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Abstract
In recent decades, with the rapid development of artificial intelligence technologies and bionic engineering, the spiking 
neural network (SNN), inspired by biological neural systems, has become one of the most promising research topics, enjoy-
ing numerous applications in various fields. Due to its complex structure, the simplification of SNN circuits requires serious 
consideration, along with their power consumption and space occupation. In this regard, the use of SSN circuits based on 
single-electron transistors (SETs) and modified memristor synapses is proposed herein. A prominent feature of SETs is Cou-
lomb oscillation, which has characteristics similar to the pulses produced by spiking neurons. Here, a novel window function 
is used in the memristor model to improve the linearity of the memristor and solve the boundary and terminal lock problems. 
In addition, we modify the memristor synapse to achieve better weight control. Finally, to test the SNN constructed with SETs 
and memristor synapses, an associative memory learning process, including memory construction, loss, reconstruction, and 
change, is implemented in the circuit using the PSPICE simulator.

Keywords Associative memory · Memristor synapse · Single-electron transistor (SET) · Spiking neural network · Window 
function

1 Introduction

Nearly all human activities are controlled by the brain, 
which is a low-power-consumption system (roughly 10 W 
[1]) offering high-speed processing of large amounts of 
data. Moreover, the human brain is a parallelized system 
with a certain amount of fault tolerance capability [2]. To 
reproduce brain behaviors, artificial neural networks (ANNs) 
have been proposed and used in many ways, e.g., to identify 
failures in transmission lines and for diagnostic imaging in 
the biomedical field [3, 4]. In a traditional artificial neu-
ron, information is transmitted in the form of continuous 

signals. In biological systems, however, neurons do not use 
continuous signals but rather pulses to process information 
[5]. Therefore, such systems based on continuous signals 
cannot imitate brain behaviors well, and it is hard to use 
them to perform special actions that are extremely common 
in biological systems, such as complex classification, pattern 
recognition, adaptive learning, and outcome predictions [6]. 
Therefore, a third generation of ANNs, viz. spiking neu-
ral networks (SNNs), was created to solve these difficul-
ties [7]. In recent years, there has been great development 
in the SNN field [8–10], and many kinds of computational 
and hardware spiking neuron models have been proposed, 
such as the Hodgkin–Huxley neuron model [11], Izhikevich 
neuron model [12], leaky integrate-and-fire model [13], etc. 
As mentioned above, the human brain is a high-density and 
extremely low-power-consumption system with nearly ~ 1010 
neurons and ~ 1014 synapses [14]. Thus, a single neuron may 
be connected to up to  104 other neurons by synapses [15]. 
This is the greatest challenge that must be overcome in terms 
of microelectronics design of ANNs. Thus, the desired fea-
tures of any devices used to build ANNs are high density, 
low power dissipation, and strong driving ability. Tradition-
ally, different kinds of field-effect transistors (FETs) have 
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been used to construct neurons and synapses, but they have 
an ultimate density limit on the order of  1010 cm−2. Thus, 
Cantley et al. [6] proposed a spiking neuron circuit based on 
nanoscale noncrystalline silicon thin-film transistors (TFTs), 
which solved the issue of the driving ability of SNNs per-
fectly, although they ignored the complexity of the circuit.

Based on this discussion, devices with the characteristics 
of a simplified circuit, high integration, and low power dissi-
pation are considerably desirable for use in microelectronics 
circuit design and related fields. In this sense, single-electron 
transistors (SETs) have attracted attention from researchers 
due to their smaller space occupation, simpler structure, and 
lower energy consumption compared with traditional FETs 
[16]. The basic operational principles of a SET are Coulomb 
blockade oscillation and the tunneling effect, with only a few 
electrons being transported [17]. Based on these remark-
able characteristics, many circuits have been designed [18, 
19]. Liu et al. [20] built a simple hardware-oriented spiking 
neuron model based on the Coulomb oscillation effect of a 
SET; their proposed SNN circuit structure is simple and can 
be used to realize a few basic SSN functions. However, for 
some special applications such as updating synapse weights, 
their circuit may be ineffective. To validate neuron models 
with SNNs, Pês et al. [2] designed logic gates based on SETs 
and modified Wenpeng’s SET model to one that can oper-
ate at room temperature. Although SETs offer many advan-
tages, their serious drawback is that their output impedance 
must be large enough (no less than the quantum resistance 
of 25 kΩ) [21]. Clearly, the driving ability of SETs is insuf-
ficient for long-distance transmission, nor can they handle 
too much load. For this reason, hybrid SET–FET circuits 
have been used in several applications [22–25] due to the 
high driving ability of metal–oxide–semiconductor field-
effect transistors (MOSFETs), providing an effective solu-
tion to the driving problem of SET-based neurons. However, 
a serious problem remains in ANN circuit designs, viz. that 
the number of synapses is thousands of times greater than 
the number of neurons in biological systems, thus the syn-
apse density is a critical parameter when devising neural 
networks.

Chua [26] theoretically proposed the memristor in 1971, 
and these devices have gained in popularity recently due 
to their physical implementation by Williams et al. [27] at 
HP Labs in 2008. In recent years, a considerable number 
of memristor models have been designed and applications 
identified due to their excellent characteristics, such as 
nanoscale size and energy-saving attributes [28–30]. The 
most remarkable feature of memristors is their memory abil-
ity, more specifically, that a memristor can remember the 
charge flowing through it; i.e., the resistance of a memristor 
varies with its current. Consequently, memristors and corre-
sponding hybrid circuits have been widely used as synapses 
in ANNs [31–33]. Memristor bridge synapse circuits have 

been widely used to control weights in ANNs [34]; however, 
such bridge structures are based on at least four memristors, 
which has a negative effect on the circuit integration and 
their energy-saving ability. To overcome these shortcom-
ings, many researchers have used only one memristor as a 
synapse, in spite of the nonlinearity of its weight refreshing. 
In this situation, hybrid circuits of memristors have been 
devised, including memristor–FET circuits, etc. [35, 36]. 
Yang et al. designed a two-memristor synapse with reverse 
series connection to simplify the weight adjustment and the 
circuit. However, such series connection of two memristors 
is only effective for linear HP memristors. Moreover, win-
dow functions and boundary effects have not been discussed 
in such memristor models.

