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Abstract
Entangled quantum particles, in which operating on one particle instantaneously influences the state of the entangled par-
ticle, are attractive options for carrying quantum information at the nanoscale. However, fully-describing entanglement in 
traditional time-dependent quantum transport simulation approaches requires significant computational effort, bordering on 
being prohibitive. Considering electrons, one approach to analyzing their entanglement is through modeling the Coulomb 
interaction via the Wigner formalism. In this work, we reduce the computational complexity of the time evolution of two 
interacting electrons by resorting to reasonable approximations. In particular, we replace the Wigner potential of the electron–
electron interaction by a local electrostatic field, which is introduced through the spectral decomposition of the potential. It 
is demonstrated that for some particular configurations of an electron–electron system, the introduced approximations are 
feasible. Purity, identified as the maximal coherence for a quantum state, is also analyzed and its corresponding analysis dem-
onstrates that the entanglement due to the Coulomb interaction is well accounted for by the introduced local approximation.

Keywords  Coulomb interaction · Wigner formalism · Entanglement · Purity

1  Introduction

Collective phenomena such as Coulomb interaction play 
a dominant role in determining the behaviour of classical 
microelectronic devices [1]. Conventionally, this requires 
coupling the Boltzmann equation (or the macroscopic 
models derived from it, such as the drift-diffusion equa-
tions) with the Poisson equation. Sophisticated particle 
models have been developed, where the mesh-dependent 

Boltzmann–Poisson model is accomplished by short range 
interactions [2] to correctly represent the Coulomb interac-
tion without using computationally expensive methods such 
as molecular dynamics [3]. Cutting-edge nanoelectronic 
devices are usually described in terms of single-electron 
quantum mechanics, or in terms of Schrödinger–Poisson 
models [4], up to the exhaustive many-body Schrödinger 
equation [5] used in quantum chemistry and materials 
science.

Usually, nonequilibrium electron dynamics is sufficient 
to describe the charge transport in general nanometer 
structures, governed by boundary conditions. However, 
recent efforts to develop novel devices by using alternative 
operating principles focus on coherence and entanglement 
[6]. A classical and fundamental case for the development 
of quantum computing approaches is the evolution of two 
electrons in two adjacent quantum wires [7]. The initial 
state can be represented by two separate electrons, or can 
be correlated, if the electrons are indistinguishable [8, 9]. 
However, the core effect of the electron–electron interac-
tion, occurring during the common evolution in the adja-
cent wires, is the process of entanglement [10, 11], to the 
degree that such structures are collectively known as so-
called Coulomb entanglers. Entanglement is measured by 
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different quantities [12], such as the von-Neumann entropy 
tr(�ln(�)) [13] or the linear entropy tr(�(1 − �)) [14], where 
� represents the density matrix. Similarly, one can use the 
deviation of tr(�2) from unity, which serves as a convenient 
heuristic measure of the purity of a state, based on the fact 
that for pure states � = �2 holds.

Coherence is an underlying quantum concept. The quan-
tification theory of coherence has recently been developed 
based on the quantification theory of entanglement [15, 
16]. While the two concepts describe very different physi-
cal notions, the two theories have a common mathematical 
foundation. They have been developed in the framework of 
operator mechanics, in terms of Hilbert spaces, eigenbasis 
sets, and tensor products. Accordingly, simulating quan-
tum systems relies on computational approaches of wave 
mechanics. In particular, the time-dependent Schrödinger 
equation with exact Coulomb interaction is solved [17], 
or approximated by resorting to coupling schemes to the 
Poisson equation [18].

The Wigner formalism offers an alternative descrip-
tion of quantum mechanics in terms of phase space. The 
formalism is widely applied [19, 20], and offers features 
such as an intuitive and heuristic picture of pure quantum 
processes by providing a seamless transition to classical 
evolution. It has been shown recently that the formalism 
provides a legitimate theoretical framework which presents 
the basic notions of the quantification theory of coher-
ence in phase space terms [21]. Coherent single-electron 
dynamics as well as effects of decoherence can be ana-
lyzed with the help of a stochastic computational approach 
[22]. The applied quantum Monte Carlo approach samples 
the single-electron evolution in terms of particles equipped 
with a sign, which are generated by the Wigner potential 
and can be annihilated in a common phase-space cell [23]. 
The corresponding algorithm is independent of the dimen-
sionality of the computational problem. The phase space 
(�, �) can correspond to the coordinates (x, kx , y, ky , z, kz) 
of a single electron in three dimensions, or to three one-
dimensional (1D) electrons (x1, kx1) , (x2, kx2) , and (x3, kx3) , 
or denote the set �1, �2, �1, �2 of two 2D or 3D electrons.

