermal equilibrium state is 
evolved in time utilizing the different methods.

Hereby, the relative error e is defined by

where �ref(tf) is the reference solution obtained from the 
eigenvalue-decomposition method. As discussed, this 
method computes the matrix exponential function without 
resulting in any error, theoretically. In practice, the inter-
nal CPU accuracy as well as the errors combined with the 
computation of the eigenvalues and eigenvectors have to 
be taken into account. Nonetheless, since these errors are 

(50)exp (��t) ≈
Pn(��t)

Pn(−��t)
,

(51)Pn(Γ�t) =

n∑

i=0

ci ⋅ (��t)i.

(52)ci =

{
1, if i = 0

n − i + 1

(2n − i + 1)i
⋅ ci−1, if i > 0

.

(53)e =
||�ref(tf) − �(tf)||∞

||�ref(tf)||∞
,

negligible small, the method serves as an excellent basis 
for the evaluation of the reference solution. The discretized 
Wigner function �(tf) represents the solution obtained from 
the corresponding scheme under investigation.

The relative error and the computation time for all pre-
sented options are enlisted in Table 2 for different time step 
sizes covering a large range of orders of magnitude. From 
the results shown can be concluded that the relative error 
and the computation time differ slightly from each other, 
only. This conclusion can be drawn as the ellipses obtained 
do not deviate much from being a circle so the eccentricity 
of the ellipses is close to zero. The optimum approach is 
the option choosing a circle, which is defined by the corner 
points of the rectangle. As a consequence, for clarity, this 
particular option is considered further on.

All the relevant parameters are then calculated for the 
cases of an adaptive Faber approximation, an adaptive Kry-
lov method, and non-adaptive Krylov approaches of dif-
ferent orders N = 20, 60, 120 . As can be seen from Fig. 7, 
the relative error with respect to the non-adaptive Krylov 
approaches increases accordingly with increasing time step 
sizes.

In such cases, the dimension N of the Krylov space is 
smaller than the dimension of the space needed to represent 
the solution. As a characteristic of the Krylov approach, the 
overall accuracy increases with an increasing dimension N 
of the Krylov space. This characteristic can be seen in Fig. 7. 
The application of adaptive approaches, for which the order 
of expansion is determined by a stop criterion, leads to a 
very small relative error, whereby the relative error of both 
approaches deviates slightly from each other, only. How-
ever, the order of the approximation increases with increas-
ing time step size.

Furthermore, comparing the different dimensions of the 
Krylov subspace N = 10, 30 , it can be concluded that along 
with an increasing number of basis functions the relative 
error decreases as long as Kn is no invariant subspace of � 
as depicted in Fig. 7. With regard to extremely small time 
step sizes, a slightly increasing behavior of the relative error 
can be observed from Fig. 7, which can be assigned to the 
increasing round-off error due to the massive matrix-vector 
multiplications needed to propagate in time. The Faber and 
Krylov approaches allow arbitrary time step sizes combined 

Table 2   Relative Error for different time steps for the Faber approxi-
mation of the exponential integrator on the basis of different contours

�t Circle Ellipse

10−18 4.9284×10−12 4.9438×10−12

10−17 3.9749×10−12 3.9747×10−12

10−16 3.9739×10−12 3.9739×10−12

10−15 3.9738×10−12 3.9738×10−12
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with a predefined accuracy without the expense calculation 
of the eigenvalue spectrum.

The computation times for each method in dependence of 
the time step �t are depicted in Fig. 8.

The dependency between computing time and time step 
size shows a linear behavior for the non-adaptive Faber and 
Krylov-based methods. Naturally, the computing time for the 
lower orders is less compared to the higher orders. The adap-
tive Faber and Krylov based methods do not have this linear 
behavior, since the order of the approximation also increases 
with an increased time step size. The simulations have been 
performed on a standard PC with 16GB RAM with a pro-
prietary OS assuming the flat-band case. Furthermore, the 
underlying situation analyzing the flat-band case favors the 
computation time as discussed in the following. Normally, 
the transport equation has to be solved selfconsistently along 
with the Poisson equation, so that the drift operator changes 
at each time step (assuming no steady state has reached). 
Due to the drift operator changing at every time step, the 
system matrix � as part of the transient-related operator 
changes at each time step, too. Here, the transient related 
operator has to be evaluated only once, because the flat-band 
case is considered due to an additional error occurring by the 
inclusion of the Poisson equation as aforementioned.

