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Abstract
The Numerov process is a solution method applicable to some classes of differential equations, that provides an error term 
of the fifth order in the grid size with a computational cost comparable to that of the finite-difference scheme. In the original 
formulation of the method, a uniform grid size is required; the paper shows a procedure for extending its applicability to 
a non-uniform grid in one dimension. The effectiveness of the procedure is tested on a model problem, and comparisons 
with other methods are carried out. Finally, it is shown how to extend the applicability of the method to a larger class of 
equations; among these, the mathematical model of semiconductor devices is important in view of its applications to the 
integrated-circuit technology.

Keywords Numerov process · Non-uniform grid · Differential equations in one dimension · Semiconductor-device model

1 Introduction

The Numerov Process (NP [1], cited in [2]), is applicable 
to the solution of some classes of differential equations; its 
error term is O(h5) , with h the grid size, much superior to 
that of the finite-difference scheme, with a comparable com-
putational cost. In the original formulation of NP, a uniform 
grid is necessary, which is a drawback for many practical 
applications; more recently, a method for extending the 
scheme to a variable step in one dimension has been shown 
[3]. This paper shows an approach, different from that of [3], 
for extending NP to a non-uniform grid in one dimension; 
the approach preserves the accuracy of the original NP by 
combining the latter with a numerical integration having the 
same order of error.

The interest in highly-accurate schemes derives, among 
others, from the need of solving the transport model of 
semiconductor devices, which is fundamental for the 

integrated-circuit technology. Unfortunately, the form of 
the semiconductor-device model as it stands is such that NP 
is not applicable. In the paper, a transformation is shown 
that makes the semiconductor model tractable with the one-
dimensional, variable-step version of NP.

The paper is organized as follows: the extension of NP 
to a one-dimensional, non-uniform grid is shown in Sect. 2, 
and the properties of the matrix derived from it are out-
lined in Sect. 3; the application to a model problem, along 
with the comparison with the finite-difference scheme, is 
shown in Sect. 4 using different grids. A comparison with 
the approach of [3] is carried out in Sect. 5. A more general 
class of differential equations is considered in Sect. 6; it is 
shown that, by a suitable transformation of the unknown 
function, also this class of equations becomes amenable to 
the application of NP. The example is important because it 
includes the matematical model of semiconductor devices. 
Finally, the conclusions are drawn in Sect. 7.

2  The Numerov process over a non‑uniform 
grid

We start by considering the one-dimensional, second-order 
equation of the form

(1)−u�� = F(u, x) ,
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where the dependence of F on u may be nonlinear. The 
standard Numerov Process (NP) requires a uniform grid 
(the derivation of NP is shown in Appendix I); uniformity 
is necessary because NP is based on series expansions, and 
the uniform spacing of the grid points makes the odd powers 
of the right and left expansions to cancel each other. After 
eliminating the odd powers, one determines the even pow-
ers in terms of u by recursively applying (1); this is also the 
reason why it is necessary to consider a form like (1) of the 
equation, where the first derivative of the unknown function 
does not appear.

To extend NP to a non-uniform grid one must preserve the 
possibility to cancel, albeit only locally, the odd powers of 
the expansions. An approach that fulfills this requirement is 
shown here, which combines a formally exact solution over a 
non-uniform grid with the improved precision of NP. Consider 
a one-dimensional, non-uniform grid with N internal nodes, 
namely x0 < x1 < ⋯ < xN < xN+1 , and let hi+1 = xi+1 − xi be 
the size of one of its elements. With reference to (1), for any 
xi−1 ≤ x ≤ xi it is

Repeating on the next element xi ≤ x ≤ xi+1 , and integrating 
again, yields, after some calculations whose details are given 
in Appendix II,

Fixing to xi the second integration limit of (2), and renaming 
from � to x the integration variable transforms (2) into

Similarly, fixing to xi+1 the second integration limit of (3), 
and renaming from � to x the integration variable transforms 
(3) into

The problem is thus shifted to the calculation of the two 
integrals

Due to the form of F, integrals (6) depend on u, but not on 
u′ . If Gi and Hi+1 are approximated with formulas where 

(2)u�(x) = u�
i−1

− ∫
x

xi−1

F(u, �) d� .

