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Abstract
A novel numerical approximation technique for the Wigner transport equation including the spatial variation of the effective 
mass based on the formulation of an exponential operator within the phase space is derived. In addition, a different perspec-
tive for the discretization of the phase space is provided, which finally allows flexible discretization patterns. The formal-
ism is presented by means of a simply structured resonant tunneling diode in the stationary and transient regime utilizing a 
conduction band Hamilton operator. In order to account for quantum effects within heterostructure devices adequately, the 
corresponding spatial variation of the effective mass is considered explicitly, which is mostly disregarded in conventional 
methods. The results are validated by a comparison with the results obtained from the nonequilibrium Green’s function 
approach within the stationary regime assuming the flatband case. Additionally, the proposed approach is utilized to perform 
a transient analysis of the resonant tunneling diode including the self-consistent Hartree–Fock potential.

Keywords  Wigner transport equation · Liouville von-Neumann equation · Numerical methods · Transient quantum 
transport · Complex absorbing potential · Spatially varying effective mass · Heterostructure devices · Resonant tunneling 
diode

1  Introduction

For the state-of-the-art design of nanoelectronic devices 
including quantum effects a holistic view including the sta-
tionary and transient case is needed. Investigating the litera-
ture, there are mainly two approaches being predominantly 
used for the numerical investigation of quantum transport, 
namely the nonequilibrium Green’s function approach[1] 
and the Wigner formalism[2].

From the engineering point of view, the Wigner for-
malism is preferable[3]. On the one hand, the implemen-
tation of scattering mechanisms is straightforward due to 
the phase space representation[4]. On the other hand, the 
numerical analysis of transient effects with regard to high 
frequency characteristics is computationally less demanding. 

In contrast to the Wigner formalism, for each time-depend-
ent injected mode at a single energy a spatial, discretized 
grid has to be stored over the time within the NEGF frame-
work[5, 6].

For the numerical solution of the equation of motion 
within the Wigner formalism, namely the Wigner transport 
equation (WTE), a wide variety of deterministic numerical 
methods has been established beside the quantity of stochas-
tic Monte-Carlo methods, e.g.,[7].

When quantum electronic devices are analyzed with 
regard to their current–voltage characteristics, the conven-
tional finite-difference methods are combined with the inflow 
boundary conditions[8] to solve the WTE. These finite-
difference methods are either based on upwind difference 
schemes (UDS)[8–13] or hybrid difference schemes[14] 
(HDS), which combine upwind fluxes and central fluxes. 
Unfortunately, these methods have several drawbacks as dis-
cussed in the following.

Along with the UDS applied onto the diffusion opera-
tor, the forward and backward traveling waves are separated, 
e.g.,[8, 9], following the idea of characteristic lines as if no 
potential is present. To conclude, from the physical point 
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of view, the approach suffers from inherent errors, when 
a potential distribution is considered, as mathematically 
derived in[15]. From the numerical point of view, the com-
monly utilized UDS can be interpreted as an operator split-
ting scheme regarding the diffusion operator, which tends to 
show poor convergence properties. The application can have 
far reaching consequences, such as nonphysical results[16, 
17].

Beyond, the quantum-statistical distribution function only 
interacts with the diffusion operator within the UDS frame-
work, whereas the non-local kinetic drift operator should be 
accounted for in the same manner.

To overcome these limitations, an approach based on 
the formulation of an exponential operator (EO), namely 
the phase space operator has been proposed to solve the 
WTE[15].

Furthermore, the definition of inflow boundary conditions 
is not sufficient on a finite computational domain. Rather, 
open boundary conditions have to be included to avoid non-
physical reflections due to the finiteness of the computa-
tional domain[16, 18–20]. This aspect can be accounted for 
by the complex absorbing potential formalism[16, 20]. The 
combination of the EO along with the complex absorbing 
potential results in an excellent agreement with the results 
obtained from the quantum transmitting boundary method 
(QTBM) as shown in[16].

Another point of criticism is the poor convergence[21] 
with regard to the convolution integrals and the kernels 
therein. This property is strongly related to the coupling of 
the discretized phase space variables, which are linked in an 
anti-proportional manner[9–12]. To overcome these limita-
tions, an advanced finite-volume scheme[21] and sophisti-
cated spectral element methods have been introduced in[22, 
23].

Nonetheless, all these approaches neglect the spatial 
variation of the effective mass or are based on UDS[11, 
12], which are, therefore, inherently combined with errors 
as discussed above. But, when heterostructure devices are 
investigated, the adequate inclusion of the effective mass is a 
prerequisite. Recently, an approach based on the formulation 
of a slowly varying envelope function for the inclusion of the 
spatial variation of the effective mass has been proposed[24]. 
Based on the assumption that the second-order derivative is 
negligible, an envelope function can be formulated. Unfortu-
nately, under nonequilibrium conditions rapid changes of the 
Wigner function are expected, which the envelope function 
does not include.

In this contribution, the concept of the EO is generalized, 
which is originally utilized to solve the single band WTE 
for the case of a constant effective mass distribution[15, 16, 
20]. Along with this generalization, second-order derivatives 
regarding the transport direction can be addressed. Here, 
the proper numerical treatment of second-order derivatives 

within the Wigner formalism is discussed. Indeed, when 
multi-band Hamiltonians are considered, a numerical 
approximation of second-order derivatives is mandatory[25]. 
The formalism is utilized to include the spatially varying 
effective mass, which represents by far the simplest system, 
in which the Wigner formalism considers a second-order 
derivative. Nonetheless, the formalism provides a sound 
basis for future investigations, since only submatrices have 
to be interchanged in the case of multi-band systems. Beyond 
this objective, a different perspective onto the discretization 
of the bounded phase space with regard to the continuity 
equation is provided leading to more flexible discretization 
patterns, as well.

For clarity, the fundamentals of the Wigner formalism for 
quantum well devices including the spatial variation of the 
effective mass distribution are briefly summarized in Sect. 2. 
In this section we also provide a different perspective onto 
the discretization of the bounded phase space. Then, the 
phase space exponential operator is derived in Sect. 3, on 
which the new discretization scheme for the WTE relies. 
The formalism is applied onto the test case of a resonant 
tunneling diode in Sect. 4. Furthermore, a comparison and 
discussion of the results with regard to the NEGF results is 
performed. In addition, the proposed approach is analyzed 
with regard to the transient regime. The contribution ends 
with a summary and a conclusion in Sect. 5.

2 � Quantum transport in phase space

For the sake of clarity, the fundamentals of the WTE includ-
ing the spatial variation of the effective mass are briefly 
summarized in the following.