Therefore, a new SNN neuron model is proposed herein 
based on a SET and FET hybrid circuit, considering not 
only the complexity and driving ability of the neuron cir-
cuit but also the power and space consumption. To validate 
the model, a modified memristor synapse is constructed and 
used to connect isolated neurons into a simple network. The 
memristors considered herein are equipped with a novel 
simple window function that can simplify the memristor 
synapse weight adjustment. Finally, a series of simulations 
are performed to verify the design.

2  Basic nanoscale devices

2.1  Single‑electron transistors

2.1.1  Brief introduction to SET properties

A SET is a promising nanoscale device. In recent decades, 
the physical characteristics of SETs have been described suf-
ficiently by analytic expressions and simulations, and recent 
research on SETs has achieved huge breakthroughs [37, 38]. 
As shown in Fig. 1, a SET can be used as a three-terminal 
device just like a traditional transistor, where the back gate 
(G2) of the SET is usually connected to the ground or refer-
ence voltage in some specific applications, e.g., the design 
of logic gates [2].

D

S

G1 G2

Fig. 1  A single-electron transistor
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As mentioned above, besides their ultralow energy and 
space consumption characteristics, another eminent charac-
teristic of SETs is Coulomb oscillation. Coulomb oscillation 
can be summarized as when the current between the source 
(S) and drain (D) changes periodically for a linear gate volt-
age (G1). In other words, there is a periodic relationship 
between the gate voltage (G1) and source–drain current. 
Figure 2 shows the change in the period of the source–drain 
current versus the linear gate voltage (G1). The gate voltage 
(G1) changes linearly at a rate of 2 V/s rate in this simula-
tion, thus G1 will ramp from 0 to 0.5 V in 0.25 s while G2 is 
grounded, resulting in the illustrated time-varying Coulomb 
oscillation.

Liu et al. found that the Coulomb oscillation phenom-
enon of SETs shares some features with pulses produced 
by a spiking neuron [20]. Based on this important study, 
Liu et al. constructed a simple spiking neuron with a single 
SET. The SET spiking neuron model can exhibit diverse 
forms of spiking, just as the Izhikevich model [39] does, e.g., 
tonic spiking, class 1 excitable spiking, inhibition-induced 
spiking, and so on. Moreover, some researchers found that 
the SET spiking neuron model is able to synchronize and 
integrate information in a neural network, and it also has the 
ability to implement phase encoding [20]. With these out-
standing features, SET spiking neuron have a bright prospect 
in hardware designs.

2.1.2  Choosing the simulation platform and SET model

To explore the characteristics of SETs effectively and to 
execute more accurate circuit simulations of various SET 
applications, simulated models and platforms are of con-
siderable importance. Although several excellent single-
electron circuit simulation platforms such as MOSES and 
SIMON [40] already exist, they do not include sufficient 
peripheral circuit components such as transistors and diodes, 
which is extremely inconvenient for hybrid SET circuit 
design and property testing. For design convenience, in this 
work, PSPICE is chosen to simulate the SET circuits and 
their corresponding hybrid circuits because of its rich and 

extensive library. In addition to the abundant digital and 
analog devices available in PSPICE, it is also a widely used 
simulation program, so its simulation files have good com-
patibility with other platforms such as Multisim etc.

Three main simulation methods are used for SET circuits: 
analytical modeling, macromodeling, and the Monte Carlo 
method. In macromodeling, an equivalent circuit of the SET 
is designed to solve the Kirchhoff’s voltage law (KVL) and 
Kirchhoff’s current law (KCL) equations; common devices, 
i.e., resistors and diodes, are used in the macromodel. Mac-
romodeling is propitious for simplifying circuit structures 
and reducing simulation times, but the precision of such sim-
ulations may not be high enough and the internal states of 
the considered SET cannot be measured. The Monte Carlo 
method is used to calculate the probability of tunneling 
events that occur on Coulomb islands [17]. However, this 
method consumes too much time when performing prob-
ability calculations, which is highly undesirable in terms of 
the simulation process.

To overcome these shortcomings, the SET SPICE model 
proposed by Lientschnigl et al. [21] is adopted herein. This 
model is considerably quick for hybrid simulations of SETs 
because of its stationary master equation approach, and the 
full orthodox theory of single electrons is described. For a 
detailed description of the model see Ref. [21].

2.2  Memristor‑based synapse construction

2.2.1  Introduction to the memristor model

After real memristors were fabricated by HP Labs, numerous 
memristor models with diverse characteristics and structures 
were proposed, such as the sub-nanosecond switching of 
a tantalum oxide memristor [41], ferroelectric memristors 
[42], ferroelectric tunnel memristors [43], etc. However, 
the mathematical expressions for these memristors are 
extremely complex, and it is difficult to represent them using 
specific expressions [44]. In light of these problems, the lin-
ear drift model proposed by HP Labs is adopted herein. As 
shown in Fig. 3, the memristor is composed of two metal 
regions, viz. a doped region (gray) and an undoped region 
(white), sandwiched between two metal electrodes (black). 
The change in the resistance can thus be simply conceived as 
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Fig. 2  The Coulomb oscillations of a SET under different drain–
source voltages

Fig. 3  The structure of the HP linear drift model
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a movement of the boundary between the two regions under 
an external voltage.