For the further investigation of the efficiency, the relative 
errors are depicted in Fig. 9 dependent on the corresponding 
computing time for each time step �t.

The pairs of values are taken from Figs. 7 and 8. The 
conclusion is obvious. The adaptive methods have a clear 
advantage with the difference between both methods being 
minor. The adaptive methods are equivalent in terms of their 

efficiency. It can be seen that the adaptive schemes are supe-
rior. On the one hand, for the same computation time highly 
accurate results can be obtained; on the other hand, when the 
same accuracy is needed, the computation time can be highly 
reduced. Furthermore, the adaptive schemes enable a far more 
fast reaching of the plateau of the relative error, where the 
scheme is presumed to be converged. The slight increase in 
the relative error toward larger computational times for the 
Krylov based scheme is accounted to the increasing round off 

Fig. 7   Relative errors for the different time integration techniques in 
comparison

Fig. 8   Computation time dependent on the discretized time step �t 
for the different time integration techniques in comparison

Fig. 9   Relative error in dependence of the computation time for the 
different time integration techniques in comparison
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error, due to massive matrix vector multiplications needed to 
advance in time.

Of course, when analyzing time-dependent problems, the 
matrix exponential in (28) becomes a time-ordered integral, 
which can be approximated by a successive application of 
matrix exponentials. One has to note that the calculation of 
the eigenvalue spectrum in the subspace needs only a very 
small proportion of the total computing time. Essentially, the 
efficiency of all approaches is influenced by the evaluation of 
the occurring matrix-vector multiplications when approximat-
ing the matrix exponential. The contribution of the computing 
time for the calculation of the eigenvalue spectrum is less than 
1% in relation to the total computing time. Furthermore, the 
calculation of the eigenvalue spectrum is not needed when 
applying Krylov-based methods. For Faber polynomial-based 
methods, only an estimation of the eigenvalue spectrum at the 
start of the algorithm is mandatory. To sum up, the calculation 
of the eigenvalue spectrum is of minor importance with regard 
to the computing time.

From all results can be concluded that Faber and Krylov-
based methods are superior compared to Crank–Nicolson-
based approaches with respect to all evaluated parameters.

5 � Device modeling for the dynamic case

5.1 � Class‑C analysis of a GaInAs‑based DGFET

In the following, a GaInAs-based DGFET as introduced before 
is investigated with regard to its dynamic behavior with the 
same methodology as presented before. The modeling of the 
time-dependent voltage at the gate contact can be interesting 
in many technically relevant applications, e.g. [25, 26, 44]. On 
the one hand, an application as a simple amplifier is possible. 
On the other hand, an application as a mixer is conceivable. 
While nonlinearities often result in unwanted intermodulation 
effects for the first application case, these just allow the sec-
ond application case as a mixer. In the following, the dynamic 
application as an amplifier will be demonstrated for mixer 
applications. For this purpose, a time-dependent control volt-
age is applied to the gate contacts according to

The operating point of 1.0 V corresponds to a C-mode 
operation. The modulation around the operating point is 
performed with harmonic carrier signals of frequencies 
f1 = 180 GHz and f2 = 220 GHz. The drain-source voltage 
is assumed to be constant in time with a value of UDS = 1.0 
V. The time integration is performed using the Crank–Nicol-
son method, assuming a discrete time step size of �t = 5 
fs. Under the given operating parameters, the output signal 
of the DGFET is shown in Fig. 10. In addition, the control 
voltage is depicted. Because of the C operation, only a part 

(54)UG(t) = 1.0V + 0.4V ⋅ (sin(2�f1t) + sin(2�f2t)).

of the positive half-wave above the operating point of 1 V 
of the control voltage is passed as can be seen from Fig. 10 
and the enlarged time Sect. Fig. 11.

With the present operating point within the C-mode, the 
system behavior of the DGFET is highly nonlinear. This 
nonlinearity results in intermodulation products fIM in the 
output signal at frequencies

The resulting intermodulation products can be used for addi-
tive mixing. Figure 12 shows the spectrum of the output 
signal.