To begin with, the Wigner function defined within the 
phase space with the position � and the wave vector k rep-
resents the Wigner–Weyl transform of the density operator 
𝜌̂ according to

Due to the relation of the wave vector k with the momentum 
p according to k = ℏ−1p , the wave vector is briefly referred 
to as (normalized) momentum in this contribution, too. For 
the derivation of the corresponding equation of motion of 
the Wigner function, the Wigner–Weyl transform is applied 
onto the Liouville von-Neumann equation. Assuming a spa-
tially constant effective mass, the WTE reads

which seems to be the standard equation when the Wigner 
function formalism is utilized[3, 4, 8–10]. The integral 
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kernels included in (2) will be discussed in the following 
after taking into account the spatial variation of the effec-
tive mass.

For the adequate investigation of heterostructure devices, 
the corresponding spatial variation of the effective mass has 
to be included[11, 12, 24]. In contrast to the standard case 
(2), the extension of the WTE regarding the spatial varia-
tion of the effective mass results in a far more complicated 
expression

Before going into details of the definitions of integral ker-
nels, it is noteworthy that this governing equation conceptu-
ally differs from its constant effective mass counterpart due 
to the second-order derivative with regard to �.

In (3) the integral kernels within the convolution integrals 
accounting for the spatial variation of the effective mass

are introduced, where m represents the effective mass. The 
integral kernel including the potential distribution is given 
by

where V contains both, the conduction band potential as well 
as the self-consistent Hartree–Fock potential.

The additional potential term �W(�) represents the com-
plex absorbing potential[16], which is utilized to account for 
open boundary conditions with respect to the �-direction. As 
a result, nonphysical reflections caused by the finiteness of 
the computational domain can be effectively suppressed as 
outlined in the following. The main idea behind �W(�) is to 
enclose the computational domain by an artificial absorber 
region, which is non-reflective and attenuates the statistical 
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density matrix towards a value close to zero near the bounda-
ries of the computational domain leading to a square-integra-
ble density matrix. For a detailed discussion of the complex 
absorbing potential formalism within the WTE we refer to[19].

2.1 � Computational Domain and its relation 
to the continuity equation

For the discretization of the phase space an alternative ansatz 
is developed, which inherently decouples the � and k-direc-
tions related to the limitations of the conventional UDS based 
approaches, e.g.,[9–11]. The difference to the conventional 
strategy is mainly based on two facts.

At first, the discretized values of � and � do not necessar-
ily have to share the same discrete locations. Of course, the 
conventional case is included within the proposed approach, 
too. Secondly, the conservation of mass with regard to the 
continuity equation is realized by including � = 0 within the 
computational domain. This constraint results in an odd dis-
cretization number with regard to the �-direction as derived 
in the following.

For the development of the approach, the computational 
domain is bounded within the real space. Hereby, we introduce 
symmetrical intervals with regard to the �-direction accord-
ing to I� =

[
−L�∕2,+L�∕2

]
 and the �-direction according to 

I� =
[
−L�∕2,+L�∕2

]
 , respectively.

Within the latter interval I� , the statistical density matrix � 
can be expanded into a plane wave basis

where the expansion coefficients can be easily identified 
with the discretized Wigner function. As a consequence, a 
modified formulation of the Wigner function on the bounded 
computational domain is obtained

To ensure a unique solution, the plane wave basis functions 
have to be orthogonal, i.e.,

holds, the values of kn are required to be
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The phase constant �0 is introduced to indicate the sym-
metrical distribution of the values of k around zero, as usual. 
Hereby, singularity issues related to the bounded states k = 0 
can be effectively avoided.

From the insertion of (7) into (6) it can be concluded 
that

Along with these versatile relations we are equipped to 
tackle the conservation of mass with regard to the continu-
ity equation.

To derive the continuity equation, the WTE (3) has to be 
integrated over the momentum variable k∕2� . Exemplarily, 
the term including the potential distribution is investigated 
on the computational domain resulting in

Noting that L� = 2�∕�k , the relation (10) can be exploited 
such that

holds. Along with this identity (12), the expression (11) can 
be reformulated in a more meaningful result

since B(� , 0) = 0 holds along with the complex absorbing 
potential being �W(0) = 0 as defined. To ensure that this 
identity and, therefore, the continuity equation hold at any 
level of approximation, the location � = 0 has to be included 
within the computational domain. In contrast to the conven-
tional approach, this result provides a new perspective onto 
the interrelationship of the variables.

The integration of the remaining terms within the WTE is 
carried out in the same manner. Therefore, these calculations 
are not carried out explicitly here. Nonetheless, the general 
procedure is discussed in the following.

With regard to the terms including the integral kernels 
m̃−(𝜒 , k − k�) the integrals are zero valued due to the corre-
sponding functions in real space being odd with respect to � . 
As a consequence, these are zero-valued at the location � = 0 
and the terms do not contribute to the continuity equation. 
Utilizing (12), the remaining terms within the WTE includ-
ing the kernels m̃+(𝜒 , k − k�) result in
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exploiting the product rule on the right-hand side. These 
terms can be easily assigned to the carrier density

as well as the current density per carrier

which together describe the conservation of the zeroth 
moment of the Wigner function, namely the carrier density, 
which is also known as the conservation of mass.

To conclude, the Wigner formalism has been investigated 
on a bounded computational domain, which inherently leads 
to a discretization of the momentum variable k. Furthermore, 
it has been derived that � = 0 has to be included in I� so that 
the continuity equation is fulfilled.

The question left open is how to discretize the intervals 
I� and I� . Here, we propose an equidistant finite volume 
discretization. Since I� is defined as a symmetrical inter-
val, the number of discretization points N� have to be odd 
to include � = 0 . The corresponding discretization width is 
represented by �� . For the �-direction, there is no such a 
constraint and the application of N� discretization points 
results in Ns = N� − 1 slices as depicted in Fig. 1, which are 
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Fig. 1   Schematic representation of the discretized computational 
domain within the phase space with the parameters defined in the text
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separated by an amount of �� . With regard to the discretized 
momentum kn as described by (9), there is in general no 
restriction. In practice, the number of discretization points 
Nk is evenly distributed around k = 0 without containing the 
latter one due to singularity issues

Furthermore, for numerical purposes Nk ≤ N� holds.
Investigating the discretized values of the momentum 

variable, it can be concluded that �k = 2�∕L� = 2�∕N��� 
holds. As aforementioned, the conventional case assuming 
�� = 2�� is inherently included leading to the relationship 
�k = �∕N��� . Nonetheless, the latter expression is not pref-
erable since it introduces an artificial coupling between the 
momentum k and the real space variable �.

It is noteworthy, that the Wigner function decays with 
increasing values of k depending on the actual dispersion 
relation E(k) of the material, the chemical potential as well 
as the externally applied forces. To conclude, there is an 
upper limit kmax obtained from (17), in which the Wigner 
function is significant. From this upper limit, the corre-
sponding real space length can be determined resulting in a 
flexible discretization pattern

As a consequence, a larger number of discretization points 
lead to a denser mesh, without influencing the remaining 
parameters such as �� as well as kmax , which is the case for 
the conventional approaches.