As entanglement considers at least two quantum 
objects, the dimensionality of the phase space increases, 
and the Coulomb interaction between the evolving elec-
trons must be accounted for. However, the numerical 
efforts related to the computation of the Wigner function 
fw(�, �, t) and the most dimensionally-dependent object 
in the theory, the Wigner potential Vw(�, �, �

�, t) , rapidly 
rise with the increase of the dimensionality. Furthermore, 
in the considered case of a Coulomb entangler [10], the 
Wigner potential, which in this two-electron case depends 
on 2 × 6 (�,�,��) arguments for 2D structures, must be 
updated during the evolution in timesteps of the order of 

one femtosecond. This gives rise to an enormous compu-
tational effort and motivates the development of approxi-
mative methods.

Separating the dynamically evolving Coulomb interaction 
from the stationary potential and representing the former in 
terms of an electric force will indeed reduce the computa-
tional burden; the Wigner equation states that a force-less 
Liouville operator, acting on the Wigner function, equals 
the integral on �′ between the Wigner potential and the 
Wigner function [24]. The integral possesses the nice prop-
erty of turning into the force term of the Liouville operator 
for electric potentials with up to quadratic spatial depend-
ence [25]. Therefore, if the electric field varies slowly in 
the spatial region in the vicinity of an electron wavepacket, 
its evolution is accelerated by the local electric force, as in 
the Boltzmann case. This property has motivated Gehring 
and Kosina to introduce a low-pass filter [26] in order to 
separate the slowly varying component of the electric field 
and complement the Liouville operator with a force term. 
This reduces the effect of the Wigner potential, because a 
part of it is represented by a force. The accelerated Newto-
nian trajectories can be efficiently computed, which signifi-
cantly reduces the computational demands. Thus, a feasible 
approach for the analysis of entanglement is offered by the 
spectral decomposition of the Coulomb interaction, which 
is effectively represented by the electric force.

The Poisson equation has been incorporated in the analy-
sis of the Wigner self-consistent potential since the early 
applications of the Wigner equation in device modeling [27, 
28],  thus there is a well-established approach to the self-
consistent evolution. While in classical device modeling, the 
transport equation provides the number of electrons, which 
in turn updates the electric field used in the next timestep of 
the evolution, in the quantum case, this scheme contains an 
implicit assumption related to the fact that electrons are not 
point-like particles anymore, and indeed spread over at least 
several nanometers. The quantum electron is non-local with 
respect to the spatial mesh required for the solution of the 
Poisson equation and, therefore, the spread of the density of 
a single electron should cause negligible perturbation on the 
density of adjacent mesh nodes, which are used to calculate 
the local force. This is true if the number of electrons is 
very large, which is an important assumption in the case of 
modern devices. However, when considering the case of two 
distinguishable interacting electrons, the density distribution 
of the first electron provides the electric field for the second 
electron, and vice versa. Accordingly, the density of each 
electron must be ruled out in calculating its effective electric 
field in order to avoid self-action. The computational prob-
lem of several interacting electrons is thus entirely different 
from the commonly used many-body counterpart.

In this work, we present a computationally efficient 
approach for a Wigner–Poisson coupled scheme in order to 
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investigate the evolution of interacting electrons. For this 
purpose, it is important to inspect conditions which allow 
adjusting the non-locally acting Wigner potential (the elec-
tron–electron Coulomb interaction) to a local action of the 
electric force.

In Sect. 2, we formulate the computational problem by 
describing the physical system, the evolutionary process, 
and the computational aspects. The effect of the spectral 
decomposition of the potential on the mean values of the 
physical quantities together with an evaluation of the error is 
presented in Sect. 3. The non-locality of the action is another 
underlying quantum concept, and thus, the impact of the 
local field approximation on the capability of the approach 
to simulate entanglement is analyzed through simulations 
addressed in Sect. 4.