The HP drift model can be expressed as

where M(t) is the resistance of the memristor, and RON and 
ROFF are the maximum and minimum resistance, respec-
tively. The term x(t) = w(t)

D
∈ (0, 1) is the doped ratio of the 

region, w(t) is the width of the doped region, D is the length 
of the memristor, k = uvRON

D2
 is a constant coefficient, and uv 

is the mobility rate of the ions, which takes a constant value. 
The HP linear drift model can reflect real physical memris-
tors well, but it ignores the boundary effects of devices; i.e., 
x(t) =

w(t)

D
 may overflow from the range of [0, 1] when a 

continuous source is imposed on the memristor. To improve 
the performance of the HP drift model and solve the bound-
ary problem, various window functions have been proposed.

2.2.2  Novel memristor window function

As mentioned above, when modeling real physical mem-
ristors, a window function F(x) must be added to Eq. (2), 
modifying it to

HP Labs proposed a window function, namely the HP 
window function [27]:

This function can solve the boundary problem when 
x = 0 , and the window function strengthens the nonlinear 
drift; however, boundary problems still exist. To address 
this, Joglekar and Wolf designed a new window function that 
can solve the boundary problem perfectly [45]:

where x ∈ [0, 1] and p ∈ N∗ . However, this function suffers 
from the termination lock problem; i.e., the state variable of 
the memristor cannot move from x = 0 or x = 1 , even when 
the current reverses direction. To address this, the Biolek 
window function was proposed [46]:

(1)M(t) = RONx(t) + ROFF(1 − x(t)),

(2)
dx(t)

dt
= ki(t),

(3)v(t) = M(t) × i(t),

(4)
dx(t)

dt
= kF(x)i(t).

(5)FHP(x) = x − x2.

(6)FJo(x) = 1 − (2x − 1)2p,

(7)FBi(x) = 1 − (x − stp(−i))2p,

where x ∈ [0, 1] and p ∈ N∗ . Even though the Biolek win-
dow function can solve the terminal lock and boundary 
problems, the expression of the Biolek window function 
is so complex that its application is limited. Moreover, the 
parameter p must be a positive integer. To alleviate this situ-
ation, based on Prodomakis’s work [47], Zhou et al. [48] 
introduced the following window function:

where p ≥ 0 and j ≥ 0 . Although Zhou’s function broadens 
the range of the parameter p, a new coefficient, j, is added to 
the complex window function.

Therefore, a simple, novel, and useful window function 
is designed herein to overcome these defects (i.e., terminal 
lock, boundary problem, complexity of expression, etc.). 
The mathematical expression for the window function is

where stp(i) is the previously introduced step function (8) 
and sign(i) is the same as expression (10). The window func-
tion proposed herein is compared with those mentioned 
above in Fig. 4. In it, the parameters p and j are omitted and 
the total equation is composed of only two internal memris-
tor variables. This simplifies the window function greatly 
and improves its range of application. Most existing window 

(8)stp(i) =
|
|
|
|
|

1, i ≥ 0

0, i < 0,

(9)FZh(x) = j

(
2

1.5 + sgn(i)(x − 0.5)
− 1

)p

,

(10)sgn(i) =
|
|
|
|
|

1,

−1,

i ≥ 0

i < 1,

(11)F(x) = stp(−sign(i) ⋅ x + stp(i)),

(a) (b)

(c) (d)

Fig. 4  A comparison between previous window functions [45, 46, 
48] and that proposed herein. The variable x will increase or decrease 
when i > 0 or i ≤ 0 , respectively
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functions are nonlinear in the range [0, 1], which impacts 
memristor performance. Although this nonlinearity problem 
can be solved to some extent, e.g., via the Biolek window 
function, the Biolek window cannot effectively handle the 
complexity of the memristor model. Conversely, the novel 
window function shown in Fig. 4 is a constant function when 
0 < x < 1 , and its value changes to zero when x = 0 or x = 1 . 
Moreover, even though the value of the novel window func-
tion becomes zero, no terminal lock occurs if the memristor 
current direction changes.

2.2.3  Analysis of the modified memristor synapse

Researchers have proposed many different synapse circuits 
constructed using various memristor models, where these 
circuits have diverse characteristics that mostly depend on 
the memristor itself. Accordingly, Yang et al. [49] put for-
ward a synapse circuit structured with two HP linear drift 
memristor models in series. Compared with the memris-
tor bridge structure, this synaptic circuit uses fewer mem-
ristors. However, the boundary problem was neglected in 
their memristor model; that is, a window function was not 
applied. Moreover, the structure of their synapse was too 
simple to be used for sophisticated functions. Thus, the mod-
ified memristor synapse shown in Fig. 5 is proposed herein.

In Fig. 5, two completely identical memristors (M1, M2) 
are connected in reverse in series, where the transistor func-
tions as a switch controlling the synapse output and weight 
modification. The conduction of T10 or T20 is controlled 
by Vmemcon, which can be in a high-impedance state (no 
signal) with a positive value (Vn) or take a negative value 
(−Vn). The threshold values of T10 (N-channel) and T20 
(P-channel) are set as −VTth and VTth, respectively. Both 
Vn and VTth are positive constant values, with Vn being 
larger than VTth. According to the transistor characteristics, 
T10 or T20 will shut down (allowing no more current to 
pass) when Vmemcon has a signal (−Vn or Vn), and Vmem-
con will be sent to Vin to modify the weight of the synapse. 

Conversely, Vin has an input signal when Vmemcon has 
no signal (high impedance), then the channels of T10 and 
T20 are conductive and the synapse output depends on the 
synapse weight and Vin. The input signal Vin has no effect 
on the transistors T10 and T20, because its value is much 
lower than the transistor threshold.