In addition, an adaptive algorithm can be established uti-
lizing the dispersion relation E(k) and the externally applied 
forces to determine kmax . For instance, when larger voltages 
are applied, a larger interval has to be accounted for the 
determination of the Wigner function.

3 � Novel discretization Scheme 
for the Wigner transport equation

In this section, the novel discretization scheme for the WTE 
including a spatially varying effective mass is established. 
But, the conceptional significance is much more far-reaching 
since multi-band Hamilton operators such as kp-Hamilto-
nians exhibit the same formal structure. As a consequence, 
they can be handled on an equal footing, nonetheless, the 
investigation of multi-band kp-Hamiltonians is beyond the 
scope of this work.

To start with, the momentum variable k is discretized, 
whereas the remaining variables are kept continuous for the 
moment. Because the structure of each term on the right-hand 

(17)kj = −
2�

L�

(
j −

Nk + 1

2

)
, j ∈ 1, 2,… ,Nk.

(18)L� =
�

kmax

⋅
(
Nk − 1

)
.

side within the WTE (3) consists of a weighted convolution 
integral including an integral kernel as well as the Wigner 
function, the discretization procedure can be generalized. For 
this purpose, a prototype function U with the correspond-
ing Fourier transform Ũ is introduced, which is conceptually 
reflecting each term within the WTE according to

with the exponents � and � taking into account integer values 
and the integral kernel defined by

representing the Fourier transform of the prototype function 
as aforementioned. The prototype function equally typifies 
either the effective mass functions m̃± (4) or the complex 
drift operator (5).

Along with this prototype function, all convolution 
integrals as apparent within the WTE can be conceptually 
discretized

utilizing the midpoint rule, which is O(�k2) accurate. Carry-
ing out the summation with regard to j′ for each index j and 
introducing the vector � containing the discretized values 
f (� , kj, t) , the expression (21) can be replaced by a matrix-
vector representation

As a consequence, the vector � contains Nk elements and the 
matrices show a dimension of Nk × Nk . For the determina-
tion of the discretized integral kernel Ũ , the Fourier trans-
form has to be implemented on the discretized computa-
tional domain. The application of the midpoint rule results in

with the truncation error given by O(��2) . Along with the 
different perspective onto the discretization of the phase 
space, the discretized values �l and later � do not necessarily 
share the same grid points as is usually adopted, e.g.,[9–11]. 
As aforementioned, this conventional case is inherently 
included in the proposed approach by assuming �� = 2�� . 
As long as an analytical expression for the potential V is 

(19)∫
dk�

2𝜋
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available, the corresponding values of U(� , �) can be deter-
mined exactly in any case. Unfortunately, when the self-con-
sistent Hartree–Fock potential is considered, this discretized 
potential V(�i) is only available at certain points �i within 
the computational domain due to the coupling of the discre-
tized WTE along with the discretized Poisson equation. As 
a consequence, the discretized values of the potential term 
U(�i, �l) can be located between two different values V(�n) 
and V(�n+1) , from which the value U(�i, �l) is interpolated 
linearly. The extension to higher-order approximations is a 
topic for future investigations.

Now, the analytical WTE (3), which represents a partial 
integro-differential equation, is transformed into a system of 
coupled partial differential equations, which is only depend-
ent on t and � by discretizing the momentum variable k and 
applying the generalized discretization procedure (21)–(23). 
In addition, the matrices [D2(�)] , [D1(�)] , and [D0(�)] are 
introduced with the corresponding matrix elements defined 
by

which summarize the terms with regard to the different 
orders of derivatives of the Wigner function. Accordingly, 
the WTE can be rewritten into a system of coupled partial 
differential equations

The phase space exponential operator is derived in the next 
section, which represents an analytical solution with regard 
to the spatial differential operator on the right-hand side of 
(25).

3.1 � Derivation of the phase space exponential 
operator

For the derivation of the phase space exponential operator 
we exemplarily analyze the behavior of the i-th slice within 
the computational domain considering the stationary regime. 
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)
⋅ (𝚤kj� )

2

+
1

𝚤�

𝛥k

2𝜋
⋅ Ṽ

(
𝜒 , kj − kj�

)
,

(25)

�

�t
� (� , t) =

[
[D2(�)]

�2

��2

+[D1(�)]
�

��
+ [D0(�)]

]
⋅ � (� , t).

In doing so, appropriate approximants for the real-space 
derivatives with regard to the �-direction can be derived, 
which is a prerequisite in order to account for an adequate 
inclusion of the coherent effects[15, 19, 24]. From the results 
obtained, the system matrix connecting all slices within the 
computational domain can be derived.

To begin with, the super-vector

as well as the matrix

are introduced with [Id] abbreviating the unity matrix and 
[0] being a matrix containing only zero-valued elements, 
respectively. Due to the submatrices having a dimension of 
Nk × Nk , the matrix [� ] shows a dimension of 2Nk × 2Nk.

Along with the abbreviations (26), (27) and utilizing (24), 
an auxiliary equation can be defined according to

which represents a simple system of coupled differential 
equations of the first order. For this type of differential equa-
tion the solution is well known. Concerning the i-th slice 
within the interval � ∈

[
�i,�i + ��

]
 of the computational 

domain, the formal solution of this differential equation (28) 
is given by

Along with the assumption of the super-vector �(�) being 
continuous at the interfaces between the adjacent slices, the 
super-vector located at �i + �� can be easily replaced by 
�i+1 . The occurring integral within the exponential operator 
in (29) can be approximated utilizing standard numerical 
techniques as there are for instance the mid-point integra-
tion rule as well as the trapezoidal rule. For simplicity, the 
integral is approximated utilizing the mid-point rule. As a 
result, the expression (29) can be rewritten as a propagation 
algorithm between adjacent locations �i and �i+1

The exponential operator is defined as the phase space 
operator. Unfortunately, the analytical evaluation of this 
phase space operator is combined with high computational 
costs with regard to the memory requirement as well as the 

(26)�(�) =

(
� (�),

�

��
� (�)

)T

(27)

[� (�)] =

[
[0] [Id]

−[D2(�)]
−1[D0(�)] − [D2(�)]

−1[D1(�)]

]
,

(28)
�

��
�(�) = [� (�)] ⋅�(�),

(29)�(�i + ��) = exp

⎛⎜⎜⎝

�i+��

∫
�i

d� � [� (� �)]

⎞⎟⎟⎠
�(�i).