(3)u(x) = ui + u�
i
(x − xi) − ∫

x

xi

(x − �)F(u, �) d� .

(4)u�
i
= u�

i−1
− ∫

xi

xi−1

F(u, x) dx , i = 1, 2,…

(5)

ui+1 = ui + hi+1 u
�
i
− ∫

xi+1

xi

(xi+1 − x)F(u, x) dx , i = 0, 1,…

(6)

Gi =∫
xi

xi−1

F(u, x) dx ,

Hi+1 =∫
xi+1

xi

(xi+1 − x)F(u, x) dx .

only the nodal values of u appear, namely, Gi = Gi(ui−1, ui) 
and Hi+1 = Hi+1(ui, ui+1) , the resulting expressions do not 
introduce extra unknowns with respect to those that explic-
itly appear in (4) and (5). As shown later, this goal can be 
accomplished in a manner that exploits the precision of NP.

Assuming that integrals (6) have been calculated, the 
way in which the nodal values of u are found from (4), (5) 
depends on the boundary conditions. If the boundary con-
ditions u0 , u′0 are given, the starting point is calculating u1 
from (5) after letting i = 0 there; to calculate u2 one needs u′

1
 , 

which is obtained by letting i = 1 in (4); then, one proceeds 
recursively until the Nth node is reached.

If, instead, the boundary conditions u0 , uN+1 are given 
(which is the typical case in, e.g., the numerical analysis 
of semiconductor devices), one must eliminate the first 
derivatives from the system (4), (5). For this, one rear-
ranges (4) to find Gi = u�

i−1
− u�

i
 , then solves (5) for u′

i
 to 

find u�
i
= (ui+1 − ui + Hi+1)∕hi+1 ; shifting the index in the lat-

ter expression then yields u�
i−1

= (ui − ui−1 + Hi)∕hi which, 
combined with the former, provides

then, one manipulates the term Gi − Hi∕hi in order to give 
(7) the more symmetric form

So far, no approximation has been introduced; to calculate 
the integrals in (8) one now applies Simpson’s rule

with c the midpoint of [a,  b]. The error term of (9) is 
O[(b − a)5 �(4)] , with �(4) the 4th derivative of � calculated 
at some point of the integration interval [4].

Using index i − 1∕2 to denote the quantities at the mid-
point of hi , index i + 1∕2 to denote those at the midpoint of 
hi+1 , and applying (9), transforms (8) into

One notes that the left-hand side of (10) corresponds to 
the discretization of the second derivative obtained from a 

(7)
ui − ui−1

hi
−

ui+1 − ui

hi+1
= Gi −

Hi

hi
+

Hi+1

hi+1
;

ui − ui−1

hi
−

ui+1 − ui

hi+1
=

(8)∫
xi

xi−1

x − xi−1

hi
F(u, x) dx + ∫

xi+1

xi

xi+1 − x

hi+1
F(u, x) dx .

(9)∫
b

a

� dx ≃ (b − a)
�(a) + 4�(c) + �(b)

6
,

−
ui−1

hi
+

(
1

hi
+

1

hi+1

)
ui −

ui+1

hi+1
=

(10)
1

3

(
hi Fi−1∕2 +

hi + hi+1

2
Fi + hi+1 Fi+1∕2

)
.
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parabolic interpolation over a non-uniform grid; in turn, the 
central term of the right-hand side (without the 1/3 factor) is 
the discretized form of the right-hand side of −u�� = F when 
the finite-difference method is used (compare with (22)). 
The improvement inherent in (10) derives from Simpson’s 
rule whose error term, as mentioned above, is O(h5

i
) in the 

interval on the left of xi and O(h5
i+1

) in the interval on the 
right of it. The issue is to calculate the values Fi−1∕2 and 
Fi+1∕2 , that belong to the midpoint of each interval.