In addition to the intermodulation products relevant for 
additive mixers for a frequency conversion to f1 + f2 = 400 
GHz, potentially interfering intermodulation products exist 
for the amplification process at the frequencies 2f1 − f2 and 
2f2 − f1 , i.e., 140 GHz and 260 GHz. The time-depend-
ent behavior of the electron density n(x, z, t) is shown in 
Fig. 13 for different times from t = 0 ps to t = 2.0 ps in 1 
ps intervals. This curve represents the switching operation 
of the DGFET as shown in Fig. 13 for the first time. As can 
be seen from Fig. 13, the formulation of Dirichlet bound-
ary conditions at the drain and source junctions allows a 
violation of carrier neutrality within the transient regime.

In this strong non-equilibrium situation, this boundary 
condition thus allows a charge carrier injection from the 
contacts into the device and vice versa to establish steady-
state flow equilibrium corresponding to the Fermi levels 
[28].

(55)fIM = a ⋅ f1 + b ⋅ f2 with a, b ∈ Z.

Fig. 10   Current density jD(t) at the output of the DGFET for a time-
dependent voltage at the gate UG(t) for a constant drain-source volt-
age UDS of 1.0 V: whole period
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5.2 � Resonant AlGaAs/GaAs tunneling diode

In the following example, the dynamic behavior of a 
RTD with parameters given in Table 3 is investigated. As 
the effective mass is no longer invariant along the trans-
port direction, the spatially varying effective mass has to 
be taken into account. For this purpose, the discretization 

Fig. 11   Current density jD(t) at the output of the DGFET for a time-
dependent voltage at the gate UG(t) for a constant drain-source volt-
age UDS of 1.0 V: section of the whole period

Fig. 12   Spectrum of the current density jD at the output of the 
DGFET for a time-dependent voltage applied at the gate contact 
UG(t) . The drain-source bias is kept constant UDS = 1 V

Fig. 13   Electron densities n(z, x, t) at different times
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scheme with respect to the �-direction as described in [24] is 
adopted. THz oscillations of the current density are observed 
as previously described by [45–47].

Interactions mechanisms can be incorporated as well. As 
an example, the electron–phonon interaction mechanism is 
considered. To demonstrate that scattering can be concep-
tually integrated within the methodology, finally a simpli-
fied model is used. The starting point for the modeling of 
electron–phonon interaction mechanisms is the Hamiltonian 
operator applying the Born–Oppenheimer approximation 
and assuming a Bravais lattice. To account for the lattice 
oscillation, the additional linear deviation around the equi-
librium position is modeled according to Ĥel,p which in the 
second quantization can be conceptually written as

Here, b† represents the phonon generation operator and b the 
annihilation operator and c† represents the electron genera-
tion operator and c the annihilation operator. The matrix 
element Mk,q describes the strength of the electron–phonon 
coupling. To determine the dynamics, the Heisenberg equa-
tion of motion for the entire Hamiltonian operator must be 
solved. Then, equations of motion for the expectation values 
⟨bq⟩ as well as ⟨c†

k
ck⟩ can be set up. This methodology imme-

diately results in a hierarchy problem for the phonon-assisted 
density matrix ⟨c†

k+q
bqck⟩ , which can be simplified with the 

help of the correlation expansion as well as bath assumption, 
Hartree factorization, and random phase approximation [48] 
leading to an equation of motion for the distribution function 
⟨c†

k
ck⟩ . After analytical integration, the differential equation 

for the phonon-assisted density matrix can be substituted 
into the equation of motion for the distribution function 
fk = ⟨c†

k
ck⟩ . This equation represents the so-called quantum 

kinetic Boltzmann equation. In the Markov approximation, 
this expression finally yields the semi-classical formulation 
conceptually given in [1] as

(56)Ĥel,p =
∑

k,q

Mk,q(b
†
−q

+ bq)c
†

k+q
ck,q.

(57)

(
�

�t
fk

)

coll
= −

∑

q

Wk,k+q(1 − fk+q)fk

+
∑

q

Wk+q,k(1 − fk)fk+q,

where Wk,k+q represents the transition probability from 
state �k⟩ to �k + q⟩ per unit time and Wk+q,k represents the 
transition probability from state �k + q⟩ to �k⟩ per unit time, 
respectively.