(30)�(�i+1) = exp
([

� (�
i+

1

2

)
]
⋅ ��

)
�(�i).
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computational time. Thus, an adequate series expansion 
technique is desirable to resolve the evaluation of the phase 
space operator utilizing for instance Chebyshev polynomi-
als or Taylor series expansion techniques. Here, for demon-
stration purposes, the phase space operator is approximated 
utilizing Padé approximants, which results in

The approximation of the phase space operator has been 
carried out to the linear term in both, the nominator as well 
as the denominator. Additionally, the abbreviations � (�i) = �i 
are introduced.

The expression (31) can be rewritten in terms of the 
Wigner function and its corresponding derivatives, such that 

and

holds, where

are introduced for the sake of clarity. After a straightforward 
calculation, (32b) can be rewritten as

exploiting the interrelationship (32a) on the right-hand side 
that takes into account the sum of the derivatives with regard 
to the Wigner function.

The left-hand side of (33) considers the difference of the 
derivatives of the Wigner function. For the determination of 
the left-hand side of expression (33) in terms of the discre-
tized points of the Wigner function �i a lengthy but concep-
tional straightforward calculation is carried out as presented 
in the following.

To begin with, the nearest neighbored cells, namely the 
i + 1-th slice and the i − 1-th slice have to be taken into 
account. By utilizing the interrelationship (32a), it can be 
easily concluded that 

(31)

[
[Id] −

[
� (�

i+
1

2

)
]��
2

]
�(�i+1) =

[
[Id] +

[
� (�

i+
1

2

)
]��
2

]
�(�i).

(32a)
2

��

(
�i+1 − �i

)
=

�

��
�i+1 +

�

��
�i

(32b)

�

��
�i+1 −

�

��
�i

= −[�1]i

(
�

��
�i+1 +

�

��
�i

)
− [�0]i

(
�i+1 + �i

)

(32c)
[�1]i = [D2(�i+

1

2

)]−1[D1(�i+
1

2

)]

[�0]i = [D2(�i+
1

2

)]−1[D0(�i+
1

2

)]

(33)

�

��
�i+1 −

�

��
�i

= −[�1]i ⋅
2

��

(
�i+1 − �i

)
− [�0]i

(
�i+1 + �i

)
,

 holds. Taking the difference of these interrelationships, 
(34a) and (34b), results in

Unfortunately, this expression (35) is not closed with regard 
to �� �i+1 and �� �i . As a consequence, the remaining deriva-
tives �� �i+2 and �� �i−1 have to be re-expressed in terms of 
�� �i+1 and �� �i as well as the corresponding discretized val-
ues of the Wigner function. In order to determine these rela-
tionships, the phase space operator (30) has to be applied 
twice onto the super-vector � so that the next nearest slices 
are connected with each other.

For the approximation of the resulting operator, the same 
Padé approximant is applied. When connecting the i-th and 
the i + 2-th slices by means of the phase space operator, the 
following relationship can be found

so that �� �i+2 can be easily found. In the same manner, when 
connecting the i − 1-th and the i + 1-th slices by the use of 
the phase space operator (30), the following relationship

holds which leads to an expression for the term �� �i−1 . Now, 
a closed expression for the left-hand side of (33) can be 
established by inserting (36) and (37) in (35) according to

Following this concept, higher-order approximants can be 
easily found applying higher-order Padè approximants onto 
the phase space operator. Now, the approximant (38) is 
inserted into (33) and the whole term is multiplied by 
[D2(�i+

1

2

)] . Hereby, numerical singularity issues can be 
avoided for the case of a constant effective mass, since 
[D2(�i+

1

2

)] = 0 is zero-valued function in this case as appar-
ent from (24). Furthermore, when the spatial dependence of 
the effective mass distribution is neglected, the result is in 
coincidence with the conventional approximation of the 
phase space operator[16].

(34a)
2

��

(
�i+2 − �i+1

)
=

�

��
�i+2 +

�

��
�i+1

(34b)
2

��

(
�i − �i−1

)
=

�

��
�i +

�

��
�i−1.

(35)

�

��
�i+1 −

�

��
�i =

2

��

(
�i−1 − �i − �i+1 + �i+2

)

−
�

��
�i+2 +

�

��
�i−1.

(36)
�

��
�i+2 +

�

��
�i =

1

��

(
�i+2 − �i

)
,

(37)
�

��
�i+1 +

�

��
�i−1 =

1

��

(
�i+1 − �i−1

)

(38)
�

��
�i+1 −

�

��
�i =

1

��

(
�i−1 − �i − �i+1 + �i+2

)
.
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After taking the transient portion of the WTE into 
account, the discretized WTE finally results in

To summarize, by comparing (25) to this results, the proper 
numerical approximation of the corresponding differential 
operators can be determined resulting in

The same discretization scheme could have been obtained 
from a standard finite volume scheme in the same manner. 
But, along with the proposed scheme higher-order approxi-
mants can be derived straightforwardly. It is noteworthy that 
the conventional UDS approximation[11] cannot be derived 
from the quasi-analytical solution of the phase space expo-
nential operator.

For the numerical approximation of the derivatives con-
cerning the effective mass terms within the matrices 
[D1(�i+

1

2

)] and [D0(�i+
1

2

)] (24), the adjacent interface values 
are utilized to approximate the value of the vertex. Consider-
ing the element 𝜕

𝜕𝜒
m̃−(𝜒 ,Kjj� = kj − k�

j
) exemplarily, which 

represents a matrix entry included within the matrix [D1] , 
the expression can be rewritten according to

When the derivative is not related to the values of the adja-
cent interfaces, numerical artifacts arise. These numerical 
artifacts result in large spikes of the spatial current density 
located at the heterojunctions.

In addition, the proposed formalism reduces to the con-
ventional discretization as presented in[16], when a constant 
effective mass is assumed, which had been found in an excel-
lent agreement with the NEGF approach. Therefore, these 
characteristics are inherently included within the proposed 
approach.

(39)

�

�t

�i+1(t) + �i(t)

2

= [D2(�i+
1

2

)] ⋅
�i−1(t) − �i(t) − �i+1(t) + �i+2(t)

2��2

+ [D1(�i+
1

2

)] ⋅
�i+1(t) − �i(t)

��

+ [D0(�i+
1

2

)] ⋅
�i+1(t) + �i(t)

2
.

(40)

�2

��2
� (� , t)

||||�i+1∕2

→

�i−1(t) − �i(t) − �i+1(t) + �i+2(t)

2��2

�

��
� (� , t)

||||�i+1∕2

→

�i+1(t) − �i(t)

��

� (� , t)|�i+1∕2
→

�i+1(t) + �i(t)

2
.

(41)
𝜕

𝜕𝜒
m̃−(𝜒 ,Kjj� )

||||𝜒
i+

1
2

=
m̃−(𝜒i+1,Kjj� ) − m̃−(𝜒i,Kjj� )

𝛥𝜒
.

Before going into the implementation details of the sys-
tem matrix, we first discuss the boundary conditions. The 
boundary conditions can then be partially incorporated into 
the system matrix leading to a non-underdetermined system 
matrix.