2 � Computational problem

In the Wigner Ensemble Monte Carlo (WEMC) simulation 
scheme, the injection of electrons is implemented through 
the utilization of minimum uncertainty wavepackets [21]. 
The Wigner function, representing the initial condition, is 
calculated from a physically valid wavefunction. The Gauss-
ian minimum uncertainty wavepacket is defined by

where N represents a normalization constant, and r0 , k0 and 
� represent the mean position, the mean wavevector, and 
the standard spatial deviation, respectively. Each injected 
wavepacket consists of many numerical particles and rep-
resents a single electron. As shown in Fig. 1, the injected 
wavepackets are first generated in the so-called injection 
zone, where the initial distributions of position and momen-
tum for the numerical particles in each wavepacket follow 
Gaussian distributions. In this regard, we can either inject 
wavepackets separately, i.e., without any Coulomb interac-
tion considered, or inject pairs of coupled wavepackets, i.e., 
taking Coulomb interaction into account. In order to obtain 
a steady-state picture for physical quantities of interest, the 
coupled pairs are injected independently of other couples in 
intervals of tinter (the time between the injection of one pair 
and the next pair). Furthermore, the time between the injec-
tion of two particles in the same pair is denoted by tintra , and 
is of high importance in the description of the coupled-injec-
tion experiments presented here, as will be discussed later.

A Coulomb entangler is a synthesized system of two 
electrons, represented by two equivalent minimum uncer-
tainty wavepackets (i.e. two equivalent electrons), injected 
into a nanowire in the absence of dopants in the simulation 
region. The external potential is ignored, which ensures a 
valid analysis of the entanglement as the influence of the 

(1)�G(�, �, t0) = Ne−(�−�0)
2�−2

e−(�Δk−�0)
2�2

,

environment is eliminated. The quantum character of the 
evolution is thus specified only by the initial conditions, 
which obey the uncertainty relations.

The formal description of the evolution of a single elec-
tron requires a 4D phase space for a 2D simulation region. 
A coupled electron–electron pair, in terms of the 2D Wigner 
equation, involves a force-less Liouville operator acting on 
the Wigner function fw in the 8D phase space of position 
� = �1, �2 and wavevector � = �1, �2 , taking the coordinates 
of both electrons into account. According to the signed-
particle method [22], the mean value of a physical quan-
tity is determined by a stochastic sampling by Monte Carlo 
techniques, where samples represent numerical particles. 
A numerical particle, in the here considered coupled pair, 
has eight coordinates and follows a Newtonian trajectory 
(�(t), �(t) = �) , which is parameterized by the time line in 
the phase space and uniquely determined by its initial point 
(�, �) . The evolving trajectory does not feel the action of 
the Wigner potential Vw(�, �, �

�) , which determines the rules 
for generation of novel signed particles. In other words, a 
particle in (�, �) is associated with a probability to generate 
novel particles in (�,��) . The sign of novel particles and their 
initial point depends on the Wigner potential at (�, �) , as well 
as on the sign of the parent particle. Apart from the fact that 

Fig. 1   The simulation and injection setup of the 2D nanowire
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a numerical particle has eight coordinates, the algorithm 
is the same as for the evolution of a single electron, repre-
sented by numerical particles in a 4D phase space. However, 
the computational burden dramatically increases for the 8D 
case, which is well-illustrated by the fact that the first sto-
chastic methods for 1D structures (2D phase space), such 
as resonant-tunneling diodes, were developed two decades 
ago [29], and it took around fifteen years before the first 4D 
phase space simulations were conducted [30].

Regarding entanglement, one approach is to calculate the 
reduced Wigner function for the first electron fr1 , which is 
obtained by integrating fw on the coordinates of the second 
electron (�2, �2) . Furthermore, if the two electrons were non-
interacting, it holds that the 8D Wigner function is given 
by the product of the 4D Wigner functions of two electrons 
fw = fw1 × fw2 , in which fw1 = fr1 , fw2 = fr2 , and this property 
remains during the time evolution. Thus, it is sufficient to 
simulate the electron of interest, a 4D problem, without the 
need to consider the second electron.