Assuming a small deviation from the thermodynamic 
equilibrium, a perturbation calculation according to the 
equilibrium distribution feq,k allows a further simplification 
[48]. Second-order terms are neglected, while zero-order 
terms are considered. Here, the relaxation time �k can be 
introduced as defined in [19, 49]

Finally, the collision operator for the description of the elec-
tron–phonon interaction results in [50, 51]

The equilibrium distribution feq,k is still weighted with the 
local ratio defined by the charge carrier density n(� , t) and 
the charge carrier density of the equilibrium neq(�) at each 
location �.

For the application of (59), the expression still has to be 
transformed into the local space. These expressions can be 
incorporated into the discretization matrices in an additive 
manner. The equilibrium distribution feq is assumed to be 
the distribution function of the thermodynamic equilibrium 
and, therefore, has to be calculated beforehand. Of course, 
with such an relaxation time approach neither nonelastic and 
anisotropic scattering effects are considered, which have an 
effect on a device performance when considering polar opti-
cal phonons. In principle, other models can also be inte-
grated in this manner, such as those presented in [52–55]. 
Since scattering approaches may lead to unphysical results, 
one must pay attention on the proper choice of models, i.e., 
by modeling the collision integral with terms describing 
energy dissipation, momentum relaxation, and the decay of 
spatial coherence [52] or by a quantum-mechanical generali-
zation of relaxation-time and Boltzmann-like models result-
ing in nonlocal scattering superoperators [54].

To analyze the hysteresis behavior, the self-consistent 
I-V-characteristic curve of the RTD is determined with the 

(58)
1

�k
= −

∑

q

Wk,k+q(1 − feq,k+q) +
∑

q

Wk+q,kfeq,k+q.

(59)
(
�

�t
fk

)

coll
= −

1

�

{
f (� , k, t) −

n(� , t)

neq(�)
feq(� , k)

}
.

Table 3   Parameters of the 
AlGaAs/GaAs resonant 
tunneling diode

Region I II III IV V VI VII

L in nm 30 3 3 4 3 3 30

N
d
 in 

1018

cm3

2 0 0 0 0 0 2

V in eV 0 0 0.28 0 0.28 0 0
�
r

12.9 12.9 12 12.9 12 12.9 12.9
m in 10−2m

0
6.3 6.3 8.8 6.3 8.8 6.3 6.3
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device parameters given in the previous section. For this 
purpose, a forward voltage sweep from 0 V up to 0.5 V is 
applied followed by a reverse voltage sweep, allowing the 
hysteresis effect to take place. The electron–phonon interac-
tion is accounted for by the collision operator (59), and the 
hysteresis is determined for various relaxation time constants 
⟨�⟩ . To model the electron–phonon interaction within the 
AlGaAs/GaAs material system, the relaxation time constants 
�k can be assumed to be constant as � = 525 fs [56]. Further-
more, in order to evaluate the physical influence of the colli-
sion operator in terms of the device behavior, the relaxation 
time constants � = 55 fs, � = 255 fs as well as � = 1050 fs 
are also considered. The corresponding I-V characteristics 
for the different time constants � are shown in Fig. 14a–d. 
The I–V characteristic for the physically based relaxation 
time constant of � = 525 fs [56] is shown in Fig. 14c. As it 
can be seen from this Fig. 14c, the I–V characteristic exhibits 
a bistable behavior within the voltage range of 0.31–0.36 V. 
The values of the current density j for the forward (forw.) 
voltage sweep differ significantly from those for the reverse 
(backw.) voltage sweep. The result shows a clear hysteresis 
behavior, which is also known from relevant experiments 
[57]. In particular, in the forward voltage sweep, two so-
called plateaus occur between the voltage ranges 0.31–0.32 
as well as 0.34–0.36 V. Within these plateaus, the RTD 
operates as an oscillator in the technically relevant THz 
frequency range [45, 46]. If the influence of the scattering 
mechanisms is artificially increased by reducing the relaxa-
tion time constant to the value � = 255 fs a single narrow 
plateau exists, only. However, the hysteresis is still main-
tained as shown in Fig. 14b.