3.2 � Formulation of boundary conditions

For the formulation of boundary conditions the so-called 
inflow boundary condition scheme is utilized[8, 9]. Follow-
ing the concept of the inflow boundary condition scheme 
the values of the Wigner function at the boundaries of the 
computational domain are given by a quantum statistical 
distribution function.

As usual, the quantum statistical distribution function at 
the boundaries is assumed to be given by the Fermi–Dirac 
statistics[8]

where kB is the Boltzmann constant, T is the ambient tem-
perature, E(k) represents the parabolic energy dispersion, 
and � being the Fermi level.

The inflow of particles at the location �1 is assigned to the 
positive values of the momentum k and the inflow of parti-
cles at the location �N�

 is assigned to the negative values of 
the momentum k, respectively[8]. Along with these defini-
tions, the boundary conditions for the WTE read 

and

 Since the Fermi–Dirac statistics represent a semi-classical 
boundary condition, these are only valid infinitely far away 
from the quantum structure[26]. As a consequence, the 
application can lead to errors tending to pose problems[17, 
21, 26–29]. To address this aspect, device adaptive boundary 
conditions based on the solution of the Schrödinger equa-
tion have been presented in[29]. Nonetheless, an alternative 
method, which is self-contained within the Wigner frame-
work would be preferable. Hence, alternative formulations 
of the boundary conditions remain a topic for the future, yet.

In practical situations, the limitations of the semi-classi-
cal inflow boundary conditions are avoided by adding suf-
ficiently large contact lengths[19, 21]. A material depend-
ent study for simple potential structures with regard to the 
validity of the semi-classical inflow boundary condition is 
presented in[28]. For III–V semiconductors the lower limit 
of the contact length is given by 60 nm[28].

(42)fFD(k) =
mkBT

�ℏ2
⋅ ln

(
1 + exp

(
−
E(k) − �

kBT

))
,

(43a)f (𝜒1, k > 0) = fFD(k > 0)

(43b)f (𝜒N𝜒
, k < 0) = fFD(k < 0).
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To address the character of the second-order differential 
with respect to � , the Wigner function is assumed to be a con-
stant function with regard to the �-direction at the bounda-
ries[12]. On this basis, it can be concluded that the derivative 
of the Wigner function is given by 

and

 This assumption is justified for the present case since a 
sufficiently large contact length is presumed as discussed 
above. In the same manner, when the contact length shrinks, 
for instance below the 60nm for III-V systems, these condi-
tions (44a) and (44b) at the boundary would have been to 
be reformulated.

3.3 � Assembling of the system matrix

For the sake of clarity, the discretized WTE (39) is rewritten

summarizing the matrices with regard to the corresponding 
location of the discretized Wigner function according to

As apparent from (45), when addressing the first slice i = 1 
and the last slice i = Ns , the Wigner function �0 and �N�+1

 are 
taken into account, which are located outside of the compu-
tational domain. Exploiting the boundary conditions, (44a) 
and (44b), it can be easily concluded that �0 = �1 holds for 
the first slice i = 1 as well as �N�

= �N�+1
 holds for the last 

slice i = Ns , respectively. Along with these points, the right-
hand side of expression (45) can be rewritten with regard to 
the first slice i = 1 resulting in

introducing the abbreviation [𝛽1] according to

(44a)
�

��
f (�1, k) = 0

(44b)
�

��
f (�N�

, k) = 0.

(45)�

�t

�i+1 + �i

2
= [�i]�i−1 + [�i]�i + [�i]�i+1 + [�i]�i+2

(46)

[�i] = +
[D2(�i+

1

2

)]

2��2

[�i] = −
[D2(�i+

1

2

)]

2��2
−

[D1(�i+
1

2

)]

��
+

[D0(�i+
1

2

)]

2

[�i] = −
[D2(�i+

1

2

)]

2��2
+

[D1(�i+
1

2

)]

��
+

[D0(�i+
1

2

)]

2
.

(47)

[𝛼1]�0 + [𝛽1]�1 + [𝛾1]�2 + [𝛼1]�3

=
(
[𝛼1] + [𝛽1]

)
�1 + [𝛾1]�2 + [𝛼1]�3

= [𝛽1]�1 + [𝛾1]�2 + [𝛼1]�3,

In the same manner, the last slice i = Ns can be analyzed 
introducing the abbreviation [𝛾̃Ns

]

which is obtained by exploiting the fact, that �N�
= �N�+1

 
holds.

As discussed in Sect. 2.1, the computational domain takes 
into account Ns slices leading to N� = Ns + 1 discretization 
points located on the interfaces. Thus, when connecting all 
slices, a number of Ns(×Nk) sub-equations is obtained with 
N� (×Nk) unknown discretized interface values of the Wigner 
function �i . Along with the incorporation of the conventional 
inflow boundary conditions, (43a) and (43b), the number of 
equations as well as unknown discretized values of the Wigner 
function are equal. For the inclusion of inflow boundary con-
ditions within the system matrix, the abbreviation [1] being a 
Nk∕2 × Nk∕2 matrix is introduced, such that the system matrix 
results in

Hereby, the matrix [�] is introduced considering the spa-
tial behavior of the Wigner function, which is now sum-
marized in the vector �(t) . With regard to the stationary 
solution of the WTE, the memory requirements can be esti-
mated by means of this system matrix [�] . All submatri-
ces within this matrix have a dimension of Nk × Nk and are 
full-matrices. Fortunately, all matrices must be real-valued, 
so that no imaginary part has to be stored. An amount of 
N� − 3 interfaces represent the interior nodes, which do not 
interact with the boundary ( i = 2 to Ns − 1 ). Along with the 
four-point stencil due to the second-order derivative, a num-
ber of4 ⋅ (N� − 3) ⋅ N2

k
 elements within system matrix are 

non-zero valued. The von-Neumann boundary conditions 
have been incorporated in the system matrix at the outer 
interfaces, which, therefore, add only three full submatri-
ces. Finally, to account for the inflow boundary conditions, 

(48)[𝛽1] = [𝛼1] + [𝛽1] = −
[D1(𝜒1+

1

2

)]

𝛥𝜒
+

[D0(𝜒1+
1

2

)]

2
.