The Wigner potential Vw,e−e for the electron–electron 
interaction is thus a 12D quantity (see Sect.  1) which 
depends on the coordinates of the two electrons. However, 
a fixed Coulomb potential, such as one of a dopant, provides 
Vw,c , a 6D quantity, depending on the coordinates of a single 
electron. In other words, while Vw,e−e acts on fw by involving 
the coordinates of the two electrons, a fixed Coulomb poten-
tial appears as Vw,c1 + Vw,c2 , in which the first (second) term 
involves only the first (second) electron coordinates of fw . It 
follows that, in the absence of electron–electron interaction, 
the 12D Wigner equation decouples into two independent 
6D equations.

The above considerations encourage the local field 
approximation in which the term Vw,e−e is approximated by 
the corresponding forces �1 and �2 , acting on the first and 
the second electron, respectively. From a formal point of 
view, a decoupling is still not possible, as �1 depends on the 
position variables of the second electron, and vice versa. 
However, as in the case of classical transport modeling, one 
can assume constant values for the forces in timesteps of 
Δt = 1 fs and update �1 and �2 at the end of each timestep. 
During a timestep, �1 ( �2 ) depends only on the coordinates 
of the first (second) electron and the description of each of 
them becomes 4D. The description remains 4D also in the 
case of an external potential as they interact with any of the 
electrons independently of the other electrons, which greatly 
reduces the computational burden.

In this way the two-electron Wigner equation is reduced 
to two coupled equations solved independently during con-
secutive time steps. The update of the forces at the end of 
each time step establishes the coupling due to the Poisson 
equation, which introduces information about the solution 
of the first of the coupled equations into the second cou-
pled equation and vice versa. Even if an initially decoupled 

system is considered, corresponding to an initial condition 
represented by a product of two single-electron Wigner 
functions, the interaction entangles the two electrons. 
The two-electron Wigner function evolved in time is still 
a product of the solutions of the two equations, but each 
of these solutions is now a function which depends on 
both sets of coordinates labeled by 1 or 2, respectively, 
established via the consecutive update of the forces. That 
is, the two-electron Wigner function cannot be decom-
posed into a product of two functions f1 × f2 depending 
solely on the coordinates 1 or 2, respectively. The system 
is not separable anymore so that a single-electron distri-
bution is obtained only after integration over the other set 
of coordinates.

3 � Wigner potential decomposition

The local field approximation is essential for the developed 
Wigner–Poisson coupling scheme. In this section, we pro-
vide an analysis of the effect of the potential decomposi-
tion and show that the devised electron–electron local field 
approximation is feasible, if the electrons are initially at 
a moderate distance and do not overlap significantly (also 
during the evolution), see Sect. 4.

The Wigner function [31], as a quasi-probability meas-
ure in phase space, is obtained by the Fourier transform 
of the density matrix expressed in the mean and difference 
of coordinates:

For a finite region of interest, the position and momentum 
vectors can be discretized as � ≡ (xΔx, yΔy) and 
� = �Δk ≡ (p

�

MΔx
, q

�

NΔy
) , respectively, with the physical 

region of interest represented by � ≡ (MΔx,NΔy) . Without 
any loss of generality, mesh spacings in both directions are 
assumed to be identical for the remainder of this work, i.e., 
Δx = Δy . Furthermore, a function of phase space is repre-
sented as f(x, y, p, q), removing the constant parts to improve 
readability.

The Wigner equation, in the discrete form, will then 
follow as:

The fully discretized Wigner potential, which is of central 
importance in the signed-particle method, will then become:

(2)fw(�, �, t) =
1

(2�)2 ∫
+∞

−∞

d�e−i�.��
(
� +

�

2
, � −

�

2
, t).