In the initial state, the total memristance of the synapse is

where

M1(0) and M2(0) are the initial memristances of the two 
memristors, respectively, and x10 and x20 are the initial state 
variables of the corresponding memristors. The memristors 
in any state can be described by

Meanwhile, as M2 is connected in reverse,

Accordingly, the total memristance M(Δt) of the two 
memristors can be deduced as follows:

where F+(⋅) and F−(⋅) denote the value of the window func-
tion when the memristor undergoes forward or reverse 
conduction, respectively. It can be seen that the total mem-
ristance of the synapse will be the sum of the two initial 
memristances when the term F+(x10 + Δx) − F−(x20 − Δx) 
is 0. Unfortunately, due to the symmetry and nonlinearity of 
existing window functions, only when x10 plus x20 equals one 
will the term F+(x10 + Δx) − F−(x20 − Δx) become 0. How-
ever, the novel window function proposed herein frees up 
the initial memristance setting; that is, in the novel window 
function,F+(x10 + Δx) equals F−(x20 − Δx) , lying between 0 
and 1 because of its linear constant property. Therefore, the 
total resistance of the synapse is a constant value, the cur-
rent of the synapse is also invariant when a constant-voltage 

(12)M(0) = M1(0) +M2(0),

(13)M1(0) = RONx10 + ROFF(1 − x10),

(14)M2(0) = ROFFx20 + RON(1 − x20).,

(15)

M1(Δt) = (RON − ROFF)(x10 + Δx) + ROFF

= M1(0) + k(RON − ROFF)

×
∫

Δt

0

F+(x10 + Δx)i(Δt)dt.

(16)

M2(Δt) = (ROFF − RON)(x20 − Δx) + RON

= M2(0) − k(RON − ROFF)

×
∫

Δt

0

F−(x20 − Δx)i(Δt)dt.

(17)

M(Δt) = M1(0) +M2(0) + k(RON − ROFF)

×
∫

Δt

0

(F+(x10 + Δx) − F−(x20 − Δx)) × i(Δt)dt,

Vin

Vout
Vmemcon

M1 M2

T10 T20

Fig. 5  The modified memristor synapse based on the novel window 
function. Vmemcon is a control signal (a positive or negative value 
that is larger than the threshold of the transistor), T10 is an N-channel 
MOSFET, T20 is a P-channel MOSFET, Vin denotes the synapse 
input, Vout is the synapse output, and M1 and M2 are memristors in 
series opposing connection
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source is imposed on the synapse, and the two memristors 
applied in the synapse can be described by

where M1(Δt) and M2(Δt) change linearly with time 
under a certain definite voltage, i is a constant current, and 
k
�

= k(RON − ROFF) . Thus, when applying the new window 
function, the synapse constructed from two HP linear drift 
memristor models is a linear device, greatly simplifying the 
weight adjustment processes (Fig. 6), which can summarized 
as follows:

(a) The output voltages of the synapses, which reflect the 
weight values, will increase linearly when the input 
voltage is positive.

(b) If there is no input voltage to a synapse circuit, the 
weights of the synapses will remain unchanged.

(18)

M1(Δt) = M1(0) + k(RON − ROFF)

×
∫

Δt

0

F+(x10 + Δx)i(Δt)dt

= M1(0) + k
�

iΔt,

(19)

M2(Δt) = M2(0) − k(RON − ROFF)

×
∫

Δt

0

F−(x20 − Δx)i(Δt)dt

= M2(0) − k
�

iΔt,

(c) Conversely, there will be a linear reduction in the syn-
aptic weights when a negative input voltage is applied 
to the synapse circuit.

In the real world, almost all devices exhibit a signifi-
cant amount of nonlinearity, e.g., in the I–V curves, state 
changing, etc. However, in the design presented herein, 
the memristor-based synapse is used to adjust the weight 
between neurons, and the rate of change of the weight is 
comparatively slow when it has a proper initial value. There-
fore, the whole weight training can be simplified as a linear 
process, resulting in a useful linear synapse. Although abso-
lutely linear devices are relatively scarce, a combination of 
multiple devices can be used to implement linear circuits 
to some degree. Indeed, this section discusses the linearity 
characteristics of memristors connected in series based on 
the proposed window function.

3  Memristive spiking neuron network based 
on SETs

3.1  Parameter settings of the primary nanoscale 
devices

The SET model proposed in Ref. [21] can work well under 
arbitrarily high gate voltages and bias voltages, and it can 
handle a considerable range of hybrid circuit styles. Nev-
ertheless, the model was not initially built for constructing 
spiking neurons. Moreover, the maximum frequency of a 
biological neuron may reach several hundred hertz (i.e. 
milliseconds) [50], whereas the SET model designed in 
Ref. [21] cannot emulate this situation well. Therefore, the 
parameters of the SET must be redefined. Figure 7 shows 
several Coulomb oscillations created by a SET with different 
parameter values, where the corresponding key parameters 
are presented in Table 1.

As shown in Fig. 7, the difference between Figs. 7 and 2 
is that the drain voltage is used to show the Coulomb oscil-
lation of the SETs with different parameters by grounding 
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the SET drain with a series-connected resistor. The gate 
voltage (G1) changes state linearly at a rate of 1 V/s in 
this simulation, while the source voltage is 5 mV. The 
amplitude of the output voltage pulse of the SET con-
structed using the parameters in Ref. [20] is obviously 
smaller than the others, reaching merely 1 mV compared 
with the source value of 5 mV. The terms Rs and Rd are 
related to the amplitude of the output pulse, i.e.; the higher 
the resistance, the smaller the pulse amplitude. Accord-
ingly, Rs and Rd are adjusted to  105 Ω to increase the pulse 
amplitude. Additionally, the gate capacitance Cg deter-
mines the maximum frequency of the output pulse, which 
decreases with an increase of Cg. Moreover, the frequency 
of biological pulses is mostly concentrated around values 
on the order of tens of hertz. However, the pulse frequency 
of the SET constructed using the parameters in Ref. [20] 
or [21] is relatively low compared with those produced 
by biological bodies. Thus, the value of Cg is modified 
to  10−17 F to better imitate the characteristics of biologic 
neurons, resulting in a SET frequency of about 30 Hz.