(49)[𝛾̃Ns
] = [𝛾Ns

] + [𝛼Ns
] = +

[D1(𝜒Ns+
1

2

)]

𝛥𝜒
+

[D0(𝜒Ns+
1

2

)]

2
,

(50)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[1]

[𝛽1] [𝛾1] [𝛼1]

[𝛼2] [𝛽2] [𝛾2] [𝛼2]

⋱ ⋱ ⋱ ⋱

[𝛼i] [𝛽i] [𝛾i] [𝛼i]

⋱ ⋱ ⋱ ⋱

[𝛼Ns−1
] [𝛽Ns−1

] [𝛾Ns−1
] [𝛼Ns−1

]

[𝛼Ns
] [𝛽Ns

] [𝛾̃Ns
]

[1]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×
�
�1 �2 �3 … �i−1 �i �i+1 �i+2 … �N𝜒−2

�N𝜒−1
�N𝜒

�T

∶= [𝛬] ⋅ �(t)
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identity matrices of dimension Nk∕2 × Nk∕2 contribute Nk∕2 
non-zero values on each site. To conclude, the worst case 
memory requirement regarding the non-zero values of the 
system matrix is given by

assuming a 64-bit precision. For instance, a 500 × 500 grid 
results in approximately 4GByte non-zero values within the 
system matrix. When large contacts with constant character-
istics are assumed, the matrices [�i] are locally zero-valued, 
due to the function m̃−(𝜒 , k) being zero-valued, reducing the 
memory requirement.

The system matrix for the transient portion of the dis-
cretized Wigner function is carried out in the same manner 
leading to

introducing the matrix [�] . In contrast to the conventional 
approach, a transient reaction of the boundary conditions is 
inherently included within this discretization scheme as can 
be observed from (51). This property immediately reflects 
the non-local character of quantum mechanics. In this con-
tribution, we assume that the quantum statistical distribution 
function at the boundaries is time-independent

Nonetheless, the consideration of a time-dependent reac-
tion of the system represents an interesting topic for future 
investigations. Finally, the discretized WTE can be rewritten

with the abbreviations being apparent from the context (50) 
and (51).

For the determination of the Wigner function, the equa-
tion system (53) has to be solved either for the stationary 
case or the transient case taking into account the corre-
sponding boundary conditions. With regard to the tran-
sient operator, standard methods such as explicit Euler or 
Runge–Kutta schemes can be utilized.

[4 ⋅ (N� − 3) ⋅ N2
k
+ 2 ⋅ 3 ⋅ N2

k
+ 2 ⋅ 1∕2 ⋅ Nk] ⋅ 8Byte

(51)

⎡⎢⎢⎢⎢⎢⎣

[1]
1

2
[Id]

1

2
[Id]

⋱ ⋱
1

2
[Id]

1

2
[Id]

[1]

⎤⎥⎥⎥⎥⎥⎦

⋅
d

dt

⎡⎢⎢⎢⎢⎢⎣

�1

�2

⋮

�N−1

�N

⎤⎥⎥⎥⎥⎥⎦

∶= [�]
d

dt
⋅ �(t),

(52)
d

dt
f (𝜒1, k > 0) = 0

d

dt
f (𝜒N𝜒

, k < 0) = 0

(53)[�] ⋅
d

dt
�(t) = [�] ⋅ �(t),

4 � Evaluation of the proposed approach

For the assessment of the proposed approach a simple struc-
tured double barrier resonant tunneling diode based on the 
material system GaAs/AlxGa1−x As is investigated. The spa-
tial variation of the effective mass is considered.

Two different alloy contents according to x = 0.2 and 
x = 0.3 are investigated within the proposed approach. A 
larger alloy content does not only lead to an increase of the 
effective mass, it also leads to an increase of the values of 
potential within the barriers. This aspect affects the discre-
tization applied onto the computational domain and is dis-
cussed here.

For the validation of the proposed approach, the results 
are compared to the results obtained from the NEGF 
approach[1] in the stationary and ballistic regime. Further-
more, the flatband case is considered because the coupling 
to the Poisson equation can result in additional numerical 
errors. In addition, the proposed approach is extended in a 
straightforward manner to the analysis of the transient case 
in contrast to the NEGF case. Therefore, this analysis is pro-
vided as well, exemplarily.

4.1 � Resonant tunneling device

For the design of the resonant tunneling diode, we have 
basically utilized the length parameters according to[11], in 
which the spatial effective mass variation has been included 
for the first time being with regard to the numerical simula-
tion of resonant tunneling diodes along with the WTE.

The structure of the resonant tunneling device as shown 
in Fig. 2 represents the basis for the numerical simulations. 
The length of the GaAs quantum well Lw is given by 4.5nm , 
which is surrounded by Lb = 2.8nm AlxGa1−x As barriers. On 
each site, the electrodes are in total Lc + Ld , with Lc being a 
structure dependent quantity and Ld = 17.5nm.

Lc Ld

Lb

Lw

Lb

Ld Lc

V (χ)
m(χ)

Fig. 2   Schematic diagram of the conduction band V(�) and the cor-
responding effective mass m(�) of the resonant tunneling diode with 
the length parameters defined in the text
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In contrast to the structure in[11], longer contacts are 
introduced. As aforementioned, the semi-classical bound-
ary conditions are only valid infinitely far away from the 
heterostructure device[19, 21, 26]. Beyond, the voltage is 
assumed be to be constant within the domains addressed by 
Lc , whereas the voltage drop takes place within the remain-
ing domain, which is addressed by Ld, Lb and Lw.

The contact regions are highly doped by an amount of 
Nd = 2 ⋅ 10+18cm−3 . The temperature is set to be T = 300K . 
Since the conduction band is analyzed, the potential energy 
at the � -point of the material GaAs is utilized as the ref-
erence energy and set to zero. Consequently, the poten-
tial within the AlGaAs barriers is given by approximately 
0.18eV for the alloy content x = 0.2 and 0.28eV for x = 0.3 , 
respectively. The effective masses are mGaAs = 0.063 ⋅ m0 in 
the material system GaAs as well as mAlGaAs = 0.0796 ⋅ m0 
for x = 0.2 and mAlGaAs = 0.088 ⋅ m0 for x = 0.3 in the two 
investigated AlGaAs barrier materials. The constant m0 
represents the rest mass of an electron. For all simulations, 
the length of the layer including the complex absorbing 
potential[19] with respect to the �-direction has been set 
to 12.6nm. The values of the complex absorbing potential 
are defined to increase quadratically towards the boundaries 
taking a value of 1eV.

4.2 � Investigation of the stationary regime

For the investigation of the resonant tunneling diode within 
the stationary case, the dynamic portion of (53) is omitted, 
such that the system of equations given by

has to be solved with � containing the boundary condi-
tions given by the Fermi–Dirac statistics (43a) and (43b), 
respectively.

To start with, the numerical simulation results for both 
resonant tunneling diodes for the different alloy contents are 
investigated for a fixed discretization. Then, the discretiza-
tion of the phase space is carried out utilizing different grids 
allowing a first study of the convergence. Hereby, the discre-
tization width �� is set to be a, a/2, a/4 with a = 0.565 nm 
and an interval of [−1.5 nm−1,+1.5 nm−1] utilizing Nk = 100 
up to Nk = 600 discretization points are taken into account 
with regard to the momentum variable k.