(3)

(
�

�t
+

ℏ�Δk

m∗
∇�

)
fw(�, �, t)

=
∑

�

Vw(�, � − ��)fw(�, �
�, t)

.
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Using the properties of the 2D discrete Fourier transform, 
and assuming the potential to be periodic, it is proved that 
the Wigner potential can be given by:

Using Euler’s formula, Eq. 5 can be rewritten in polar form 
as:

Applying the decomposition, the potential operator on the 
right-hand side (RHS) of Eq. 3 can be represented as:

Qcl and Qqm are the classical and quantum mechanical parts 
of the potential operator, respectively. As the mesh spacing 
is identical in both directions, we can specify a common 
cut-off wavenumber qc , which corresponds to a more practi-
cal parameter, namely the cut-off wavelength, through 
�c =

2�

qcΔk
.

Cut-off parameters determine the sharpness of the corre-
sponding low-pass filter, which is the heart of the decomposi-
tion scheme. The higher the cut-off wavenumber, the lower the 
cut-off wavelength, and thus the sharper the low-pass filter. In 
other words, lower values of �c result in near-classical func-
tioning of the system, while higher values of �c demonstrate 
the near-quantum behavior.

Using Lagrange’s mean value theorem, the classical com-
ponent of the potential can be calculated, after some manipu-
lation, as:

(4)
Vw(x, y, p, q) =

1

iℏMN

M

2
−1∑

m=−
M

2

N

2
−1∑

n=−
N

2

e
−i(pm

�

M
+qn

�

N
)

×

[
V
(
x +

m

2
, y +

n

2

)
− V

(
x −

m

2
, y −

n

2

)]
.

(5)
Vw(x, y, p, q) =

1

i�MN

{
e
i2(

𝜋xp

M
+

𝜋yq

N
)
V̂(2p, 2q)

−
[
e
i2(

𝜋xp

M
+

𝜋yq

N
)
V̂(2p, 2q)

]∗
} .

(6)
Vw(x, y, p, q) =

2

ℏMN
A(2p, 2q)

× sin
[
�(2p, 2q) + 2

�xp

M
+ 2

�yq

N

].

(7)

Qfw(x, y, p, q) =
∑

p�,q�

Vw(x, y, p
�, q�)fw(x, y, p − p�, q − q�)

=
∑

|q�|,|p�|≤ qc

2

+
∑

|q�|,|p�|> qc

2

= Qclfw + Qqmfw

In order to calculate Vcl , a convolution of real functions, the 
potential V(x, y) and the sinc functions acting as low-pass 
filters, must be evaluated. As shown in Eq. 8, Vcl(x, y) is the 
slowly varying part of the potential calculated by filtering 
out the high frequency components. In contrast, Vqm(x, y) 
contains only the high-frequency components and repre-
sents the rapidly varying part of V(x, y). Being aware of 
V(x, y) = Vcl(x, y) + Vqm(x, y) , it is straightforward to show 
that:

Therefore, through the introduction of a low-pass filter, the 
potential profile is decomposed into a slowly varying clas-
sical component and a rapidly varying quantum mechanical 
component, and the Wigner equation is modified as follows 
[32]:

As shown on the left-hand side (LHS) of the modified 
Wigner equation (Eq. 10), the classical component of the 
potential gives rise to a local force term, which is calculated 
using the finite difference method. Furthermore, the new 
Wigner potential ( Vqm,w ) on the RHS of the equation is cal-
culated from the non-local quantum mechanical component 
of the potential ( Vqm).

The results of such a potential decomposition are illus-
trated in Fig. 2 for �c = 10Δx (close to classical case) and 
�c = 30Δx (close to quantum case), respectively.

Based on this potential setup of the considered simu-
lation domain (see Fig. 1), electrons are being injected 
from the bottom boundary: The simulation region does 
not contain any dopants (in contrast to the simulations 
discussed in Sect. 3), but Gaussian minimum uncertainty 
wavepackets (representing electrons) are injected into the 
region (in the +y direction).

(8)

Vcl(x, y) =
1

MN

∑

|q|,|p|≤qc
V̂(p, q)ei(

𝜋xp

M
+
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N
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N
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M
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N
]

𝜋(y − n)

)
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(9)
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1
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1
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All boundary conditions are treated as absorbing, so 
that the particles are not exposed to boundary poten-
tials. The results for the density, as shown in Fig. 3 for 
�c = 10Δx and �c = 30Δx at t = 95 fs , demonstrate the 
interaction of the particles with the single dopant in the 
center.