The memristor is a key component in the proposed neu-
ral network circuit, which is used to adjust the connection 
weights between neuron pairs. Several parameters of the 
memristor in this work are presented in Table 2, as used 
directly in the circuit simulation.

As mentioned in Sect.  2.2.1, the term k = uvRON

D2
 is 

defined as the rate of movement of the interface between 
the doped and undoped regions. Thus, according to the 
parameters in Table  2, a value of k = 20, 000 is used. 
Additionally, the parameters of the window function used 
in this work are described in Sect. 2.2.2. Under periodic 
stimulus, the voltage–current (V–I) curve produced by the 
HP linear drift model with the novel window function is 
depicted in Fig. 8. The V–I curve is endowed with the 
characteristics of a Fig. 8-shaped pinched hysteresis loop, 
where the area of the loop decreases with an increase of 
the source frequency, indicating that the memristor model 
used in this simulation is a standard memristor device.

3.2  Spiking neurons connected via memristor 
synapses

As mentioned above, biological neural systems are 
extremely complex with numerous neurons and connection 
synapses, and the activities of biological bodies are not the 
result of single neurons or individual brain regions, but 
rather arise from the action of the whole system. To under-
stand neural systems better and imitate their functionali-
ties more completely, multilayered neuron structures and 
multiple connections between neurons must be considered. 
The characteristics of single spiking neurons modeled 
using the SET as proposed herein are discussed in previ-
ous sections, so connections between multiple neurons and 
related neural activities should now be considered.

To begin with, it is worth noting that the connection 
between two neurons is fundamental in neural systems, 
making it necessary to analyze and reproduce all the rel-
evant activities between them. Figure 9 displays the con-
ceptual structure of two neurons (Ni, Nj) connected by a 
synapse ( �ij ). Generally, a single neuron abides by the 
“integrate-and-fire” rule; i.e., the neuron integrates pre-
synaptic spikes until reaching a threshold, at which point 
it outputs pulses. Specifically, as shown in Fig. 9, the inte-
gration process (symbol � ) in Ni can be expressed as

Table 1  The key parameter values of the SET

Scheme Cs, Cd Cg Rs, Rd

Ref. [20] 10−20 F 6 × 10−18 F 108 Ω
Ref. [21] 10−18 F 10−18 F 105 Ω
This work 10−20 F 10−17 F 105 Ω

Table 2  The crucial parameters of the memristor
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Fig. 8  The V–I curve of the memristor under a periodic stimulus

Fig. 9  A conceptual diagram of a two-neuron connection
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where Si denotes the summed Ni inputs, vk is the output 
voltage from the kth presynaptic neuron, and �kj denotes the 
weight between Ni and the kth presynaptic neuron. Once the 
weighted summation exceeds the threshold vth of Ni, Ni will 
be in an active state and give an output voltage viout to drive 
synapses that are directly connected with it. The neuron acti-
vation function is a step function:

where viout is the output voltage of the neuron and si denotes 
the sum of its inputs.

Finally, the input voltage that Nj receives from Ni is 
viout�ij . As seen in Fig. 9, when Nj is activated, there exists 
a backward feedback signal, vjf  , with the same amplitude 
and sign as the output voltage, vjout . Note that the feedback 
voltage plays a vital role in modifying the synaptic weight. 
The necessary detailed process of synaptic weight refresh-
ing is introduced in the circuit simulation section. To verify 
the SNN, classic neural activities should be reproduced by 
the network. As is well known, the structure of neural sys-
tems is considerably complex, with many functions being 
present in a single system. One of the most famous func-
tions is associative learning or memory, as demonstrated 
by Pavlov’s well-known dog experiment [51], which occurs 
prevalently in most biological behaviors. Inspired by this 
interesting behavior, the Hebbian theorem was proposed, 
that is, “neurons that fire together wire together.” In recent 
years, various structures of neural learning and memory net-
works based on memristor synapses have been proposed. 
To the best of the authors’ knowledge, compared with asso-
ciative memory construction and loss, associative memory 

(20)si =

n∑

k=1

vk�ki,

(21)gi =

{
viout, si > vth
0, si ≤ vth,

change and reconstruction have rarely been discussed. In 
most works, memory associative losses are merely attributed 
to the self-forgetting behavior of synapses, rather than the 
result of neural activities. Therefore, in this work, associa-
tive memory construction, loss, reconstruction, and change 
in SET-based spiking neural networks are described.

Based on the two-neuron connection and the afore-
mentioned associative memory, Fig. 10 shows a diagram 
of a simple neural network built with four spiking neu-
rons connected by three memristor synapses (introduced 
in Sect. 2.2.3), where the presynaptic neurons N1–N3 are 
connected with the postsynaptic neuron N4 via a memris-
tor synapse. In this diagram, the synapse weight adjustment 
circuit is omitted; therefore, the control signal terminals 
(Vmemcon1–Vmemcon3) of synapses M1–M3 are floating.