3  The system matrix

From the discussion carried out at the end of Appendix I, one 
may assume that the equation in hand has been linearized and 
that the solution is being carried out by iterations; therefore, 
within the single iteration the dependence of F on u is linear, 
say, F = c(x) u + s(x) , whence Fi−1∕2 = ci−1∕2 ui−1∕2 + si−1∕2 
and Fi+1∕2 = ci+1∕2 ui+1∕2 + si+1∕2 ; Eq. (10) then becomes

In (11), the values of c and s at the nodes and at the mid-
points of the elements are known, because the two functions 
are either prescribed or, like in the case considered here, are 
taken from the previous step of an iterative procedure. In 
contrast, ui−1∕2 and ui+1∕2 are not known; however, u is the 
solution of (1), for which the NP interpolation (41) holds 
because the three nodes considered are equally spaced. For 
ui−1∕2 , replicating (41) over the three nodes in hand yields

namely, ui−1∕2 = ai−1
i

ui−1 + ai
i
ui + h2

i
b
i−1∕2

i
 with

Similarly, ui+1∕2 = ai
i+1

ui + ai+1
i+1

ui+1 + h2
i+1

b
i+1∕2

i+1
 with

(11)

−
ui−1

hi
+

(
1

hi
+

1

hi+1
−

hi + hi+1

6
ci

)
ui −

ui+1

hi+1
=

1

3

(
hi ci−1∕2 ui−1∕2 + hi+1 ci+1∕2 ui+1∕2

)
+

+
1

3

(
hi si−1∕2 +

hi + hi+1

2
si + hi+1 si+1∕2

)
.

(12)

−

(
1 +

h2
i

48
ci−1

)
ui−1 +

(
2 − 10

h2
i

48
ci−1∕2

)
ui−1∕2

−

(
1 +

h2
i

48
ci

)
ui

=
h2
i

48

(
si−1 + 10 si−1∕2 + si

)
,

(13)

ai−1
i

=
48 + h2

i
ci−1

96 − 10 h2
i
ci−1∕2

, ai
i
=

48 + h2
i
ci

96 − 10 h2
i
ci−1∕2

,

b
i−1∕2

i
=

si−1 + 10 si−1∕2 + si

96 − 10 h2
i
ci−1∕2

.

Replacing the expressions of ui−1∕2 and ui+1∕2 into (11) and 
rearranging, yields

with

In conclusion, by combining the Simpson rule with an inter-
polation of the NP type, integrals (8) have been calculated in 
terms of the nodal values ui−1 , ui , ui+1 only, and the accuracy 
of NP has been kept. No constraint has been imposed on 
the elements; as a consequence, the scheme is applicable 
to a general, non-uniform grid. The outcome of the whole 
procedure is the N × N algebraic system (15).

One notes that the system matrix of (15) is tridiagonal 
like in the finite-difference scheme; however, it is not sym-
metric because �i−1 ≠ �i due to the fact that ai−1

i
≠ ai

i
 ; the 

asymmetry is not to be ascribed to the non-uniformity of the 
grid, nor to the use of NP, but to the presence of term c u in 
the equation to be solved. In fact, even if a uniform grid is 
used, the matrix resulting from it is still asymmetric (com-
pared with (41)); conversely, if it happens that c = const , 
then (13) renders ai−1

i
= ai

i
 and makes the matrix symmetric.

Another observation is that, if one takes the limit of a 
uniform grid, hi → h , interpolation (10) becomes

Apart from the trivial case F = const , limit (19) is different 
from the interpolation found by directly applying NP to a 

(14)

ai
i+1

=
48 + h2

i+1
ci

96 − 10 h2
i+1

ci+1∕2
, ai+1

i+1
=

48 + h2
i+1

ci+1

96 − 10 h2
i+1

ci+1∕2
,

b
i+1∕2

i+1
=

si + 10 si+1∕2 + si+1

96 − 10 h2
i+1

ci+1∕2
.

(15)−�i ui−1 + �i ui − �i ui+1 = �i + �i ,

(16)
�i =

1

hi
+

ai−1
i

hi

3
ci−1∕2 ,

�i =
1

hi+1
+

ai+1
i+1

hi+1

3
ci+1∕2 ,

(17)
�i =

1

hi
+

1

hi+1
−

ai
i
hi

3
ci−1∕2

−
hi + hi+1

6
ci −

ai
i+1

hi+1

3
ci+1∕2 ,

(18)
�i =

hi

3
si−1∕2 +

hi + hi+1

6
si +

hi+1

3
si+1∕2 ,

�i =
b
i−1∕2

i
h3
i

3
ci−1∕2 +

b
i+1∕2

i+1
h3
i+1

3
ci+1∕2 .