For the above-mentioned values of the cut-off wave-
length, the density values at each point in the physical 
region are compared in Fig. 4 to the corresponding density 
values of the pure quantum case and an error ratio is con-
sidered as follows [32]:

Fig. 2   The potential input (a, b) and its classical (CL) (c, d) and quantum mechanical (QM) (e, f) components for a single charge in the center of 
a 20 nm × 30 nm region for �c = 10Δx (left figures), and �c = 30Δx (right figures). Units are in eV 

Fig. 3   The particle density (a.u.) for a �c
Δx

= 10 , and b �c
Δx

= 30
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Dqm represents the density values at each point in the physi-
cal mesh in the case of no potential decomposition, where 
the potential is considered to have only a quantum mechani-
cal component and no classical component. D�c

 , on the other 
hand, refers to the case where a corresponding value of �c is 
chosen for the potential decomposition. The average value 
of ErrD(xi, yj) in a time interval from t = 0 fs to t = 250 fs , 
illustrated in Fig. 3, lies fairly close to zero ( ErrD ≤ 0.2 ) 
for almost all the points in the region designated by the red 
area x ∈ (5 nm, 15 nm) , y ∈ (0 nm, 12 nm) . The decrease 
in the error is also noticeable as we increase the cut-off 
wavelength.

Even for the near classical case, when the electrostatic force 
replaces the Wigner potential, the error values remain small 
in the designated region. Therefore, if the second electron is 
in this region, the electrostatic force can be used as a decent 
approximation to replace the Coulomb potential of the coupled 
electron.

In summary, the parent particles are exposed to an electro-
static force arising from the action of the Wigner potential. 
Therefore, the updated coordinates of the numerical parti-
cles in the phase space result in updated rules for generating 
novel numerical particles, as well as for the local force in each 
timestep. Using the Monte Carlo approach described in [32], 
the momentum values are more efficiently updated on the 
momentum grid, but no longer have a constant value through-
out the simulation.

(11)ErrD(xi, yj) =
D�c

(xi, yj) − Dqm(xi, yj)

Dqm(xi, yj)
.

4 � Coulomb entangler

In this section, we compute the evolution of the Wigner 
function equivalence of Tr(�2) , called purity, for the two 
reduced Wigner functions, corresponding to the two elec-
trons, to study the impact of the Coulomb interaction.

The 2D simulation setup for this purpose consists of 
a quantum wire with dimensions 30 nm × 60 nm . Without 
loss of generality, the dimensions of the simulation domain 
have been increased in comparison to the experiments in 
Sect. 3 in order to have sufficient spacing between differ-
ent electron injections. All physical quantities of interest 
remain constant in the z-direction, and the wire has no 
dopants or other charges at the start of the experiment. 
The electrons are injected from the bottom boundary of 
the nanowire and are directed towards +y.

The analysis of the effect of the Coulomb interaction 
on the purity of the two electron states was carried out 
by injecting two minimum uncertainty wavepackets with 
a tintra (see Sect. 2) of 70 fs . The two electrons have the 
same mean velocity, i.e., about 0.25 nm∕s , correspond-
ing to k0,y = 0.42 nm−1 , and a positional uncertainty 
�x = �y = � = 3 nm . During the injection, the spatial 
spreading, inherent in the two Gaussian distributions 
of both momentum and position states, is suppressed. 
Therefore, the wavepackets evolve as hard spheres with 
a constant velocity equal to their mean velocity until time 
t = 140 fs , when both of them are fully inside the quantum 
wire (simulation region) at a distance of 35 nm between 
their centers. At t = 140 fs the spatial spreading is switched 
on and quantum evolution starts for both wavepackets. 
This scenario complies with the conditions for the local 
field approximation, discussed in Sect. 3. Firstly, the cent-
ers of the wavepackets maintain the distance (i.e. 35 nm ), 
so that they can overlap only due to natural spreading. 
The distance ( 35 nm ) between the wavepackets is chosen 
to be in the order of the y-extent of the simulation domain 
( 30 nm ), which is consistent with the low error region indi-
cated by the red rectangle in Fig. 4. Moreover, the electron 
injection process enables insights into the sensitivity of 
the purity to unphysical effects. For this purpose, the por-
tion of any electron that has already been injected into the 
simulation domain is normalized to unity. This portion of 
the electron is a legitimate classical state as it is non-nega-
tive, however, it is not eligible from a quantum-mechanical 
point of view, as it violates the uncertainty relation.