In Fig. 10, memristor symbols with gray or white back-
grounds denote high- or low-resistance states, respectively. 
Note that the memristive synapse S24 between N2 and N4 is 
grounded via a memristor with gray background, indicating 
that the synapse has an inherently large weight, namely N2 
can activate N4 directly when N2 is in an excitatory state. 
This interesting phenomenon is commonly seen in our daily 
life, e.g., unconscious salivation when chewing gum, which 
is normally called an unconditioned reflex. Conversely, S14 
and S34 are connection synapses with weak weights, which 
means N1 or N3 cannot initially activate N4, and the pro-
cess of strengthening the weight in S14 and S34 is so-called 
learning; For instance, once the weight of S14 rises to some 
extent with the help of unconditioned reflexes occurring 
between N2 and N4 simultaneously, N1 can directly acti-
vate N4 without N2 being in an active state. This is referred 
to as a conditioned reflex or associative memory building. 
As for associative memory losses, synapses will not lose 
their memory until the presynaptic neuron is kept in an inac-
tive state. However, there is another way for an associative 
memory to be lost, as proposed in Pavlov’s dog experiment; 

Fig. 10  A conceptual diagram 
of four spiking neurons con-
nected by three memristor syn-
apses. The gray memristors stay 
in a high-impedance state, while 
the white memristors stay in a 
low-impedance state. According 
to the relationship between the 
memristances and weight values 
in the synapse, it can be seen 
that only S24 is a large-weight 
synapse
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i.e., if postsynaptic neuron N4 is always activated by another 
neuron (e.g., N2) rather than neuron N1, then the connection 
strength between N1 and N4 will become weaker and weaker 
until it disappears completely.

After associative memory losses, the process of associa-
tive memory reconstruction is exactly the same as memory 
construction. The essence of associative memory change is 
the associative memory construction between N3 and N4 
accompanied by memory loss in S14.

For simplicity, the specific peripheral circuits of the net-
work are omitted from this schematic sketch; the specific 
connection modes among the various devices are introduced 
in the next section.

4  The circuit simulation of a memristive SNN

4.1  The connection between two spiking neurons

4.1.1  Basic modules of SNNs

Figure 11 presents basic modules of SET spiking neural net-
works in PSPICE, where the SET and memristor models, 
and their corresponding parameters, were introduced in for-
mer sections. All of the basic modules contain eight MOS-
FETs (T1–T8), two linear drift memristors (M1, M2) with 
novel window functions, five resistors (R1–R5), a capaci-
tor (C1), a linear voltage source (V1), and a comparator 
(LM219). R6 and R7 are used to facilitate the memductance 
test of the corresponding memristor but have no effect on the 
whole circuit. In addition to the SET and memristors con-
figured in the previous sections, the remaining parameters 
of all the module circuits are presented in Table 3, as used 
directly in all the circuit simulations unless otherwise noted.

Table 3 shows that the values of R1 and C1 may deviate 
from practicality to some extent, but C1 and R1 with such 
values could reproduce neuron pulse collection processes 
like biological neurons (as shown by the simulation result 
in Fig. 13). Moreover, the designed spiking neuron com-
prises a comparator LM219, which needs a capacitor with 
comparatively large value to drive it. Therefore, we must 
take these values as designed in our model. However, with 
the development of circuit integration, the comparator 
could become smaller and consume less power. Accord-
ingly, the values of the capacitor and resistor used in the 
neuron design would become smaller, which is achievable 
in the near future. The remaining MOSFET parameters are 
set to the default values of the standard Shichman–Hodges 
transistor model in PSPICE.

As shown in Fig. 11, there are three circuit modules 
marked by three colored frames: a SET spiking neuron 
(solid red line), a memristor synapse (dotted blue), and a 
synapse weight adjustment circuit (dashed green).

Fig. 11  The basic PSPICE 
module circuits of the SNN. a 
A single spiking neuron circuit 
based on a SET. b A memristor 
synapse. c A synapse weight 
adjustment circuit
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Table 3  The parameters of the basic circuit modules

Parameter Value Device Style Threshold (V)

C1 50 μF T1 NMOS 1
R1 100 MΩ T2 NMOS 1
R2, R6, R7 1 KΩ T3 NMOS −1
R3, R4, R5 100 MΩ T4 PMOS 1
V1 25 mV/s T5 NMOS 1
VCC 5 mV T6 NMOS 1
VP 1.5 V T7 NMOS 1
VN −1.5 V T8 PMOS 1
VT 2 mV
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In the spiking neuron module, an RC circuit consists of a 
capacitor (C1) and a resistor (R1), which function together 
as a signal integrator. Once the voltage of C1 exceeds the 
threshold VT, the spiking neuron will be in an active state 
and output pulses. After the neuron has been activated, it 
will produce a control voltage (Vcon) to the weight adjust-
ment circuit, which can modulate the weights of the syn-
apses according to the states of other neurons that are con-
nected to it. Specifically, if two neurons (one presynaptic 
neuron and one postsynaptic neuron) are connected together 
and are activated synchronously, both neurons will give a 
voltage (Vcon) to the weight adjustment, and the weight 
adjustment circuit will give a positive voltage (VP) to 
increase the weight of the synapse circuit that connects the 
two neurons. Conversely, if both neurons are in a resting 
state, there will be no output to the weight adjustment cir-
cuit, and the weights of the synapse will remain unchanged. 
It is noteworthy that the weight adjustment circuit will 
impose a negative voltage (VN) to the synapse circuit when 
a postsynaptic neuron is in an excitatory state compared with 
the presynaptic one being in an inhibitory state. However, 
the weight adjustment circuit will have no effect when only 
the presynaptic neuron is activated. The detailed operation 
of the weight adjustment circuit is presented as a logic table 
in Table 4.

In Table 4, “1” and “0” indicate that the input (Vcon1 
or Vcon2) is larger or smaller than the transistor threshold, 
respectively, while “\” means no output.

As stated above, there can be positive or negative voltage 
feedback in a synapse circuit, which completely depends on 
the states of the presynaptic and postsynaptic neurons. As 
shown in Fig. 11, a PMOSFET and a NMOSFET in series 
connection are attached to the central point of two reversed 
series-connected memristors in the synapse circuit, and all 
the MOSFETs are conductive when the corresponding syn-
apse weight adjustment circuit does not work. However, T4 

will shut down and the synapse weight � =
M1

M1+M1
 will 

gradually increase when the weight adjustment circuit out-
puts a positive voltage, VP. Conversely, under a negative 
voltage VN, T3 will shut down, and the weight will decrease 
slowly. More specifically, based on this control rule, both VP 
and VN can be set to any value depending on the circuit 
design.