(19)−ui−1 + 2 ui − ui+1 =
h2

3

(
Fi−1∕2 + Fi + Fi+1∕2

)
.
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uniform grid, that is, (35). The reason for the difference is 
that (35) is obtained by combining two series expansions 
over adjacent elements, this involving the nodal values of F 
at xi−1 , xi , and xi+1 . In contrast, interpolation (19) is obtained 
by considering one element at the time and integrating over 
it a term of the form (x − xi−1)F or, respectively, (xi+1 − x)F ; 
then, NP is exploited for carrying out the Simpson integra-
tion, thanks to its ability to provide the unknown function at 
the element’s midpoint. Combining the results of two adja-
cent elements finally makes the nodal values of F at xi−1∕2 , 
xi , and xi+1∕2 to appear in (19); the nodal values at xi−1 and 
xi+1 , instead, do not enter (19) because the integrands vanish 
at xi−1 or, respectively, at xi+1.

To further compare (19) with (35), one changes the coef-
ficient of the right-hand side of (19) from h2∕3 to h2∕12 ; in 
this way, the weights of the F terms become (4, 4, 4), to be 
compared with (1, 10, 1) of (35). In both cases, the weights 
total to 12; however, the lateral weights in (35) are smaller 
because the lateral nodes of (35) are more distant from the 
central node xi than the lateral nodes of (19).

4  Model problem

In this section, we consider a model problem useful for an 
experimental validation of the procedure outlined in Sects. 
2 and 3; we take the interval 0 ≤ x ≤ 1 and assume that the 
solution of −u�� = c u + s is

with k, p two positive integers, so that the boundary condi-
tions are u(0) = u(1) = 0 . One finds

Function (20) is such that the frequency and amplitude of 
the oscillations increase from right to left; the case corre-
sponding to k = 2 and p = 5 is considered (function (20) is 
shown as the green line in Figs. 1 and 2). Equation (20), with 
coefficients given by (21), is solved on different grids using 
the generalized NP method of Sects. 2 and 3, or the standard 
finite-difference scheme (FD); the latter yields

Each outcome is compared with the true solution (20); more 
specifically, as error indicators we adopt

(20)u = � sin(�) , �(x) = k �
1 + p

1 + p x
,

(21)
c =(��)2 (�2 − 2) , s = −4 (��)2 �2 cos(�) ,

� =
p

k � (1 + p)
.

(22)
−

ui−1

hi
+

(
1

hi
+

1

hi+1

)
ui

−
ui+1

hi+1
=

hi + hi+1

2

(
ci ui + si

)
.

where uFD
i

 or uNP
i

 is the value of the solution obtained at the 
ith node using the FD or NP scheme, and ui is the value of 
(20) at the same node.

The first comparison has been carried out by randomly 
generating the nodal positions within the integration 
domain; other comparisons have been carried out starting 
from a uniform grid, whose nodes have subsequently been 
shifted to obtain a prescribed density of nodes over the 
integration domain. Specifically, the shift was obtained 
by defining the new nodal positions yi , i = 1,… ,N  with 
the transformation

where p is the positive integer appearing in the definition 
(20). Observing that the nodal density of the uniform grid is 
Q = 1∕(N + 1) , and that the density g(y) of the shifted grid 
fulfills the relation Q dx = g(y) dy , one finds

In particular it is g(0) = (p + 1) g(1) , namely, the ratio 
g(0)/g(1) is the same as �(0)∕�(1) , where � is the parameter 
appearing in the definition (20) of u. With respect to the 
original positions pertaining to the uniform grid, transforma-
tion (24) shifts the nodes to the left, namely, in the direction 
where the frequency and amplitude of u increase.