For a relaxation time constant of � = 55 fs, the elec-
tron–phonon coupling increases even more. As it can be 
seen from Fig. 14a, the I–V characteristic no longer exhibits 
a hysteresis. Compared to the other curves, a decrease in the 
peak current density from about 6 to about 5 GA/m2 as well 
as an increase in the valley current density from about 1 to 
about 2 GA/m2 can be observed. The other limiting case is 
the artificial reduction in the influence of the electron–pho-
non interaction. For this purpose, the I–V characteristic is 
shown for a time constant of � = 1050 fs in Fig. 14d. In this 
case, in addition to the plateau in the forward voltage sweep 
in the range of about 0.31 V, another narrow plateau exists 
in the reverse voltage sweep at about 0.3 V. In the overall 
context of all Fig. 14d, for a decreasing time constant �  , 
there is a decrease in the ripple of the current density. This 
system behavior is due to the increase in the electron–pho-
non coupling, which increasingly smears the sharp resonant 
transitions.

Within the plateaus of the I–V characteristic shown in 
Fig. 14d, the RTD exhibits an unstable time-dependent 
behavior. This results from the interaction between the 
emitter state and the resonant state of the double barrier 

Fig. 14   Current density j as a function of the applied voltage U and different 
time constants � for the forward (forw.) voltage sweep as well as backward 
(backw.) voltage sweep
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structure [45]. This allows the possibility to use the RTD 
as a source of THz oscillations [45, 46]. To generate the 
THz oscillations, the RTD is excited starting from a voltage 
U = 0.313 V before the hysteresis region is reached with a 
linear voltage slope of 5 V/ns over the period of 14 ps. For 
the dynamic calculation, the Crank–Nicolson method is used 
with a time step size of �t = 2.5 fs and the average value of 
the current density j is calculated. The results are plotted in 
Fig. 15a dependent on the time as well as the corresponding 
applied voltage.

As it can be seen from Fig. 15a, persistent self-exciting 
oscillations of the current densities are present in both, the 
first plateau between 0.31 and 0.32 V and the second pla-
teau between 0.34 and 0.36 V. These are characteristics of 
the unstable system behavior of the RTD [46]. In the first 
plateau, the current density oscillates with a frequency of 
f1 = 14.8 THz. Here, a relatively weak amplitude of about 
0.1 GA/m2 around the DC component of 5.775 GA/m2 can 
be observed from Fig. 15b. In the second plateau, the oscil-
lation of the current density is comparatively strong with 
an amplitude of 0.75 GA/m2 at frequency of f2 = 2.89 THz 
around the mean value of about 4.75 GA/m2 , which is shown 
in Fig. 15c. An analogous behavior is observed in [46].

6 � Summary and conclusion

In essence, the proposed approach includes ballistic effects 
and also allows integration of interaction mechanisms for 
the description of non-ballistic effects. Furthermore, band 
models can be integrated so that not only intraband effects 
but also interband effects can be described.

An essential conclusion is that with the inclusion of 
the CAP particular device properties, such as the spatially 
dependent effective mass distribution, can be adequately 
considered along with the von Neumann-equation, which is 
not possible via a direct approximation of the Wigner equa-
tion commonly used in the literature. The introduction of a 
complex potential leads to a physically reasonable and in 
numerical terms effective limitation of the computational 
domain. Furthermore, the use of the von Neumann-equation 
allows the application of various approximation techniques 
such as the finite volume technique. The resulting system 
equations can be solved numerically efficient and scalable 
in combination with subspace methods and the CAP. It was 
shown in this context that for the dynamic analysis of the 
matrix exponential operator both, Faber polynomial-based 
and Krylov subspace-based approximations, have proven to 
be computationally efficient.

Therefore, the formulation of a modified Wigner equation 
with an expansion based on a plane wave basis succeeds. 
This avoids the previously mentioned disadvantages, such 
as highly oscillating functions within the phase space or the 

Fig. 15   Analysis of the excited THz oscillations for a time-dependent 
forward voltage sweep with a slope of 5 GV/s from 0.31 to 0.38 V
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overestimation of diffusion effects in the conventional pro-
cedures for the approximation of the Wigner equation.
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