4.1.2  Simulating the connection between two spiking 
neurons

According to the previous introductions on basic module 
circuits, a circuit containing two spiking neurons connected 
with a memristor synapse is shown in Fig. 12, which cor-
responds to the conceptual diagram in Fig. 9. To begin 
with, after N1 is in an excitatory state, the state of N2 com-
pletely depends on the weight of the synapse between N1 
and N2; specifically, N1 can activate N2 when the weight 
is large enough, but N2 cannot be activated if the weight is 
too small. Therefore, to validate the SET spiking neuron 
model and lay the foundations for the neural network con-
struction, only the connection between two neurons in this 
simulation is discussed, thus the weight adjustment process 
is not taken into consideration. Moreover, a constant voltage 
source (5 mV) that lasts for 0.5 s is directly imposed on the 
source terminal (S) of the SET in N1, which indicates that 
N1 is in an active state ranging from 0 to 0.5 s. The remain-
ing parameters are used as introduced in Sect. 4.1.1.

First, suppose that N1 can activate N2, namely that the 
synapse connection between N1 and N2 is strong. Based on 
this hypothesis, M1 and M2 are set as 2 kΩ and 18 kΩ, 
respectively; thus, the large weight value can be determined 
as �big =

M2

M1+M2
= 0.9 . The PSPICE simulated result is 

shown in Fig.  13a. Conversely, for a small weight 
value,�small = 1 − �big = 0.1 , which indicates a weak con-
nection between N1 and N2; the corresponding simulated 
results are shown in Fig. 13b.

In Fig.  13a, there is a 0.25  s delay in N2’s output 
[V(N2OUTPUT)] due to the integration characteristic of the 
spiking neurons. However, in essence, this is the result of the 
RC circuit’s charging process. After N2 receives four pulses 
via a memristor synapse, the postsynaptic potential [V(PSP) 
in Fig. 13] exceeds the threshold of N2, and N2 becomes 

Table 4  The logic table of the 
weight adjustment circuit
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Fig. 12  The connection circuit between two spiking neurons as implemented in PSPICE
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active and outputs pulses. It is noteworthy that N2 remains 
in an active state (between two dashed lines from 0.5 s in 
Fig. 13a) for about 0.074 s after the presynaptic neuron N1 
[V(N1OUTPUT) in Fig. 13] changes into an inactive state, 
because the RC circuit needs a certain amount of time to dis-
charge. However, when the connection weight value changes 
to 0.1, Fig. 13b shows that the postsynaptic potential cannot 
reach the threshold, thus N1 cannot activate N2 directly, and 
N2 does not provide an output.

Generally, in this PSPICE simulation of a connection 
between two spiking neurons, the spiking neurons based 
on SETs work well and the synapse constructed from the 
memristors is useful.

4.2  Connections between four SET‑based spiking 
neurons

4.2.1  A circuit of connections for four spiking neurons

On the basis of the circuit connecting two spiking neurons 
and the aforementioned connection diagram in Fig. 10, a 
neural network circuit consisting of four SET spiking neu-
rons is designed in PSPICE (Fig. 14). According to Fig. 10, 
the connection between N2 and N4 is inherently strong and 
stable, and the effects of the feedback controlling voltage 
on S24 should be omitted; thus, there exists no feedback 
circuit between N2 and N4, which allows the circuit to be 
simplified further. The initial values of the memristors are 
presented in Table 5.

As more presynaptic neurons are added into the neuron 
network, only two MOSFETs are consumed by each synapse 
weight adjustment circuit (Fig. 11), because all the weight-
controlling voltages (Vcon) that all the synapses receive 
from N4 are the same (for convenience, all the synapse 
weight adjustment circuits are drawn completely in Fig. 14). 
The parameters of all the components used in this circuit are 
the same as in Sect. 4.1.

4.2.2  The associative memory implementation in SNN

In this section, by using the SNN circuit shown in Fig. 14, 
an experiment is carried out to reveal any associative activi-
ties including associative memory construction, loss, recon-
struction, and change. The whole simulation procedure is 
divided into the 12 stages listed in Table 6, where “N” and 
“Y” denote the inactive and active state of presynaptic spik-
ing neurons, respectively, and each stage lasts 0.6 s.

According to Table 6 and the procedures related to asso-
ciative learning, the detailed information on the states of the 
presynaptic neurons can be described as follows:

Testing—Phase 1 (stages 1, 2, 3) These processes aim at 
testing the connection strength between the presynaptic 
neurons N1–N3 and N4. As mentioned above, only N2 
can initially activate N4 because of its inherently strong 
relationship with N4.
Associative learning 1 (stage 4): To strengthen the syn-
apse S14 between N1 and N4, both N1 and N2 become 
active based on the Hebbian rule, while N3 remains in 
an inactive state.
Testing—Phase 2 (stage 5) After the associative learning 
step in stage 4, synapse S14 has been enhanced suffi-
ciently. Therefore, to check the learning result, only N1 
is set as an active state.
Memory loss (stage 6) In this stage, according to Pavlov’s 
dog experiment, the established associative memory is 
not eternal, and it will disappear after a period of time. 

(a)

(b)

Fig. 13  The simulated results of a connection between two spiking 
neurons with a large and b small weight
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Therefore, only N2 is activated while N1 and N3 are kept 
in resting states.
Testing—Phase 3 (stage 7) After suffering the memory 
loss step, only N1 is in active state.
Associative memory reconstruction (stage 8) This stage 
is completely the same as stage 4 (i.e., associative learn-
ing). N1 and N2 are in active states, while N3 is in a 
resting state.
Testing—Phase 4 (stage 9) Just like stage 5, N1 is excited, 
while N2 and N3 are in inactive states.
Associative memory change (stage 10) In this stage, N2 
and N3 are activated simultaneously, while N1 changes 
into an inactive state.
Testing—Phase 5 (stages 11, 12) When testing the result 
of the associative memory change, only one presynaptic 
neuron (N1 or N3) is activated in each stage.