The error indicators (23) are shown in Table 1 for dif-
ferent numbers of grid nodes N; specifically, cols. 1, 2 of 
the table show the results obtained from the randomly-
generated grids, cols. 3, 4 those from the uniform grids, 
and cols. 5, 6 those from the left-shifted grids (although 
considering uniform grids is redundant with respect to the 
scope of this work, the results are shown for comparison 
with those of the other cases). In each set of simulations, 
the number of nodes has progressively been reduced until 
the error indicator (23) reached a value of the same order 
as the oscillation amplitude of u; after this threshold was 
reached, the number of nodes was not reduced any more 
and the simulation was discontinued, which explains the 
horizontal lines in Table 1.

Considering the general trend of the error indicator, 
the tables show that, as expected, the error improves from 
the case of the randomly-generated grids, to that of the 
uniform grids and, finally, to that of the left-shifted grids. 
As for the comparison between the two solution methods, 
it is found in all cases that the non-uniform NP is better by 
orders of magnitude than the corresponding FD.

(23)�FD = max
i

|uFD
i

− ui| , �NP = max
i

|uNP
i

− ui| ,

(24)y =
1 + p −

√
1 + p (p + 2) (1 − x)

p
, 0 ≤ y ≤ 1 ,

(25)g(y) =
2

N + 1

1 + p (1 − y)

p + 2
.
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5  Comparison with other approaches

An extension of NP to a non-uniform, one-dimensional 
grid has been proposed by Vigo-Aguiar and Ramos as a 
special case of the variable k-step Störmer-Cowell method 
[3]. One of the outcomes of [3] (indicated here as VR from 
the authors’ initials) is determining a strategy for select-
ing the length of element hi+1 , given h1,… , hi , when solv-
ing (1) when the initial conditions u(x0) = u0 , u�(x0) = u�

0
 

are prescribed; as shown by examples provided in [3], 
VR is applicable also to boundary-value problems. In 
the discretization scheme of VR, the left-hand side can 
be reduced to the form of (10); the right-hand side uses 
weights in which suitable combinations of the elements 

appear. Another work showing an extension of NP to a 
non-uniform, one-dimensional grid is [5], whose scheme 
is similar to that of VR: the left-hand side is still the same 
as in (10), whereas the weights at the right-hand side use 
the single ratio hi+1∕hi ; this yields an O(h3) error term [6].

In the following, the comparison is carried out using 
again the model problem −u�� = c u + s with coefficients 
given by (20, 21); the method proposed here is compared 
with VR and with the boundary-value problem solver of 
MATLAB® [7] (the latter will be indicated with ML below). 
In contrast to VR, the scheme of ML considers a system of 
first-order equations, that are solved by a collocation method 
with a C1 piecewise-cubic polynomial; the latter collocates 
at the ends of each element and at the midpoint, yielding an 
O(h4) error term. It is also worth noting that ML constructs 

Table 1  Error indicators (23) 
obtained using FD and NP over 
randomly-generated grids (cols. 
1, 2), uniform grids (cols. 3, 4), 
or left-shifted grids (cols. 5, 6)

1 2 3 4 5 6
N �

FD
�
NP

�
FD

�
NP

�
FD

�
NP

5000 1.5 4 × 10
−4 0.4 3.7 × 10

−6 0.2 5 × 10
−7

2500 33 7 × 10
−2 1.7 5.9 × 10

−5 0.6 7 × 10
−6

2000 40 8 × 10
−2 2.7 1.4 × 10

−4 1 2 × 10
−5

1000 – 0.4 12 2.3 × 10
−3 4 3 × 10

−4

750 – 1.0 22 7.2 × 10
−3 7 9 × 10

−4

600 – 3.2 39 1.8 × 10
−2 12 2 × 10

−3

550 – 28 49 2.5 × 10
−2 14 3 × 10

−3

500 – – 65 3.6 × 10
−2 18 4 × 10

−3

250 – – – 0.6 – 7 × 10
−2

150 – – – 3.7 – 5 × 10
−1

100 – – – 13 – 2.5
75 – – – – – 7

0 0.2 0.4 0.6 0.8 1
x

-40

-20

0

20

40

M
od

el
 p

ro
bl

em

Exact solution
ML (86 nodes)
This work (86 nodes)

Fig. 1  Comparison between the solution of the model problem 
obtained over an 86-node grid using ML (red circles) and the method 
of this work (blue diamonds). The green line shows the exact solution 
of the same problem (the values of the parameters in (20) are k = 2 , 
p = 5)