4.2.1 � Numerical simulation results

For the presentation of the results with regard to the alloy 
content x = 0.2 , a discretization width �� = a∕2 combined 
with a number of Nk = 400 momentum discretization points 
is employed and the contact length is set to Lc = 35 nm . At 
first, the carrier densities are investigated, which are obtained 

(54)[�] ⋅ � = �

from the corresponding Wigner function utilizing (15). For 
the alloy content x = 0.2 , the carrier densities as well as the 
corresponding conduction band including different applied 
bias are depicted in Fig. 3. In Fig. 3a, the equilibrium case 
is depicted and a qualitatively good agreement with the 
reference solution stemming from the NEGF approach is 
observed. In a similar manner, the nonequilibrium results 
agree well, as there are an applied bias U = 0.2 V depicted 
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in Fig. 3b and an applied bias U = 0.4 V, which is shown 
Fig. 3c, respectively. Nonetheless, for larger applied biases, 
the deviation between both methods slightly increases in 
regions, where due to a voltage drop an additional confine-
ment region emerges, as can be seen from Fig. 3c.

For the determination of the current–voltage character-
istic, a bias U ranging between 0 V and 0.4 V is applied in 
steps of �U = 0.02 V. The spatial current density is calcu-
lated from the Wigner function for the corresponding bias U 
utilizing (16). In particular, the discretized current operator 
is a local function in � , in contrast to the conventional meth-
ods[8–12], which are non-local in this variable.

Comparing the current density obtained from the refer-
ence method given by the NEGF approach along with the 
proposed approach, the curves correspond well with each 
other. The characteristic negative differential resistance is 
adequately reproduced within the proposed approach. Fur-
thermore, the bias at approximately U = 0.14 V of the reso-
nant peak coincides (Fig. 4).

Since the conservation of mass with regard to the continu-
ity equation within the Wigner framework represents a criti-
cal quantity, which has to be adequately accounted for, the 
spatial dependency of the current density is shown in Fig. 5 
for different applied biases U. From the results depicted in 
Fig. 5 it can be concluded that the conservation of mass is 
properly described within the proposed approach due to the 
current being a constant function of �.

The case of the resonant tunneling diode with the alloy 
content according to x = 0.3 has to be considered more care-
fully due to the larger potential barrier. As a consequence, 
large contact regions have to be employed according to 
Lc = 105nm in order to approximate the requirements of 
the application of the semi-classical Fermi–Dirac statistics.

For smaller contact lengths, nonphysical quantities can be 
obtained, i.e., negative carrier densities. In a similar manner, 
this aspect is observed and discussed in[21].

For the discretization of the phase space, the �-direction 
is discretized utilizing a discretization width �� = a∕2 and 
the interval within the k-direction is discretized utilizing 
Nk = 600 , discretization points.

The nonequilibrium carrier densities as well as the corre-
sponding potential of the conduction band with regard to the 
alloy content x = 0.3 are shown in Fig. 6. The equilibrium 
results are not shown here, since these coincide very well 
with the results obtained from the reference NEGF approach, 
but do not provide additional insights. Considering an exter-
nal bias according to U = 0.2 V, the carrier densities are 
depicted in Fig. 6a, whereas the carrier densities for an 
external bias U = 0.3 V are depicted in 6b. For the values of 
the contact length Lc smaller than 105nm , negative carrier 
densities have been obtained along with the same discre-
tization widths in � and k. Indeed, this effect is observed to 
be prominent in the regions, where due to the applied bias 
quantum confinement occurs leading to an oscillating carrier 
density. Along with the proposed contact length, this non-
physical behavior related to the validity of the semi-classical 
Fermi–Dirac boundary conditions can be more or less effec-
tively avoided. The implementation of a nonuniform grid 
would be preferable for this case and represents a topic for 
future investigations.

The current–voltage characteristic for the resonant tun-
neling diode considering an alloy content x = 0.3 is depicted 
in Fig. 7. When comparing the result obtained from the 
proposed approach to the results obtained from the NEGF 
approach, it can be concluded that the device behavior is 
predicted in a similar manner. The proposed approach exhib-
its the negative differential resistance occurring at the same 
resonance energy. Nonetheless, the values of the current 
beyond the peak resonance are quite above the reference 
values obtained from the NEGF, although the results seem 
to be converged. The investigation of this behavior and its 
possible relation to the contact length represents a topic for 
future works.
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The spatial dependency of the current is depicted in Fig. 8 
for five different applied biases, as there are the equilibrium 
case as well as different nonequilibrium cases ranging from 
0.1 V to 0.4 V spaced by 0.1 V. As can be observed from this 
figure, the steady state current is spatially constant as required 
by the continuity equation. To conclude, the continuity 

equation is preserved at a numerical level considering large 
discontinuities within in the effective mass distribution.

4.2.2 � Analysis of the convergence behavior

Due to the numerical solution of two distinct approaches, 
namely the Schrödinger equation and the WTE, different 
errors arise. On the one hand, different numerical schemes 
are employed to discretize these equations, which lead to dif-
ferent numerical errors. On the other hand, different type of 
boundary conditions[21, 26] as well as the finiteness of the 
computational domain[19] leading to an unavoidable finiteness 
of the phase space, result in different model errors. While a 
quantum statistical distribution function is defined within the 
Wigner formalism, open boundary conditions are adequately 
accounted for by the concept of self-energies within the NEGF 
framework.

As observed in the latter section, that for instance the carrier 
density takes nonphysical values when the contact length is too 
short within the Wigner formalism, cannot be observed within 
the NEGF formalism. To address this aspect, the convergence 
of the result by means of the relative errors is not only com-
pared to the results obtained from the NEGF, rather the relative 
error is investigated with regard to a Wigner solution on a fine 
grid. Note that a detailed investigation of the convergence with 
respect to all the different sources of errors within the Wigner 
formalism is beyond the scope of this paper. Consequently, the 
results shown here, are not the last word, but should be more 
taken as the first word.

For the assessment of the convergence, the relative error is 
defined with regard to the carrier density nodes summarized 
in the vector � according to

where the reference solution �ref is either taken from the 
NEGF approach or from the Wigner formalism on a fine 

(55)��2 =
||� − �ref||2
||�ref||2 ,
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mesh, as mentioned. For �� = a the convergence of the 
results is not guaranteed, since the resolution of the barriers 
seems to be to coarse. Therefore, the corresponding results 
are not considered. Furthermore, the decrease of the discre-
tization width �� to a/4 does not provide significant further 
insights. Therefore, we restrict ourselves onto the analysis 
of the �� = a∕2 for the first.