4.2.3  Simulation result and analysis

As shown in Fig. 15, the PSPICE simulation is divided into 
nine parts, consisting of a total of 12 stages (S stands for stage 
in Fig. 15). In the phase 1 test, only N2 can activate N4, which 
conforms well to the preset characteristic that only N2 has a 
strong connection with N4. In terms of the two neuron connec-
tion simulation results presented in Sect. 4.1.2, once a postsyn-
aptic neuron has been activated by a presynaptic neuron, there 
will be a 0.074 s delay when the postsynaptic neuron changes 
into a resting state after the presynaptic neuron becomes inac-
tive. In order to separate the response results of N4 driven 
by different presynaptic neurons, each stage contains a 0.1 s 
interval (marked with the symbol “0.1 s” in Fig. 15).

After finishing the associative memory construction stage 
(S4 in Fig. 15), Fig. 15 shows that N1 can activate N4 inde-
pendently in the phase 2 testing stage (stage 5). In other words, 
with the help of N2, the associative relationship between N1 
and N4 has been built.

However, if N1 does not fire while N2 keeps firing for a 
period of time, N1 will gradually lose its associative memory 
in the memory loss stage (stage 6), whereby N4 cannot be 
activated by N1 any more (stage 7). Although memory dis-
appeared in N1, it can be rebuilt just like in stage 4, i.e., fir-
ing N1 and N2 together for enough time (stage 8), where the 
phase 3 testing (stage 9) shows that memory has been rebuilt 
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Fig. 14  The memristive SNN circuit based on SETs. In the network, synapse S24 is an inherently strong connection with a stable weight, thus 
the weight adjustment circuit of S24 is omitted from the diagram

Table 5  The initial values of the 
memristors

Memristor Initial value

M1, M4, M5 18k
M2, M3, M6 2k

Table 6  The states of the 
presynaptic spiking neurons

Stage 1 2 3 4 5 6 7 8 9 10 11 12

N1 state Y N N Y Y N Y Y Y N N Y
N2 state N Y N Y N Y N Y N Y N N
N3 state N N Y N N N N N N Y Y N
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in stage 8. After N1 retrieves its memory, in order to change 
the associative memory, N3 and N4 fire simultaneously dur-
ing the memory change phase (stage 10). The phase 5 testing, 
including stages 11 and 12, show that N3 built associative 
memory (N3 can fire N4) while N1 lost its memory (N1 can-
not activate N4).

Furthermore, the memristances and weights of all syn-
apses in the simulation are shown in Fig. 16. Due to the 
memristor model and the new window function, the mem-
ristances and weights vary linearly in every stage, which 
greatly facilitates the weight adjustment process; i.e., an 
accurate weight value can be set directly by controlling 
the voltage imposed on the synapse. Moreover, in all test-
ing phases, there is little change in the weights and mem-
ristances of all synapses. In particular, the weights and 
memristances remain unchanged in S24 because of its inher-
ently strong and stable connection with N4. However, S14 
and S34 change depending on the specific activity being 
performed in the neuron network (Fig. 16). When memory 
is lost, the weights of all the corresponding synapses will 
decrease; conversely, the weights will increase when mem-
ory is constructed/reconstructed.

Generally, the simulated results effectively reveal the char-
acteristics of associative memory, such as associative mem-
ory construction, loss, reconstruction, and change. Moreover, 

they validate the feasibility of using SET spiking neurons in 
a network; that is, a neural network with a specific use can 
be constructed based on SET spiking neurons and memristor 
synapses. A neural network system is built herein from four 
neurons based on two-neuron connections. Thus, the system 
based on SETs and memristors exhibits scalability at a certain 
level.

More precisely, every SET neuron has its own independ-
ent driving source, therefore pulses will hardly be lost in a 
neuron and mostly depend on the synapse weight, a character-
istic that is suitable for multiple-layer neural network design. 
After building some special function neural networks based 
on the three basic modules (SET neuron, memristor synapse, 
and weight adjustment circuit) according to the design goal, 
larger-scale neural networks with more layers and inputs 
could be constructed using these basic function networks. As 
a result, the scale of neural networks could be further enlarged. 
Furthermore, the SET and memristor are nanoscale and low-
power-consumption devices, which also favors the scalability 
of the system.

Fig. 15  States of the spiking 
neurons in Fig. 14. The outputs 
of N1–N4 are listed from top to 
bottom
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5  Conclusions

An SNN based on SETs and memristor synapses is pro-
posed, and detailed associative memory-related processes 
are implemented therein. More precisely, a SET model with 
appropriate parameters is used to construct a spiking neuron. 
Meanwhile, the memristor synapse is modified; specifically, 
a new window function is incorporated into the memristor 
model, considerably enhancing the linearity of the synapses. 

Moreover, using PSPICE simulations, two SET-based spik-
ing neurons connected via a memristor synapse are tested; 
the results show that the neurons and memristors perform 
well in the simulated circuit. Furthermore, an SNN circuit is 
designed based on a previous two-neuron simulation, being 
constructed from SET spiking neurons and memristor syn-
apses; then, associative memory activities are realized in the 
circuit simulation. These simulations provide not only an 
effective neural network circuit design but also an approach 

Fig. 16  Memristances (green 
and red) and weight (blue) of 
chosen synapses: a S14, b S24, 
and c S34 (Color figure online)

(a)

(b)

(c)
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for combined application of SETs and memristors. Further 
work should concentrate on optimizing single SET spiking 
neurons for more useful applications.
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