0 0.2 0.4 0.6 0.8 1
x

-40

-20

0

20

40

M
od

el
 p

ro
bl

em

Exact solution
ML (76 nodes)
This work (76 nodes)

Fig. 2  Comparison between the solution of the model problem 
obtained over a 76-node grid using ML (red circles) and the method 
of this work (blue diamonds). The green line shows the exact solution 
of the same problem (the values of the parameters in (20) are k = 2 , 
p = 5)
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a non-uniform grid by adding nodes until the specified toler-
ance is reached; this explains why the numbers of nodes of 
Table 2 are different from those of Table 1.

Remembering the description of the present method given 
in Sects. 2, 3, the equation to be solved is recast in integral 
form and the integral over each element is calculated by the 
Simpson rule; for the latter, the value of u at the element’s 
midpoint is needed, which is obtained from the NP interpo-
lation (41). It may be argued that the introduction of such a 
“ghost” point in the middle of each element is equivalent to 
doubling the number of nodes, which is of advantage when 
the error indicator (23) is used. For this reason, another 
set of simulations have been carried out with VR using a 
double number of nodes with respect to that used with NP; 
the results of such simulations (which are more expensive 
in terms of computing time, see Table 3) are labeled VR2. 
Instead, the doubling of the number of nodes was not used 
with ML because, as mentioned above, this method uses the 
elements’ midpoint as well.

Table  2 compares the error indicators of type (23) 
obtained with different solution methods. The table has been 
obtained by solving (1) using ML with six different values 
of its internal relative-tolerance parameter. This provided 
six non-uniform grids, whose numbers of nodes are given 
in column N; the corresponding error indicators are shown 
in column �ML . Then, using the same grids, the solutions 

and the corresponding error indicators have been calculated 
again using the VR method with N nodes ( �VR ), the VR 
method with 2N nodes ( �VR2 ), and the non-uniform-grid NP 
method ( �NP ). The solutions corresponding to the last two 
lines of Table 2 are shown in Figs. 1 and 2, respectively, for 
ML and NP, that exhibit the smallest error indicators.

A last set of runs have been carried out to compare �FD , 
�VR , and �NP over randomly-generated grids (Fig. 3), and 
over initially-uniform grids shifted by applying the (24) 
scheme (Fig. 4). Finally, the simulation times of the differ-
ent methods are compared in Table 3 using a uniform grid 
by way of example; the calculations have been carried out 
on a Notebook with an AMD A4-4355N cpu, 1.9 GHz, 4.0 
GB RAM.

Table 2  Error indicators (23) obtained with different solution meth-
ods (see text)

N �
ML

�
VR

�
VR2

�
NP

986 6.6 × 10
−5 5.9 × 10

−1
1.7 × 10

−1
2.0 × 10

−5

527 1.0 × 10
−3

8.0 × 10
−1

1.0 × 10
0

3.2 × 10
−4

285 1.2 × 10
−2

2.8 × 10
0

4.1 × 10
0

4.1 × 10
−3

153 1.3 × 10
−1

3.0 × 10
0

5.1 × 10
0

5.4 × 10
−2

86 1.2 × 10
0

2.2 × 10
+2

6.0 × 10
+1

2.1 × 10
−1

76 5.1 × 10
0

3.3 × 10
+2

2.9 × 10
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Table 3  Simulation time over a uniform grid (units: s)