Two simulation experiments were carried out. In the 
first one only the spatial spreading of the wavepackets is 
activated to simulate the quantum evolution of the two 
independent wavepackets, while in the second one at 
t = 140 fs the Coulomb repulsion is also activated. In both 
cases, the purity, i.e.,

Fig. 4   The error ratio of particle density for a �c
Δx

= 10 , and b �c
Δx

= 30
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is evaluated. Here we recall the definition of the two-electron 
Wigner function (Eq. 2) and that � = �1, �2 and � = �1, �2 . 
Taking the trace of �2 is equivalent to the integration of the 
single-particle Wigner function with respect to position and 
momentum. The single-particle Wigner function is obtained 
by integration of the two-particle Wigner function fw1,2 on 
one of the variables. Figure 5a shows the purity of the two 
wavepackets in the first scenario, where there is no Cou-
lomb interaction. The first wavepacket is completely injected 
in the simulation region after about 60 fs . Accordingly, the 
uncertainty rule is satisfied and the purity stabilizes at value 
1, which prevails until the wavepacket starts to exit the simu-
lation region, after about 190 fs from the beginning of the 
evolution. The injection of the second wavepacket begins 
70 fs after the first one, and is indicated by the blue curve. 
In the time interval between t = 140 fs and t = 190 fs , high-
lighted by the dashed red lines, there is a window where both 
wavepackets evolve quantum mechanically, without interact-
ing as two independent pure states. Figure 5b focuses on this 
time interval and shows the purity being perfectly equal to 
one. To give an insight into the numerical precision, it is 
important to note that the average value of the purity along 
the selected time interval is 0.99987 with a root mean square 
error (RMSE) of 9.8999 ⋅ 10−5 for the first wavepacket, and 
an average value of 0.99891 with an RMSE of 2.9412 ⋅ 10−4 
for the second wavepacket.

Figure 6 demonstrates the effect of the Coulomb repul-
sion. To better highlight the influence, the charge of each 

(12)

Tr(�2)1(t) = ∫ d�1d�1fw1(�, �, t)

= ∫ d�1d�1

(

∫ d�2d�2f (�, �, t)

)

= Tr(�2)2(t)

wavepacket is increased by an order of magnitude. Accord-
ingly, at t = 140 fs the purity starts to drop at the beginning 
of the interaction. During the evolution the level of entan-
glement due to the Coulomb interaction increases, which is 
well-demonstrated by the continuous decline of the purity. 
As can be seen in Fig. 6b, the purity evolves equally for both 
electrons.

5 � Conclusions

We have investigated the effect of Coulomb interaction in 
the evolution of two electrons in a 2D quantum wire through 
the use of the computationally affordable Wigner formal-
ism. The spectral decomposition of the input potential into 
a slowly varying classical component and a rapidly vary-
ing quantum mechanical component is analyzed in order 
to minimize the computational burden. It has been shown 
that the approximation of replacing the Wigner potential 
by an electrostatic force is reasonable, if the initial charge 
configuration is such that the electrons do not overlap in the 
beginning and do not cross over each other during the evolu-
tion. Purity is calculated to offer an insight into the Coulomb 
interaction between the electron–electron pairs. Comparing 
the purity of the injected pairs in two different scenarios 
verifies our approach to gauge quantum entanglement.

Coupling Wigner and Poisson equations paves the path 
for further research in different fields of quantum mechan-
ics, including many-body investigations of particle evolu-
tions. As future applications in the field of quantum trans-
port will highly rely on efficient numerical approaches, the 
results obtained in this work will be particularly useful for 
future investigations of Coulomb interactions in the pres-
ence of quantum-entangled states.

Fig. 5   Time evolution of the purity of the non-interacting wavepack-
ets (WP, i.e., electron) for a the entire evolution time (dashed red 
lines indicate time interval shown in b), and b the time interval from 

t = 140 fs to  t = 190 fs when both electrons are inside the quantum 
wire (Color figure online)
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