The relative error with regard for both resonant tunneling 
diodes in dependence of the number of discretization points 
Nk is depicted in Fig. 9. Hereby, the reference solution is 
obtained from the WTE on the finest mesh ( Nk = 600 and 
�� = a∕2 ). As can be observed from Fig. 9, the relative 
error decreases with increasing number of points. To con-
clude, the method seems to be stable under grid refinement. 
Nonetheless, it is noteworthy that there are certain grid con-
figurations, which do not converge, occurring only in the 
nonequilibrium case. This aspect is strongly related to the 
Wigner function, which then represents a highly oscillating 
function that has to be adequately resolved, which is also 
denoted in[21]. Note, the relative error with regard to the 
current voltage characteristic considering the NEGF refer-
ence solution is in the order of approximately 6% for the 
alloy content according to x = 0.2 for all Nk as well as about 
45–30% percent, decreasing towards the finest mesh for the 
alloy content given by x = 0.3 . For both resonant tunneling 
diodes the relative error regarding the carrier densities is 
below 1%.

Along with the application of higher-order methods onto 
the discretization regarding the k-direction, as for instance 
the spectral element method[22, 23], an improved conver-
gence behavior is expected for the proposed approach being 
an interesting topic for future investigations.

4.3 � Comparison to the constant effective mass case

From the solution of the Schrödinger equation, it is well 
known that the spatial variation of the effective mass has a 

deep impact on the current–voltage characteristic. Indeed, 
with respect to the class of intraband resonant tunneling 
diodes, in which the effective mass within the resonant dou-
ble barrier structure usually increases, the increasing effec-
tive mass lowers the overall current density. Unfortunately, 
the conventional UDS-based approach[11] does not resolve 
this behavior. Along with the UDS-based approach, the 
increasing effective mass within the barriers results in an 
increasing overall current-density.

For that reason, the proposed approach is analyzed with 
regard to the constant effective mass case, too. In Fig. 10, the 
current densities for the RTD are depicted applying the case 
of a constant effective mass as well as the case of a spatially 
varying effective mass. For these investigations, the above 
defined structure with the alloy content x = 0.3 is utilized. 
The corresponding parameters of the computational domain 
are adopted.

As can be observed from Fig. 10, the overall values of 
the current density for the case of a constant effective mass 
(const m = 0.063 ⋅ m0 ) are larger than the values of the cur-
rent density for the case of a spatially varying effective mass. 
Indeed, the peak current density is approximately two times 
higher assuming a constant effective mass. Furthermore, 
a fairly well agreement along with the reference method 
obtained from the NEGF method is found for the case of a 
constant effective mass. In this case, the proposed approach 
reduces to the conventional phase space operator approach 
presented in[15], which has been found to be in an excellent 
agreement with the NEGF reference method when applying 
the complex absorbing potential formalism[19]. To con-
clude, these characteristics are inherently included within 
the proposed approach as well.

Nonetheless, we expect major improvements for the UDS-
based approach by including the complex absorbing poten-
tial formalism, too, as has been conceptually shown in[19] 
for the constant effective mass case utilizing a second-order 
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upwind scheme. However, this aspect will remain an impor-
tant topic for future investigations.

4.4 � Transient regime

For the investigation of the transient effects within the reso-
nant tunneling diode, (53) is solved utilizing Heun’s method 
for the approximation of the transient operator resulting in

To account for the self-consistent Hartree–Fock potential, 
the transport equation is mutually solved along with the 
Poisson equation[8]. As a consequence, the potential is 
updated for each time step.

Since the Heun method is an implicit method, a large 
time step with a value of �t = 1 fs can be chosen. When con-
ventional explicit methods such as Runge–Kutta schemes, 
explicit Euler, and multi-step methods are utilized the time 
step has to be several orders of magnitude smaller to guar-
antee a stable numerical scheme. To overcome these limita-
tions with regard to the small timesteps of explicit schemes, 
exponential integrators seem to represent an attractive alter-
native. Nonetheless, the investigation of exponential integra-
tors for the WTE is a topic for future analysis.

For the numerical presentation purposes, the resonant 
tunneling diode with the alloy content according to x = 0.2 
is considered, due to the minor requirements with respect to 
the computational domain. Furthermore, the well region has 
been slightly doped with Nw = 1 ⋅ 10+17cm−3.

For the efficient numerical solution of the system (56) an 
iterative method, namely the bi-conjugate gradient stabilized 
method, is utilized[30]. In addition, the matrix on the left-
hand side of (56) is exploited for the formulation of a pre-
conditioner by applying the incomplete LU factorization[31] 
in order to effectively reduce the overall computation time.

The device is initially in the nonequilibrium case apply-
ing a bias U = 0.14V and abruptly driven towards 0.24V for 
t > 0 . The initial Wigner function at t = 0 is obtained by 
solving the stationary system of equations (54) combined 
with the Poisson equation applying the corresponding bias 
U = 0.14V , which is depicted in Fig. 11a.

After the system evolves 500fs in time, the Wigner func-
tion shows significant values at larger values of k as depicted 
in Fig. 11b, which arise due to the larger applied external 
voltage. As a consequence, due to this behavior a larger cur-
rent can be expected stemming from the symmetry consid-
erations with regard to the definition of the current within 
the Wigner framework (16). This behavior is also reflected 
in Fig. 12, where the transient evolution of the current den-
sity is depicted for different characteristic regions. These 
regions include the source, the drain and the quantum well 

(56)
[
[�] −

�t

2
[�]

]
�(t + �t) =

[
[�] +

�t

2
[�]

]
�(t).

region.As can be observed, the time-dependent current at 
the source and drain regions oscillate strongly in contrast to 
the current within the quantum well. Each contact, partially 
described by the Fermi–Dirac statistic, tries to establish an 
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equilibrium situation with its surroundings. Consequently, 
the charge injection and depletion are prominent in these 
locations until a local equilibrium condition emerges.

5 � Summary and conclusion

A novel scheme for the numerical solution of the Wigner 
transport equation including the spatial variation of the 
effective mass has been derived. The scheme is based on the 
Padé approximation of the quasi-analytical solution given 
by the phase space exponential operator. Beyond, a differ-
ent perspective onto the discretization of the phase space is 
provided.

The approach has been utilized to simulate to AlGaAs/
GaAs resonant tunneling diodes with different alloy con-
tents. The results obtained have been compared to the results 
obtained from the nonequilibrium Green’s function approach 
in the stationary regime. For the smaller alloy content fairly 
good agreement can be observed with regard to the current 
density as well as the carrier density. Regarding the larger 
alloy, the results coincide qualitative. The observed devia-
tions have been discussed with regard to the boundary condi-
tions. Furthermore, a brief investigation of the convergence 
is provided. From this investigation it could be concluded 
that the method seems to be stable under grid refinement.

Finally, the proposed approach is utilized to investigate 
the transient behavior considering the self-consistent poten-
tial. To put it in a nutshell, the proposed approach offers 
major improvement with regard to the numerical simulation 
of heterostructure devices along with the Wigner transport 
equation.
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