N FD VR VR2 NP

5, 000 1.6 × 10
0

8.3 × 10
−1

1.5 × 10
+1

1.0 × 10
0

2, 500 1.5 × 10
−1

2.0 × 10
−1

1.0 × 10
0

1.8 × 10
−1

2, 000 1.2 × 10
−1

1.0 × 10
−1

4.6 × 10
−1

1.1 × 10
−1

1, 000 4.1 × 10
−2

2.2 × 10
−2

1.1 × 10
−1

2.3 × 10
−2

750 2.1 × 10
−2

1.2 × 10
−2

5.4 × 10
−2

1.2 × 10
−2

500 8.0 × 10
−3

6.0 × 10
−3

2.1 × 10
−2

4.6 × 10
−3

250 1.7 × 10
−3

1.0 × 10
−3

6.0 × 10
−3

1.1 × 10
−3

150 4.7 × 10
−4

4.3 × 10
−4

2.4 × 10
−3

4.9 × 10
−4

100 2.2 × 10
−4

2.2 × 10
−4

2.2 × 10
−3

1.8 × 10
−4

75 1.5 × 10
−4

1.4 × 10
−4

4.3 × 10
−4

1.3 × 10
−4
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Fig. 3  Error indicators (23) obtained by solving the model problem 
(20) over randomly-generated grids using the FD (black line), the 
VR (red line), the VR2 (green line), and the non-uniform NP method 
(blue line). The horizontal axis shows the number of grid nodes
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Fig. 4  Error indicators (23) obtained by solving the model problem 
(20) over initially-uniform grids shifted by applying the (24) scheme, 
using the FD (black line), the VR (red line), and the non-uniform NP 
method (blue line). The horizontal axis shows the number of grid 
nodes



1111Journal of Computational Electronics (2021) 20:1105–1113 

1 3

6  Extension to a larger class of equations

Another important class of second-order equations has the 
form

where b and Q are prescribed. The NP method cannot be 
applied to (26) as it stands; however, the form of (26) is 
readily reduced to that of (1) by introducing the auxiliary 
unknown

with x0 an arbitrary point; in fact, w fulfills

An example of equation of the form (26) is given by the 
transport model of the semiconductor devices, which is 
important in view of its applications to the integrated-circuit 
technology; when the transport of electrons is considered, b 
stands for the normalized electric field and g for the electron 
concentration. Examples of applications of the NP method 
to the semiconductor model, over a uniform grid, are given 
in [8, 9].

7  Conclusions

A method for extending the Numerov process to a non-uni-
form grid in one dimension has been shown. The result is 
achieved by acting on each grid element separately: first, the 
equation to be solved is locally recast in integral form, and 
the integral over the element is expressed with the Simpson 
rule; then, the extra unknown allocated at the midpoint of 
the element is expressed through the Numerov interpolation 
in terms of the two nodal unknowns belonging to the same 
element. The error term of the Simpson rule is of the same 
order as that of the Numerov process, so the accuracy of 
the latter is preserved. The effectiveness of the scheme has 
been tested on a model problem, in which both amplitude 
and oscillation frequency of the solution increase when one 
of the ends of the integration domain is approached. The 
method compares favorably with other methods that extend 
the Numerov Process over a non-uniform grid, and with 
MATLAB®. In the last part of the paper, it is shown how 
a suitable transformation of the unknown makes it possible 
to apply the Numerov process to a larger class of equations, 
that includes the mathematical model of semiconductor 
devices.

(26)−g�� + b(x) g� = Q(g, x) ,

(27)w = g exp

[
−
1

2 ∫
x

x0

b(�) d�

]
,

(28)

− w�� = F(w, x) , F =

(
b�

2
−

b2

4

)
w + Q exp

[
−
1

2 ∫
x

x0

b(�) d�

]
.

Appendix I: the Numerov process

An interpolation scheme more refined than the parabolic 
one is the so-called Numerov Process [1] (cited in [2]), 
which applies to second-order equations of the form

The essence of the method is that the derivatives of the odd 
order are canceled, while those of even order are recursively 
reconstructed in terms of u by means of (29). Considering a 
uniform grid of size h, the nodal value at ui+1 is obtained by 
means of a Taylor expansion starting from ui ; truncating the 
expansion to the 5th order yields

and, similarly,

Adding (31) to (30),

Now, the same form of the interpolation is obtained if the 
series expansion is applied to u′′ instead of u; one finds in 
this case

Neglecting the 6th-order term in (33) and eliminating u(4)
i

 
between (32) and (33) yields

Finally, letting Fi = F(ui, xi) transforms (34) into

This interpolation is obtained by keeping terms up to the 
5th order; as a consequence, its precision is better than that 
of the parabolic interpolation. The additional computational 
cost is due to the right-hand side of (35), whose calcula-
tion requires one more multiplication and two more addi-
tions with respect to that of the right-hand side of standard 

(29)−u�� = F(u, x) .

(30)
ui+1 ≃ ui + h u�

i
+

h2

2
u��
i

+
h3

6
u
(3)

i
+

h4

24
u
(4)

i
+

h5

120
u
(5)

i

(31)
ui−1 ≃ ui − h u�

i
+

h2

2
u��
i
−

h3

6
u
(3)

i

+
h4

24
u
(4)

i
−

h5

120
u
(5)

i
.

(32)ui−1 − 2 ui + ui+1 = h2 u��
i
+

h4

12
u
(4)

i
.

(33)u��
i−1

− 2 u��
i
+ u��

i+1
= h2 u

(4)

i
+

h4

12
u
(6)

i
.

(34)ui−1 − 2 ui + ui+1 =
h2

12

(
u��
i−1

+ 10 u��
i
+ u��

i+1

)
.

(35)
− ui−1 + 2 ui − ui+1 =

h2

12

(
Fi−1 + 10Fi + Fi+1

)
,

i = 1, 2,… .
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finite-difference scheme; the cost of inverting the matrix of 
the algebraic system (35) is, instead, the same.

As anticipated, the method eliminates (without approxi-
mations) the odd-order derivatives and exploits the form 
of the equation to eliminate the even-order ones. This does 
not mean that the calculation of the odd-order derivatives 
is prevented; in fact, subtracting (31) from (30) one obtains

Neglecting the 5th-order term in (36) and repeating the cal-
culation for u′′,

Neglecting again the 5th-order term and eliminating u(3)
i

 
between (36) and (37),

which is rearranged as

The calculation of the derivative keeps the terms up to the 
4th order. It is also important to note that (39) provides the 
derivative at the ith node, not within one or the other neigh-
boring elements like in the parabolic approximation.

Still considering (29), it is convenient to consider sepa-
rately the case where the dependence of F on u is linear, 
namely,

where c, s are two given functions of x, from the case where 
the dependence is nonlinear. In the linear case (35) and (39) 
become, respectively,

In the nonlinear case, which is typical of, e.g., the mathemat-
ical model of semiconductor devices, one must preliminarily 

(36)ui+1 − ui−1 = 2 h u�
i
+

h3

3
u
(3)

i
+

h5

60
u
(5)

i
.

(37)u��
i+1

− u��
i−1

= 2 h u
(3)

i
+

h3

3
u
(5)

i
.

(38)ui+1 − ui−1 = 2 h u�
i
+

h2

6

(
u��
i+1

− u��
i−1

)
,

(39)u�
i
=

ui+1 − ui−1

2 h
+

h

12

(
Fi+1 − Fi−1

)
.

(40)F = c u + s ,

(41)

−

(
1 +

h2

12
ci−1

)
ui−1 +

(
2 − 10

h2

12
ci

)
ui

−

(
1 +

h2

12
ci+1

)
ui+1

=
h2

12

(
si−1 + 10 si + si+1

)
,

(42)
u�
i
=
(

1

2 h
+

h

12
ci+1

)
ui+1 −

(
1

2 h
+

h

12
ci−1

)

ui−1 +
h

12

(
si+1 − si−1

)
.

linearize (29) starting from a tentative solution ū ; specifi-
cally, one lets u = ū + 𝛿u , this transforming (29) into

which must then be solved by iterations. When dealing with 
(43) one may still use (41) and (42) provided the following 
replacements are used:

At convergence, �u = 0 and −ū�� = F(ū, x).

Appendix II: calculation of the integrals 
of (2) and (3)

Integrating (1) from an arbitrary point x0 , and letting 
u�
0
= u�(0) , yields

Integrating again, still from x0 , and letting u0 = u(x0) , 
provides

On the other hand,

Integrating (47) between x0 and x, and using Y(x0) = 0 , 
yields

Function Y(x) at the left-hand side of (48) is taken from the 
second of (45), so that (48) becomes

Combining (46) with (49) provides

Letting x0 = xi−1 in (45) yields (2); similarly, letting x0 = xi 
in (50) yields (3).
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(43)−ū�� − 𝛿u�� = F(ū + 𝛿u, x) ≃ F(ū, x) +
(
𝜕F
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)

ū
𝛿u ,
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)
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, s ← ū�� + F(ū, x) .
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